
NATIONAL RADIO ASTRONOMY OBSERVATORY
SOCORRO, NEW MEXICO

VERY LARGE ARRAY PROGRAM

VLA COMPUTER MEMORANDUM NO. 147

TECHNICAL REPORT ON OCTOBER 1978 STATE OF THE
INTERACTIVE MAP PROCESSING SYSTEM (IMPS)

J. M. Tor son, R. M. Hj el lining, D. L. Ehnebuske

October 1978

TABLE OF CONTENTS
1.0 INTRODUCTION ... 1
2.0 GENERAL FEATURES OF I M P S 2

2.1 Growth of the System.................................. 2
2.2 IMPS Hardware and Operating System.................... 2
2.3 Relationship Between IMPS System and Other VLA Computers 3
2.4 IMPS Data Formats.................................... 3
2.5 Accessing IMPS D a t a 5
2.6 User Interaction With IMPS............................ 6
2.7 Software Development Tools............................ 8

3.0 TASK ORGANIZATION AND CONTROL F L O W 10
4.0 ADDING NEW FUNCTIONS TO I M P S 12

4.1 Adding User Coded Functions to IM P S 12
4.2 Adding Functions to the "Standard" IMPS System........ 13

5.0 CURRENTLY IMPLEMENTED CAPABILITIES 13
6.0 CAPABILITIES TO BE IMPLEMENTED IN THE IMMEDIATE FUTURE . . . 15

APPENDIX
A.l CURRENT IMPS MENU STRUCTURE................................ A-l
A. 2 DEC-10 TO IMPS DATA TRANSFER.............................. A-2

A.2.1 Interim Data Transfer System........................ A-2
A. 2.2 Final Data Transfer System.......................... A-3

A. 3 IMPS SUBROUTINE PACKAGES.................................. A-4
A.3.1 IMPS I/O Routines...................................A-4

A. 3.1.1 CAT1 0 A-4
A.3.1.2 MAP1 0 A—5
A. 3.1.3 CVFMT.................................... A-5
A. 3.1.4 TBPRIM.................................... A-5
A. 3.1.5 RCPRIM.................................... A-5
A. 3.1.6 KBPRIM.................................... A-6

A.3.2 IMPS Utility Routines............A-6
A. 3.2.1 CATLST.................................... A-6
A. 3.2.2 GETSSB. A-6
A.3.2.3 GETMRN............A-6

A.3.2.4 LBUTN A-6
A. 3.2. 5 RELTAB.................................... A-6
A. 3. 2.6 STRSUB.................................... A-7
A. 3. 2. 7 FAUTIL.....................................A-7

A.4 DATA FORMAT FOR IMPS MAP STORAGE (Version 10, 9-24-78, JMT) A-7
A.4.1 General Organization A-7

A.4.2 Format of Catalog F i l e A-8
Map Identification Section A-9
Auxiliary Map Identification Section A-10
Mapping Parameters Section A-12
Spectral Line Channel Information Section.......... A-13

Map Access Information Section A-14
A.4.3 Format of Map Data File............................ A-16
A.4.4 Format of Spectral Line Header File................ A-16
A.4.5 Format of Fitted Sources File...................... A-17
A.4.6 Format of Subtracted Sources File.................. A-18
A.4.7 Format of Cleaned Sources F i l e A-19
A.4.8 Format of History F i l e A-20

ii

NATIONAL RADIO ASTRONOMY OBSERVATORY
SOCORRO, NEW MEXICO

VERY LARGE ARRAY PROGRAM

VLA COMPUTER MEMORANDUM NO. 147

TECHNICAL REPORT ON OCTOBER 1978 STATE OF THE
INTERACTIVE MAP PROCESSING SYSTEM (IMPS)

J. M. Torson, R. M. Hjellming, D. L. Ehnebuske
October 1978

1.0 INTRODUCTION
IMPS, the Interactive Map Processing System, is intended primarily

to give the user the capability to interactively manipulate VLA radio
map data. This includes display of the data in various ways, extraction
of numerical information, and processing of the data in various ways to
produce other data.

This memo is intended to describe the current state of IMPS. It
is not intended to be a users manual for IMPS. Instead, it will describe
the overall capabilities of the IMPS system. This will include some of
the details of how the system is being implemented.

At the present time, all of the applications level software has
been implemented by Jim Torson. Device drivers for the Comtal image
display system and the Summagraphics data tablet have been worked on
by Mike Duggan. Disk I/O routines, basic software for handling the
connection between the PDP-11/40 and the DEC-10, and assistance with
system software have been provided by Al Braun. Dave Ehnebuske is
working on application specific data transfer between the DEC-10 and
the PDP-11/40. Bob Hjellming has helped in planning how the system
will look to the user and in deciding what functions will be implemented.

The listing of the IMPS software is about two inches thick (if
you can measure software progress in inches). It is estimated that this
is about 10,000 lines of code. Less than one-third of this is written

in assembly language. The rest is written in FORTRAN. Few additional
routines will need to be written in assembly language.

2.0 GENERAL FEATURES OF IMPS

2.1 Growth of the System
The IMPS system is intended to grow and evolve with time.

That is, it is being implemented in such a way that as the needs
and desires of the users become more clearly defined, IMPS can
be modified and extended to meet these needs. (See below for a
description of how new* functions are added to IMPS.)

Much of the initial implementation work on IMPS concentrated
on producing packages of useful subroutines. A great deal of
error checking has been built into these routines. This greatly
aids in the development of the applications programs that actually
implement the IMPS functions. When a new program is being tested,
a coding error usually results in an error message that gives a
clue as to what the problem is. This is unlike the frequent case
of the FORTRAN program error which just causes a mysterious failure.
A summary of the main IMPS subroutine packages is provided in the
appendix.

2.2 IMPS Hardware and Operating System
IMPS runs on a Digital Equipment Corporation (DEC) PDP-11/40

with 64 k 16-bit words of core storage. Disk storage includes an
RP06 disk pack which holds about 174 million bytes and two RK05
disk cartridges which hold about 2.5 million bytes each. Map
images can be displayed on the Comtal image display system. The
Comtal holds a single 256 x 256 image for display on a monochrome
or color CRT display. Each pixel is stored in the Comtal refresh
memory as an 8-bit value. Or, a pixel can be stored as a 7-bit
value and the other bit can be used for a graphic overlay image.

2

Also included is a transfer function look-up table which contains
256 entries and a color look-up table which allows color encoding
of the pixel values. Sixty--four different colors may be displayed
at one time out of a possible 4096 colors. The Comtal also displays
a computer controlled cursor that can be used for pointing to
features in the displayed image. Interaction with the user is
provided through a DEC VT-11 refreshed line drawing display, a
Summagraphics data tablet and a keyboard. ‘In addition, an ADDS
alphanumeric display terminal serves as a console terminal on
the system. Output devices include a versatec electrostatic
printer/plotter and a Dicomed D-47 film recorder. Connection
to the DEC-10 is through a DA-28 high speed parallel interface.
A teletype line can also be used as a connection to the DEC-10.

The operating system being used is RSX-llM.

2.3 Relationship Between IMPS System and Other VLA Computers
All of the IMPS applications software runs on the PDP-11/40.

Map data will be obtained from the DEC-10 system and then stored
on the IMPS disk. Operation of the IMPS system is then totally
independent of any other computers. However, it is anticipated
that in the future we will implement the capability for the IMPS
user to talk to the DEC-10 system and run programs on that
computer. Also, it will be possible for the IMPS user to send
data to the array processor system for operations such as map
cleaning.

2.4 IMPS Data Formats
The following is a brief description of the IMPS data base

format. The appendix contains a detailed description of this
format.

The IMPS system is of course able to handle VLA map data.
However, IMPS is capable of handling any gridded two or three

3

dimensional data. Currently, there is some capability for reading
in Westerbork.maps and digitized optical images from the Kitt Peak
IPPS system. The data is read from tape and converted.to the proper
.format-by-programs that run in the DEC-10 system.

Each user of IMPS has a separate disk file which contains a
catalog of that user’s maps. Each record of the catalog file
corresponds to one of the user’s maps. The catalog record holds
most of the header information for the map. This includes the
source name and qualifier which identify the visibility data that
were used in making the map. Also included is the map name,
which is any unique name assigned by the user. This is used
for identifying a map. Each map can also have a category
specification. During an IMPS session, the user can restrict
his operations to only maps that are in a given category. The
catalog record also contains the information needed by the system
to find.the actual map data, which is stored as a separate disk
file. .A given user will be able to read the catalog file and
map files of another user. However, he will not be able to
make any modifications or deletions to those files.

The data for each separate map is stored as a separate disk
file. IMPS is capable of handling spectral line maps. In this
case, the different channels are considered part of the same map
and are all stored in the same file. However, maps at different
frequency bands are considered separate maps and are stored as
separate files. The default storage format is for all the cells
of the first channel map to be stored together in the file
followed by all the cells of the second channel, etc. However,
IMPS is set up to allow different storage formats in the future
as needed.

The map cell values can be stored in four different formats:
32-bit real, 16-bit scaled integer, 8-bit pixel, or 1-bit graphic
overlay. The first three are different ways to store real map

4

values. The JMPS routines convert values to the appropriate format
as needed. For example, if a map is stored as 16-bit scaled
integer values, the values are converted to 8-bit pixel values
for loading into the Comtal image display. The fourth format
(1-bit) is used for storing images that contain such things as
grid lines and tic marks. (No graphic overlay data handling
has been implemented yet.) The IMPS-system recognizes a-special
map value called the "indefinite" value. This can be used for
such things as dividing one map by another. If the divisor .map
cell value is zero or below some specified value, then the result
of the division is considered to be undefined and the output map
cell is set to the indefinite value. Indefinite values are
always displayed as black. (We could easily allow the user to
specify the desired gray scale level or color.) Indefinite values
are also used as padding around a displayed map if it is smaller
than the image display area.

IMPS can handle maps with any number of cells in either
direction. The maps don't have to be square. The only restriction
is that a line of the map must fit into the buffers in the
programs. Currently, IMPS is set up to handle map lines which
are up to 1024 elements long. When it becomes necessary to
handle bigger maps, the software can be easily changed to allow
for that.

In the future, the IMPS data base will include other files
in addition to the catalog files and map files. These will hold
header information for the individual spectral line channels,
information on fitted sources, subtracted sources, and cleaned
sources, and also information on the history of processing
operations that have been done on the maps.

2.5 Accessing IMPS Data
A set of low level I/O routines has been implemented which

5

provides the capability to read and write an arbitrary length
block of data at any arbitrary byte address in a disk file.
These routines are implemented in assembly language but can be
called from a FORTRAN program. These low level routines are
called by a set of higher level routines which are the ones
normally called by the applications programs to access the IMPS
data base. These higher level routines are coded in FORTRAN.
These routines are oriented towards .reading or writing a line of
a map at a time. All that the caller program needs to do is to
ask for the desired line number in the desired channel number map.
Determining where that data is located is automatically taken
care of by the data base access routines.

2.6 User Interaction With IMPS
Instead of typing textual commands on the keyboard, most of

the user control of IMPS occurs through use of three basic elements:
moving the pen on the data tablet surface, closing the switch in
the pen by pushing the tip of the pen down on the tablet, and
typing a key (any key will do) on the keyboard. (The keyboard
that is referred to here is the keyboard that sits in front of the
VT-11 display. The keyboard on the console terminal is used by
the IMPS user only for typing the single operating system command
that starts up IMPS.) The following description of several
different operations illustrates how these three elements form
what can be considered a graphical control language. An
important advantage of this type of control language is that it
can be learned very easily by the new user.

The basic control of IMPS occurs through user selection of
items out of lists of options called menus which are displayed
on the VT-11 refreshed line drawing display. A multiple level
tree structure of menus is used. When IMPS is started up, it
displays the top level menu, which is a list of categories of

6

available functions. The user then points to the desired category
by positioning a cursor on top of it> Movements of the pen on
the data tablet causes the' displayed cursor to move on the
screen. The user then pushes down on the pen to indicate to
IMPS that the .cursor is pointing at the desired item. IMPS then
intensifies the .selected item on the screen and turns off the
cursor. If the user is sure that that is the desired item, he
then pushes down on the pen again. If he'decides that he doesn't
want that item, the user types a key on the keyboard (any key
will do). In this case, IMPS will put the cursor back on the
screen and allow the user to select another item. This illustrates
a general convention in IMPS: pushing down on the pen indicates
acknowledgement or a "yes" answer; typing a key on the keyboard
indicates cancellation or a "no" answer. After the user selects
a category of functions out of the top level menu, IMPS will
display the corresponding second level menu. This may be a list
of sub-categories, or it may be a list of functions. After a
function has been executed, IMPS returns to the menu that initiated
the function. If the user then wants to go to a different menu,
he types a key on the keyboard. IMPS responds by "popping up" to
the next higher level menu.

A menu display is also used when the user is to specify which
map is to be loaded into the Comtal display or which map is to be
the input for a processing operation. In this case, each menu
item is a one line summary of identifying information for each
map listed in the user's catalog file. (Actually, only those
maps in the current selection category, if any, are shown.) If
the user sees the desired map in the list before the list generation
is complete, he may push down on the pen to terminate the list
generation. Or, if he types a key on the keyboard, the list is
canceled and he may then type in the map name of the desired
map. Thus, he won't have to wait for the menu to be generated if

7

he remembers the name of the desired map. (It only takes a few
seconds to fill the screen with a list of maps. Also, this can be
speeded up if desired.)

If the user asks to load a map image into the Comtal display
and the map is bigger than the screen size, then the user must
specify what subsection of the map is to be loaded. In this
case, IMPS will draw a rectangle on the VT-11 display which
represents the input map. It will also draw a smaller square
which represents the piece of the map to be loaded. Movements
of the data tablet pen will then move the subsection square.
IMPS will also dynamically display the center coordinates and
the corner coordinates for the subsection square as it is being
positioned. Thus, the user will be able to easily position the
subsection at any desired coordinate and will also be able to
visually see how that subsection relates to the entire map. The
user pushes down on the pen when he has the subsection square
positioned to the desired location. IMPS will then load this
subsection into the Comtal image display.

When the user selects a function that modifies the transfer
function for the image being displayed on the Comtal, the parameters
that determine the transfer function are varied by moving the data
tablet pen. Typing a key on the keyboard will then exit from the
function and allow the user to select some other menu item.

2.7 Software Development Tools
The FORTRAN compiler that we are using compiles only one

source file at a time. It has no provision for ’’including” the
compilation of a second source file in the middle of the first
source file. Since this is a very useful (perhaps essential)
feature when building a large system, one of the first things
that we implemented was a pre-processor that simulates the
"include" feature. The pre-processor reads an input file and

8

writes out a temporary file which is the input file plus any
Mincluded" source files plugged in at the appropriate place. The
FORTRAN compiler is then asked to compile this temporary file.
The running of the pre-processor followed by the running of the
FORTRAN compiler is easily accomplished by a single indirect
command file in the RSX-llM system.

The files that get "included" are used to do such things as
declare standard data structures, set up "common" areas, and
initialize storage. For example, the file CATREC.DCL contains
FORTRAN statements which define a common array which will hold
a record from the catalog file. It also defines individual
variables that correspond to the various items in the catalog
record. Appropriate EQUIVALENCE statements then establish the
correspondence between the named items and the locations in the
catalog record block. Thus, a single "include" statement allows
a program or subroutine to allocate storage for a catalog record
and then refer to the items in the catalog record by name. The
advantage of this occurs when the structure of the catalog record
has to be changed. Instead of changing all of the routines
which use the catalog record, we just change the CATREC.DCL file
and then recompile all of the routines which use it. This is a
simple matter since command files are set up which will do all
the necessary compiling, etc. Typing the operating system command
"@BUILDIMPS" will recompile and relink the entire IMPS system.
(Typing this command is something that is done by the person who
is maintaining the IMPS software. This is not something that the
user of IMPS needs to worry about.)

Another important example of the use of "included" files is
in setting up buffers to hold lines of map data. The files
MLl.DCL, ML2.DCL, etc. each define a separate map line buffer.
This includes an array to hold the data, but it also includes
storage for several items of header information such as the number

9

of map elements currently in the buffer and the current data
format of these elements. These header items are used by the
I/O routines and the format conversion routines to keep track
of things and to detect error-conditions. These .DCL files
also set up variables that allow the application routines to
conveniently access the map elements as an array of the
appropriate data type.

3.0 TASK ORGANIZATION AND CONTROL FLOW
IMPS is implemented as a number of separate "tasks” rather than

as a single giant program. A "task” in the RSX-llM operating system
is a single executable program, the result of running the Task .Builder
program. Currently, none of the tasks in the IMPS system make use
of overlaying. (Although IMPS is. composed of a number of separate
tasks, as far as the user of IMPS is concerned, it looks like one
single system.)

In addition to the tasks in the running IMPS system, there are
several auxiliary tasks which initialize some things and which must
be run prior to running IMPS. The GENMEN task generates the VT-11
display files which contain the menu items. These are written out
into disk files. Thus, when IMPS needs to display menus, it reads
the display files from the disk rather than having to regenerate them
each time. The GENDIS task generates other display files that are
used by the tasks which implement the various IMPS functions. Running
GENMEN and GENDIS is something that is done by the person who is
maintaining the IMPS software. These need to be run only when a
change is made to the menus or other VT-11 images that are to be
displayed.

To initialize the IMPS system after the operating system has been
loaded, the operating system command "@INSIMPS" is typed on the console
terminal. This executes a small command file which tells the operating
system that the various IMPS tasks exist and then runs a little
program which sets a value in a core-resident global common area that

10

indicates that the various IMPS parameters in global common need to
get initialized. (The execution of this command file will soon be
added to the automatic initialization that is done when the operating
system is loaded.)

To start up the IMPS system, the user types "RUN.JMPS” on the
console terminal. This is the only command that the user ever needs
to type to the operating system. (Also, this is the only typing that
the user needs to do on the .console terminal. Any typing that is
required while running IMPS is done on the keyboard that sits in
front of the VT-11 display.) This command causes the IMPS task to
be run. This task looks to see if the global common area needs to be
initialized. If so, it runs another task to do the actual initialization.
Currently, there is only one IMPS task executing at any given time.
(This won’t necessarily be true in the future. See below.) The
basic function of the IMPS task is to display menus and to figure out
which function the user wants to execute. It then initiates the task
that will perform the desired function and immediately exits. After
that task is done performing its function, it initiates IMPS again
and exits. Note that when the IMPS task passes execution control to
another task it also passes use of the VT-11 display, the data tablet,
and the keyboard to that task.

In some cases, the secondary task that is initiated by the IMPS
task does not itself reinitiate the IMPS task. Instead, it passes
control to a third task, which will then reinitiate IMPS when it
finishes. In some cases this is done simply to break a large function
into two smaller pieces. However, in other cases, this is done to
break the function into two distinct phases: getting parameters from
the user and actual execution of a processing operation. An example
of this is the function which produces a smaller map from a bigger
map by averaging groups of pixels together. The secondary task
determines what input map is desired, what averaging factor is
desired, and what name is desired for the output map. It then

11

passes this information to the task which actually does the averaging.
The data is passed by using the facility provided by the operating
system for passing 13-word blocks of data from one task to another.
Note that this third task does not need to have any interaction with
the user. In principal, the second task could initiate the third task
and then return control to the IMPS task. The user could then continue
to interact with IMPS vjhile the third task produces the averaged map
as a "background" task.. . In-the-near-future,.. IMPS will be modified to
allow initiation of this type of "background" processing operation.
(This may require obtaining more core and/or obtaining a faster CPU
to provide the needed CPU cycles.)

4.0 ADDING NEW FUNCTIONS TO IMPS
IMPS is being implemented in such a way that it is relatively easy

to add new functions. In addition to adding new functions to the
"standard" IMPS system, it will be possible for the astronomer/user
to write a FORTRAN program that does some special "experimental"
function and then have that function invoked through the IMPS system..
(Appropriate documentation on the details of doing this will be
provided in a separate document.)

4.1 Adding User Coded Functions to IMPS
In order to add his own function to IMPS, the user begins

by creating the FORTRAN source file using the text editor on
the RSX-llM system. Or, if desired, the source file can be
created with the text editor on the DEC-10 system and then
transferred over to the PDP-11 system. A two-line command file
is also prepared. This contains operating system commands to
run the FORTRAN pre-processor and then run the FORTRAN compiler.
The user then executes the command file by typing an followed
by the name of the command file. Next, the user runs the Task
Builder program (TKB). This produces an executable module in a

12

disk file. The user then types an Install command to the operating
system. This informs the operating system that the user's
executable task image file exists.

In order to execute the task, the user runs the standard
IMPS system and selects the "Execute User Coded Task" function
in the top level menu. IMPS then asks the user to type in the
name of the desired function (the user may have more than one),
and then runs the user’s task. The user's function may be coded
as a single task or it may be broken up into more than one task.
For example, there may be one task which interacts with the user
to obtain parameter values or desired option specifications. This
task could then activate another task which actually executes the
desired function.

4.2 Adding Functions to the "Standard** IMPS System
In order to add a function to the "standard” IMPS system,

the GENMEN task is modified to include the new menu item at the
desired place in the menu structure. The IMPS task is then
modified so that it knows which task to activate when the new
menu item is selected. If the new task needs a pre-generated
VT-11 display file, then its generation should be added to the
GENDIS task. Also, the compilation and task building of the
new task must be added to the command files which build the entire
standard IMPS system. And, the installation of the new task must
be added to the command file which installs all of the standard
IMPS tasks. The new task is coded exactly the same as if it were
a user coded task rather than a standard IMPS task.

5.0 CURRENTLY IMPLEMENTED CAPABILITIES
The following functions are currently implemented:

Set Map Selection Category to be used.
Show Summary of Available Maps.

13

Initialize IMPS Parameters.
Load a Map Image into the Entire Comtal Display Screen -

if the map is smaller than the screen then .the rest of
the screen is loaded with the indefinite value. If
the map is larger-than the screen then the subsection
specified by the user is loaded.

Clear Entire Screen.
Load Image into a Quadrant of the Screen -

handles any size map as with loading of entire screen.
Clear a Quadrant of the Screen.
Modify Image Display Parameters -

this includes all of the functions that were implemented
in the old DATSEE program plus it adds some flexibility.
Specifically, this includes "contrast sweep" modification
of the transfer function, arbitrary three-segment transfer
function modification, multiple contours, single contour,
contrasting color encoding, and color encoding with a
spectrum of colors.

Insert/Remove Linear Wedge in the Image. -
this gives a visual display which shows how the image
display is being modified.

Plot Horizontal Cross Section of Displayed Image.
Change Map Pixel Storage Format -

this actually creates a new map file and leaves the
old one alone.

Decrease Number of Pixels in a Map by Averaging -
produces a new map file. (Only integer averaging
factors are implemented.)

Increase Number of Pixels in a Map by Duplicating Pixels -
produces a new map file. (Only integer expansion
factors are implemented.)

Execute User Coded Task.

14

6.0 CAPABILITIES TO BE IMPLEMENTED IN THE IMMEDIATE FUTURE
The remaining functions that are currently listed in the menus

will be implemented soon. (The current menus are listed in the
appendix.)

15

APPENDIX

A.1 CURRENT IMPS MENU STRUCTURE
The following shows the current IMPS menu structure. This is

shown in an outline form rather than listing the pages as they appear
when you run IMPS. For example, when you first start up IMPS you are
presented with a menu of the main categories of functions. This
corresponds to just the main items in the list below.

1. Utility Functions
1.1 Set Map Category to be Used
1.2 Show Summary of Available Maps
1.3 Show All Header Information for a Map
1.4 Change a Map’s Category
1.5 Delete a Map
1.6 Save IMPS Parameters
1.7 Restore IMPS Parameters
1.8 Initialize IMPS Parameters
Image Loading Functions
2.1 Load Image into Entire Screen
2.2 Clear Entire Screen
2.3 Load Image into a Quadrant of the Screen
2.4 Clear a Quadrant of the Screen
2.5 Load Two Images for Blink Comparison
2.6 Scroll Load an Image
2.7 Load Graphic Overlay Image into Entire Screen
2.8 Clear Graphic Overlay in Entire Screen
2.9 Load Graphic Overlay Image into Quadrant of Screen
2.10 Clear Graphic Overlay in Quadrant of Screen

3. Image Display Modification Functions
3.1 Modify Image Display Parameters

Selecting this menu item gives you a display which
includes a menu which lists the available types of

A-1

modification. It also shows you a plot of the current
transfer function and a list of the current display
status parameters.

3.2 Blink Compare Two Images
3.3 Blink Graphic Overlay
3.4 Insert/Rembve Linear Wedge in Image

Selecting this item gives you the same display as item 3.1.
4. Data Plotting Functions

4.1 Plot Horizontal Cross Section of Displayed Image
4.2 Plot Arbitrary Cross Section of Displayed Map

5. Data Processing Functions
5.1 Utility

5.1.1 Change Map Pixel Storage Format
5.1.2 Decrease Number of Pixels by Averaging
5.1.3 Select Subsection of a Map
5.1.4 Increase Number of Pixels by Duplicating Pixels
5.1.5 Increase Number of Pixels by Interpolating Pixels

5.2 Map Arithmetic
6. Execute User Coded Task
7. Exit from IMPS

A.2 DEC-10 TO IMPS DATA TRANSFER
A .2.1 Interim Data Transfer System

An interim data transfer system is currently implemented
which allows us to get data into the IMPS data base. This system
is not very convenient to use, but it was-very easy to implement
and it gives us some data to work with while the "final" data
transfer system is being worked on. The interim system involves
transferring the data to one of the disk cartridges under the
old RT-11 DATSEE system. This uses the teletype line and is
thus slow. Next, the RT-11 format file is transferred to the
RSX-11M format disk using a standard program. And finally, a

A — 2

program is run which adds this map file to the IMPS data base.
This program obtains some of the header information by having the
user answer questions.

A.2.2 Final Data Transfer System
Obviously, the interim data transfer system is not adequate

for actual production use. A much faster and more complete system
is currently under development. This new system is based on the
processor-to-processor parallel link hardware called the DA-28
and on software written in-house. At the present time the lowest
level software is implemented and runs (some of it is so new that
it has yet to become settled).

The basic software provides the following capabilities:
1) Multi-leaved task-to-task communication of arbitrary

data streams with automatic task initiation (at
present, only in the PDP-lls). By multi-leaved we
mean that multiple data transmission streams may
be in progress at the same time. For example, a
map file may be in the process of transmission
from the DEC-10 to the PDP-11 at the same time that
a print file is being spooled from the PDP-11 to
the DEC-10.

2) A generalized queueing system which allows queueing
of messages for specific tasks (at present only
tasks in the DEC-10 queue requests).

Naturally, the software provides error checking and retry
on data communications, necessary queue support functions and the
like for the capabilities it implements.

The interprocessor data transfer system is intended to
provide data transfer between the DEC-10 and all of the PDP-lls
at the site. As such, its use by IMPS is only part of the work
that it will be doing. Because the data transfer system provides

A — 3

general task-to-task communication, implementation of IMPS
specific communications tasks will be rather straightforward
(similar function'specific routines' have already been implemented
to allow general file copying, print spooling and so on). For
the immediate future- two functions seem urgent and easily
implemented:

1) Retrieval of map data bases (in IMPS format) from
either the DEC-10 or from the PDP-11/70 map maker
and integration of the new maps into the IMPS map
catalog system. When transferring DEC-10 format
maps to IMPS, all necessary format conversion will
be done by the DEC-10.

2) Queueing of data processing operations on maps that
reside in the IMPS system for the DEC-10 or PDP-11/70
map maker and retrieval of the results.

Of these two, the easiest to implement and most important
is the first.

As new needs are discovered, new IMPS specific data transfer
capabilities may be built on the basic data transfer system.

A.3 IMPS SUBROUTINE PACKAGES
The following is a brief description of the main subroutine

packages that have been implemented for IMPS. This is not a complete
list of all the routines that are available. The following subroutine
packages are implemented in FORTRAN unless indicated otherwise. All
routines that are coded in assembly language are callable from
FORTRAN programs.

A.3.1 IMPS I/O Routines
A.3.1.1 CATIO

This is a set of routines for reading and writing
the catalog files. Included are routines for opening and

A-4

closing catalog files and reading and writing a given
catalog record.. There is also a routine which reads
catalog records and searches for the next valid record that
describes a map-in the given category. Also included is
a routine that finds the record number of an available slot
in the catalog file and a routine which checks to see if a
given map name would be unique.

A.3.1.2 MAPIO
This is a set of routines for reading and writing

the map data files. First there is a routine which invents
a name to be used for a new map file. (Map data are stored
in files whose names are generated by IMPS.) Also included
are routines for opening and closing map files and for
reading and writing lines of map data. There is also a
routine which waits for a data transfer to be completed.
(We have implemented the capability to initiate a read or
write operation and then continue to do some useful
computing while the transfer is in progress.) Also included
are routines for converting map cell data formats and for
handling scaling into Comtal pixel values.

A. 3.1.3 CVFMT
This is a single assembly language routine that

actually does the conversion of map cell data formats.

A. 3.1.4 TBPRIM
This is a set of assembly language routines that

provide the basic operations involving the data tablet.

A.3.1.5 RCPRIM
This is a set of assembly language routines that

A-5

provide the basic operations involving the Comtal display.

A.3.1.6 KBPRIM
This is a set of assembly language routines that

provide the basic operations involving the keyboard.

A.3.2 IMPS Utility Routines
A.3.2.1 CATLST

This is a set of .routines .that generate people-
readable lists of the coded information in catalog file,
records.

A.3.2.2 GETSSB
This is a routine which gets a map subsection

specification from the user. This is done by using the
VT-11 display and the data tablet.

A .3.2.3 GETMRN
This is a routine which gets the catalog record

number that describes a map that the user desires to be
used as an input map. This is done by displaying a summary
list of available maps on the VT-11 and allowing the user
to‘point to the desired map.

A.3.2.4 LBUTN
This is a generalized light button routine. This

routine allows a calling routine or program to conveniently
display a list of options on the VT-11 and determine which
one the user wants to select.

A.3.2.5 RELTAB
This is a set of routines that provide use of the

A-6

data tablet at a higher level than that provided by the
TBPRIM package. These routines implement use of relative
rather than absolute coordinates from the data tablet.

A.3.2.6 STRSUB
This is a package of assembly language routines

which provide string handling facilities. A string is
defined as a sequence of consecutive character bytes
followed by a null character. Strings are stored in
LOGICAL*1 arrays. Implemented functions include determining
the length of a string, copying strings, concatenation,
picking substrings, comparing strings, padding with blanks,
striping off blanks, reading a string typed on the console
terminal, and outputting a string on the console terminal.

A.3.2.7 FAUTIL
This is a package of assembly language routines

which help FORTRAN do some arithmetic things. Included
are routines for converting single precision integers to
double precision integers, routines for doing double
precision integer arithmetic, etc.

A.4 DATA FORMAT FOR IMPS MAP STORAGE (Version 10, 9-24-78, JMT)
A.4.1 General Organization

The map data is stored in several different types of disk
files. For some maps, some of these types of files are absent.
The different types are:

Catalog - list of available maps, includes most of
the important map header information

Map Data - the actual map data array
Spectral Line Header - additional header information

pertaining to the different frequency channels

A-7

for a spectral line map
Fitted Sources -- list of parameters for the sources that

have been fitted
Subtracted sources-- list of parameters for the sources

that have been subtracted
Cleaned Sources - list of parameters for cleaned sources
History - information about how the map was created

For each user, there is a file named <pn>.CAT which contains
the catalog of available maps belonging to that user. (<pn> is the
user's programmer number on the DEC-10 system.) There is one
record in the catalog file for each different map. Note that a
"map" as defined here may be a spectral line map. That is, a
single "map" contains all of the data for all of the different
frequency channels. One of the things listed for each map is a
map file name. The various other types of files pertaining to a
given map will have the same file name but different extensions.

A.4.2 Format of Catalog File
In the following descriptions, the capitalized name listed

under "Item" is the name of the variable that holds the item in
the FORTRAN programs. Also, the letter following the length of
the item indicates the format of the stored item. I indicates an
integer, F indicates a floating point, and C indicates a character
format. Note that for character items the length given is the
length of the field for storing the string. This includes a
character space for the null character that terminates the string.
Thus, the allowable length of the string is one less than the
length here. In the following lists, items whose names are marked
with a * are those items that must have proper values.in order for
the data to get accessed properly. (The * is not part of the
variable name of course.) The following is the format for each
entry in the catalog file:

A-8

ford
No.

Byte
No.

Length
(bytes) Item

★ ic ★ ★ * [yĵp IDENTIFICATION SECTION *****

0 0 13 C *MAPNAM Map name - must be unique for
each map (supplied by user)

13 1 (unused)
7 14 13 C *MAPCAT Map category (supplied by user)

used to group maps together in
any way desired by the user

27 1 (unused)
14 28 9 C SOURCE Source name (8 characters)

37 1 (unused)
19 38 2 I QUAL Source Qualifier (integer)
20 40 2 I BAND (1=1.3 cm, 2=2 cm, 3=6 cm, 4=20
21 42 2 I DATTYP Type of data in the file

22 44 2 I MAPTYP

l=map (further defined by MAPTYP)
2=beam (further defined by MAPTYP)
3=model (further defined by

MAPTYP and MODTYP)
4=clean residual (further

defined by MAPTYP and MODTYP)
5=UV coverage - indicates which

cells have data
6=UV coverage - number of

measurements in each cell
7=UV coverage - amplitude of

visibility in each cell
8=contour map 1-bit overlay
9=grid line or tic mark 1-bit

overlay
10=phase closure data
Type of map data
1=1
2=Q
3=U
4=V
5=P, i.e.
6=p, i.e.
7=psi
8=spectral index
9=some arithmetic function of

one or more other maps

sqrt(Q*Q + V*V)
P/I

A - 9

Word
No.

Byte
No.

Length
(bytes) Item

23 46 2 I MODTYP Model type
l=clean - keep residuals
2=clean - don't keep residuals
3=maximum entropy

24 48 4 F MAPDAT Date this map was created
26 52 4 F MAPTIM Time this map was created
28 56 2 I *MAPNX Number of map cells in X direction
29 58 2 I *MAPNY Number of map cells in Y direction
30 60 20 (unused)

***** AUXILIARY MAP IDENTIFICATION SECTION *****

40 80 81 C MLABEL Any descriptive label supplied
by the user

161 1 (unused)
81 162 4 F OBSDAT Date of observation (if more

than one date is involved, this
will be the first date)

83 166 2 I MOBSDT Multiple observation date
indicator
0=just one date
l=multiple dates

84 168 4 F EPOCH The date applicable to CNRAE, CNDECE
PHRAE, and PHDECE

86 172 8 F CNRAE Center cell RA at EPOCH -
stored in radians as a double
precision floating point number.
("Center" cell is the upper right
cell of the four in the center of
the map.)

90 180 8 F CNDECE Center cell DEC at EPOCH
94 188 8 F CNRAO Center cell RA at observation date
98 196 8 F CNDECO Center cell DEC at observation date

A-10

Word
No.

Byte
No.

Length
(bytes) Item

The following four parameters
are the coordinates of the phase
tracking center in the data that
was used in making the map:

102 204 8 F MPHRAE Map phase tracking center RA
at EPOCH

106 212 8 F MPHDCE Map phase tracking center DEC
at EPOCH

110 220 8 F MPHRAO Map phase tracking center RA
at observation date

114 228 8 F MPHDCO Map phase tracking center DEC at
observation date
The following four parameters
are the coordinators of the phase
tracking center in the original
data produced by the synchronous
system. This is the same as the
coordinates of where the antennas
were pointing:

118 236 8 F OPHRAE Original phase tracking center
RA at EPOCH

122 244 8 F OPHDCE Original phase tracking center
DEC at EPOCH

126 252 8 F OPHRAO Original phase tracking center
RA at observation date

130 260 8 F OPHDCO Original phase tracking center
DEC at observation date

134 268 4 F CELLDX Cell size (radians) in X direction
136 272 4 F CELLDY Cell size (radians) in Y direction
138 276 4 F MAPROT Map rotation angle (radians of

clockwise rotation)
140 280 13 C XLABEL X coordinate label

293 1 (unused)
147 294 13 C YLABEL Y coordinate label

307 1 (unused)
154 308 4 F BW Bandwidth
156 312 4 F DFREQ

A-ll

Frequency difference between
adjacent channels (minimum
difference if they are not
all the same)

Word
No.

Byte
No.

Length
(bytes) I tern

158 316 4 F DVEL Velocity difference between
adjacent channels (minimum
difference if they are not
all the same)

160 320 4 F SUBFLX Total subtracted flux (Jy)
162 324 4 F BEAMPA Position angle of fitted beam
164 328 4 F BHPMAJ Half-power width along major

axis of fitted beam
166 332 4 F BHPMIN Half-power width along minor

axis of fitted beam
168 336 2 I DIFBEM Different beam flag

0=different beams not ilsed,
i.e., BEAMPA, BHPMAJ and
BHPMIN used for all cleaning

l=different beams used for
cleaning, see CLNPA, CHPMAJ
and CHPMIN in Cleaned
Sources File

169 338 4 F CLNFLX Total cleaned flux - sum of
fluxes of cleaned components (Jy)

171 342 20 (unused)

***** MAPPING parameters SECTION *****

181 362 2 I WTTYPE Type of weighting of data
l="natural" (cell sum)
2="uniform" (cell average)

182 364 2 I TAPER Type of taper function used
l=Gaussian
2=linear

183 366 4 F TAPWDX Taper parameter in X direction
(sigma for Gaussian taper,
dist. to zero for linear taper)

185 370 4 F TAPWDY Taper parameter in Y direction

A-12

Word Byte Length
No. No. (bytes) Item

187 374 2 I CONVLV Convolving function
l=boxcar (II function)
2=Gaussian

188 376 4 F CNVWDX Convolution parameter in X
direction (width for boxcar
convolution, sigma for Gaussian
convolution)

190 380 4 F CNVWDY Convolution parameter in
Y direction

192 384 2 I UNGRID Indication of whether or not
effects of gridding were undone
0=no
l=yes

193 386 20 (unused)

***** SPECTRAL LINE CHANNEL INFORMATION SECTION *****

203 406 2 I VELREF Velocity reference frame:
1=LSR?
2=???

204 408 4 F CHFREQ Frequency of first channel
206 412 4 F CHVEL Velocity of first channel
208 416 2 I CHANFL Flag for first channel ,,
209 418 2 I CHANWT Weighting factor for first channel
210 420 4 F *IMAX Maximum strength in first

channel (Jy)
212 424 2 I IMAXX X location (pixel coordinate)

of maximum in first channel
213 426 2 I IMAXY Y location (pixel coordinate)

of maximum in first channel
214 428 4 F *IMIN Minimum strength in first

channel (Jy)
216 432 2 I IMINX X location (pixel coordinate)

of minimum in first channel

A-13

Word Byte Length
No. No. (bytes) Item

217 434 2 I IMINY

218 436

219 438

221 442

2 I

4 F

4 F

*MAPSCL

*PSCALE

*PTRANS

Y location (pixel coordinate)
of minimum in first channel
NOTE: if NCHANS is greater than
1 there will be a file with
extension .CHN which contains
the various items for each
channel (see below)
Binary scale factor for first
channel map
Pixel scale factor (for scaling
pixel values into map values)
Pixel translation amount (for
scaling pixel values into map
values)

223 446 20 (unused)

***** MAP ACCESS INFORMATION SECTION *****

233 466 2 I *MDBVER Map data base version

234 468 10 C

239 478

240 480

2 I

2 I

(This is set by the I/O routines
and should not be changed by
the user program.)

*MAPFIL Name of file that contains the
map data. The name of the file
will be a number, e.g., 000001,
000002, etc. The user will not
have to worry about these names.
They will be generated by the
programs.

BEAPTR Beam pointer - If this catalog
entry is for a map (DATTYP=0),
the beam pointer is the number
of the catalog entry for the
corresponding beam. If there
is no beam, this will contain
zero.

♦NCHANS Number of frequency channels
contained in this map

A-14

Word Byte Length
No. No. (bytes) Item

241

242

243

244

245

246

482 2 I NFITS Number of fitted sources

484

486

488

490

2 I

2 I

2 I

2 I

NSUBS

NCLNS

*CELFMT

*MAP0RG

NOTE: if NFITS is greater than
zero there will be a file with
extension .FSR which contains
the information about the fitted
sources (see below)
Number of subtracted sources
NOTE: if NSUBS is greater than
zero there will be a file with
extension .SSR which contains
the information about the
subtracted sources (see below)
Number of cleaned sources
NOTE: if NCLNS is greater than
zero there will be a file with
extension .CSR which contains
the information about the cleaned
sources (see below)
Cell data format
l=l-bit graphic overlay
2=8-bit pixel
3=16-bit integer (scaled by MAPSCL)
4=32-bit floating point
Map data organization parameter
l=bottom line (left pixel first)

of first channel map is first.
After complete first channel
map comes the complete second
channel map, etc.

2=???
492 20 (unused)

The catalog file can be thought of as a FORTRAN unformatted
direct access file. That is, it contains the binary data only.
There are no extra words for block lengths or anything like that.
However, the first word of the first record contains the number

A-15

of actual catalog records in the file. This number- does not include
this header record. The actual catalog records start with the
second record in the file. Also, the record count includes all
of the space for catalog recqrds in the file. That is, it doesn't
matter whether or not some of the records at the end of the file
currently contain valid catalog records.

A.4.3 Format of Map Data File
The extension of the map file is .MP (even if it contains

a beam or u,v coverage map).
The map data is stored in rows, with the bottom (south) row

first. The elements within a row are stored left to right (east
to west). All of the data for the first spectral line channel is
stored together, followed by all the data for the second channel,
etc. {This is the "normal" storage organization. There may. be
different values of the map organization parameter (MAPORG)
corresponding to different organizations.}

The map data file can be thought of as a FORTRAN unformatted
direct access file. There are no header words in the actual map
data file. (All of the needed header information is contained
in the appropriate catalog record.)

A.4.4 Format of Spectral Line Header File
The extension of the spectral line header file is .SLH.

For a given map, this file will be present only if NCHANS in the
header part of the map data file is greater than one. Each
record in the spectral line header file contains information about
one spectral channel. There are thus NCHANS records in this file.
The format of each record is:

A-16

Word Byte Length
No. No. (bytes) Item

0 0 4 F CHFREQ
2 4 4 F CHVEL
4 8 2 I CHANFL
5 10 2 I CHANWT
6 12 4 F *IMAX
8 16 2 I IMAXX

9 18 2 I IMAXY

10 20 4 F *IMIN
1'2 24 2 I IMINX

13 26 2 I IMINY

14 28 2 I *MAPSCL

15 30 4 F *PSCALE

17 34 4 F *PTRANS

Frequency of this channel
Velocity of the channel
Flag for this channel
Weighting factor for this channel
Maximum strength in this channel (Jy)
X location (pixel coordinate) of
maximum in this channel
Y location (pixel coordinate) of
maximum in this channel
Minimum strength in this channel (Jy)
X location (pixel coordinate) of
minimum in this channel
Y location (pixel coordinate) of
minimum in this channel
Binary scale factor for this
channel map
Pixel scale factor (for scaling
pixel values into map values)
Pixel translation amount (for
scaling pixel values into
map values)

The spectral line header file can be thought of as a FORTRAN
unformatted direct access file.

A.4.5 Format of Fitted Sources File
The extension of the fitted sources file is .FSR. For a

given map, this file will be present only if NFITS in the header
part of the map data file is greater than zero. Each record in
the fitted sources file contains information about one fitted
source. There are thus NFITS records in this file. The format
of each record is:

A-17

ford
No.

Byte
No.

Length
(bytes) Item

0 0 2 I FITTYP Type of fitted source
l=Gaussian
2=77?

1 2 4 F IF IT Peak strength of fitted source (Jj
3 6 2 I FITX X coordinate of fitted source

(pixel coordinate)
4 8 2 I FITY Y coordinate of fitted source

(pixel coordinate)
5 10 4 F FITPA Position angle of fitted source
7 14 4 F FHPMAJ Half-power width along major axis
9 18 4 F FHPMIN Half-power width along minor axis

11 22 4 F EIFIT Error in peak strength of fitted
source

13 26 4 F EFITX Error in X coordinate of fitted
source

15 30 4 F EFITY Error in Y coordinate of fitted
source

17 34 4 F EFITPA Error in position angle of fitted
source

19 38 4 F EFHPMJ Error in half-power width along
major axis

21 42 4 F EFHPMN Error in half-power width along
minor axis

The fitted sources file can be thought of as a FORTRAN unformatted
direct access file.

A.4.6 Format of Subtracted Sources File
The extension of the subtracted sources file is .SSR. For

a given map, this file will be present only if NSUBS in the header
part of the map data file is greater than zero. Each record in
the subtracted sources file contains information about one subtracted
source. There are thus NSUBS records in this file. The format of
each reocrd is:

A-18

Word Byte
No. No.

Length
(bytes) Item

2

6

8

10

14
18

2 I

4 F

2 I

2 I

4 F

4 F
4 F

SUBTYP

ISUB

SUBX

SUBY

SUBPA

SHPMAJ
SHPMIN

Type of subtracted source
l=Gaussian
2=???
Peak strength of subtracted
source (Jy)
X coordinate of subtracted
source (pixel coordinate)
Y coordinate of subtracted
source (pixel coordinate)
Position angle of subtracted
source
Half-power width along major axis
Half-power width along minor axis

The subtracted sources file can be thought of as a FORTRAN unformatted
direct access file.

A.4.7 Format of Cleaned Sources File
The extension of the subtracted sources file is .CSR. For

a given map, this file will be present only if NCLNS in the header
part of the map data file is greater than zero. Each record in the
cleaned sources file contains information about one cleaned source.
There are thus NCLNS records in this file. The format of each
record is:

Word
No.

Byte
No.

Length
(bytes) Item

2 I
4 F
2 I

CLNTYP
ICLN
CLNX

Type of cleaned source
Peak strength of cleaned source (Jy)
X coordinate of cleaned source
(pixel coordinate)

A-19

Word Byte Length
No. No. (bytes) Item

4 8 2 I CLNY

5 10 4 F CLNPA
7 14 4 F CHPMAJ
9 18 4 F CHPMIN

Y coordinate of cleaned source
(pixel coordinate)
Position angle of cleaned source
Half-power width along major axis
Half-power width along minor axis

The cleaned sources file can be thought of as a FORTRAN unformatted
direct access file.

A.4.8 Format of History File
The extension of the history file is .HIS. This file is

a text file that describes the history of how the map was created.

A-20

