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John Granlund, in his analysis [1] of the 3-level by 3-level

digital correlator, derives an exact expression, valid for possibly

unequal digitizer threshold levels, relating correlator output r() to

true correlation p(t). Here we will attempt to find a simple approxi-

mation to p, given r, accurate to 0.1% in relative error for Ip<0.9.

Our approximation must be suited to rapid evaluation by the synchro-

nous computing subsystem of the VLA.

Assume the (real, for simplicity) signals, xl(t) and x2(t) , to be

stationary Gaussian random variables with standard deviations a 1 and

0 2 . For digitizer transfer functions gl and g 2 as sketched below,

Granlund shows the relation of correlator output r (where r(t) =

<gl(x 1 (t))g 2 (x 2 (t+t))>/[<g 1
2 (xl(t))><g2

2 (x 2 (t))>]2) to true normalized

correlation p (p(t) = <x 1 (t)x 2 (t+t)>/[<x12()>< 22(t)>]2 ) to be given

by:

r(p) = L(v 1 ,v3 ,p) + L(v 2 ,v 4 ,p) - L(v 1 ,v 4 ,-p) - L(v 2 ,v 3 ,-p), (1)

where L is the bivariate normal integral [2, p. 936]. In the case of

equal digitizer threshold levels, v1 = v2 = v 3 = v 4 , (1) reduces to

the expression given by Cooper [3] or by Hagen and Farley [4].

Because the hardware associated with the IF lines employs phase

switching [5], expression (1) does not fully describe the VLA corre-

lation process. Granlund shows that the output r of the correlator,

given phase switched inputs, is the odd part of (1), viz.:
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Digitizer Transfer Functions

r (p)(p) p) - r(-p) (2)

-1
It is the inverse of r , p = r 1 (r), which we should like to be able

to calculate in order to correct the observed correlations. This

calculation cannot be performed because, owing to the hardware config-

uration, we do not know the settings of the four digitizer thresholds.

In [1] Granlund shows that, if the thresholds are maintained to rea-

sonable tolerances, we may make the following simplification: We

suppose that gl's thresholds are equal and are given by v = v 2 = v

and similarly that g2's thresholds are v 3 = v 4  v 6 . Now we assume

that the correlation process is governed by the relation

r l (p) = 2[L(v 5, v 6 , p) - L(v 5 , v 6 , -p)]. (3)

When v 5 is defined by v 5 = 12 inverfc{<gl 2 [xl(t)]>}, and similarly for

v 6 , digitization with V= v 2 = v 5 and v 3  v 4 = v 6 would yield the

observed autocorrelations at zero lag, <gl2 [x 1(t)]> and <g2
2[x 2 (t)>.

Granlund gives numerical evidence that the relative error in approxi-
-1 -1I -3mating r by r 1  is never greater than 10 , provided that the

thresholds are held to within 10% of their optimal (with respect to
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-1
S/N) setting*, v .612. He also proves the inquality Ir (r)

- opt I
-1

<Ir (r)1. As the threshold constraints are reasonably well-matched

by the VLA correlator hardware, the remainder of the development here

-I
will deal with the approximation of r I  . In order to compensate for

-I -1
the error in approximating rs by r I  (the above inequality) we

will favor those approximations which tend not to underestimate

IrI 11.

Quantization correction is to be done within the synchronous

computing subsystem of the VLA by an FPS AP-120B array processor (AP)

driven by a Modcomp miniature computer. The AP performs floating

point vector or array arithmetic at a high speed, which it achieves by

means of a pipeline adder and a pipeline multiplier. It does scalar

operations at much slower speed, using pipelining to advantage only in

very carefully programmed (microcoded) computations. In the worst-

case spectral line observing modes, the AP must, following each 10-

second integration period, correct either 4x351 256-point correlation

functions or 351 1024-point correlation functions. The correction

task must be completed within 10 seconds, with a portion of that time

devoted to other tasks (-1/2 second to read data into the AP, 2

seconds to compute FFT's, '1 1/2 seconds to send data out). Each of a

maximum of 54 IF signals is associated with its own digitizer; hence

there are up to 1404 (v 5 ,v 6 ) pairs comprised of 54 unique thresholds.

The approximations presented below are, save one, polynomials in r

whose coefficients are functions of v5 and v 6 . Much of the work

involved in the computation of the coefficients need be done only once

per unique threshold, since many terms are separable in v5 and v6 .

The gain levels likely drift on time scales longer than 10 seconds, so

that coefficients might not need be computed at each integration

period (considerable storage would be required, though). Computation

of coefficients would be done mostly in scalar arithmetic mode. Final

correction would readily be done by pipeline mode evaluation of poly-

nomials. One must count on this pipelining in order to achieve suf-

ficient speed; hence one would most likely want to use the same

*and provided I--v21J < .1 Vopt and Iv 3 -v 4 1 ( .1 Vop t



approximating form to correct all (256 or 1024, above) measurements of

a given correlation function, rather than, say, one form valid for

small correlations, and another for large. We will see that correc-
-3

tion for IpI<0.7, with relative error less than 10 , can be accom-

plished with ease. An approximation valid for IpI<0.9 is also pre-

sented, accompanied by a promising timing estimate.

Various computational details are given in the Appendix. v5 and

v may be computed by means of the rational approximation to inverf

which is given there.

In each case below, the error in an approximation P(r) to p(r)=
I

r-1(r) is defined as the relative error, E(r) = [p(r)- (r)]/p(r).

Note that for r>0 we should favor an approximation with E(r)<0 in
-1

order not to underestimate rI  Always an upper limit on Ipl is
-3

quoted*, for which IEI<10 when .551<v5 ,v6<.673 (this is the ap-

proximate range of interest, v +10%). All of the approximations
opt2op-2

considered are accurate to IEI<10 for IpI<0.88. None of the ap-

proximations behaves very differently than quoted over a slightly

larger range in (v5 ,v6), say in the range vopt+20%. The algorithm in

[6] was used for the accurate computation of L needed to study the

errors in the approximations.

Sine Approximation
-1

A simple approximation to p = r I  is given by:

1 [ (v 2+v62)/2
(r) = 1 sin [ e 5  6 (v 5 1)(v 6 -) r.

/(v 5 -1) (v 6
2 -1)

-3
IEI<10 3  for IpI<. 62, .551<v 5 ,v 6 < .673. The error curve shown in

column 3 of Table II exhibits typical behavior: (for r>0) a single

sign change occurs when p is between about .8 and .9, with E going

*Conclusions are based on tabulations of the error curves corre-

sponding to several dozen (v 5 ,v 6 ) pairs. Behavior of the curves is

consistent enough that .01 is very nearly an absolute confidence limit

on the upper bounds quoted for the ranges of validity in Ipl.



5

from positive (the wrong sense) to negative at that point. The first

two terms in the Maclaurin expansion of p in powers of r are identical
-1

to those of the Maclaurin expansion of r

Maclaurin Expansion

The Maclaurin expansion for rI can be written

(2n) (2n)
S= (v 5 ) Z (v 6 ) 2n+1

rl(p) = 4 I (2n+l) P
n=0

where Z ( m ) (which is tabulated in [21) is the m-th derivative of the
-_2/2

function defined by Z(x) = 1/42 e- . The Maclaurin series for
-1

r I  is given by the reversion of (4):

Z(
2 )  (2)

p(r) = r (r) = - (v 6 ) +
I 3!Z(v5 ) Z(v6 )

(2) (2) (4) (4)Z(v 5 ) (v ) (vs) (6)

5! {10[ Z(v5) Z(v6) z(v5) z(v)

where

r
4 Z(v 5 ) Z(v 6 )

(4) can be rewritten as:

*For completeness, we add that

1I (2n) (2n) (2n) (2n)

rs (2n+1)![Z (v) Z (v 3 ) + Z (v 2 ) Z ( 4 )n O

+ Z(2n)v 1 (2n) (2n) 2 (2n) 2n+l+ V Z (v4 ) + Z (v2 (v3 ) ]1 P



- (v 2 +v62) (v 2 -1)(v 2-1) (v5
4-6v 5

2 +3)(v 4-6v 6
2 +3)

r() = 2e 5 6 v5 1)(v6 - p1) (v5 -54 6 2 5
r(p) [P + 3! 35! P5

(v5
6 -15v 5

4+45v 5
2 -15) (v 6

6-15v6 4 +45v62-15)
+7! p7 + .... ] (6)

and (5) can be rewritten as:

(r) = y - (v5 2-1)(v 6 2_1)y3 + -10 (v 5
2 -1) 2 (v 6

2 -1) 2 - (v5
4 -6v 5

2 +3)(v 4 -6v 2+3)]y

+ {556(v 5 -1 62 5-6v52+3)(v64-6v62+3)- 5 (v 5
2 -1) 2 (v 6

2 -1) 2 ]

- (v5
6 -15v 5 

4 +45v 5
2 -15)(v 6

6 -15v 6
4 +45v 6

2 -15)}y 7 + ... , (7)

where

n 2(v5
2 +V 6

2 )
~=le r.

The coefficients in (4) or (6) are easily evaluated with the aid

of the differential recurrence relation Z(m+2)(x) + xZ(m+ l ) (x) +

(m+1)Z (x) = 0. Additional coefficients in (5) or (7) may be com-

puted, either numerically or symbolically, from the coefficients in

(4) by application of the recursion formulae for reversion of power

series (see, e.g. (10]). For polynomials obtained by various trun-
-3cations of (7) we have IEI<10 - 3 for:

through terms of order 3, Ipl< .60

5 .68

7 .70 and .551 < v 5,
13 .80 v < .673.

6 -
15 .84

25 .86
35 .90



A set of error curves is shown in Table II. The curves corre-

sponding to truncations at r3 , r5 , r7, and r1 3 exhibit behavior which

is typical over the range of interest in (v 5 ,v 6 ): the first two

-1
underestimate rI  over much of the range, whereas the latter two con-

sistently overestimate. Higher-order coefficients in the above (say,

>13-th order) come at much greater expense (the reversion calculations

quickly become excessive) than the coefficients in the seventh-

order approximation, good for Ip<.88, presented below.

Frequently, approximations superior to a truncated power series

can be obtained by converting the truncated series into a corre-

sponding continued fraction or rational function (the latter is called

a Pads approximant). A few such approximations were tried, but they

were never much superior to the truncated power series. Anyway, the

economics of computing on the AP favors polynomial correction over

more complex corrections. To illustrate: the time required, on the

AP, to evaluate a sixth-order polynomial at each element of a vector

is roughly the same as that required to divide two vectors element by

element.

Two-Point Taylor Formula

The two-point Taylor formula* [8] [take n=4, a=0, b=r I (p 0 ) for

*Given two points, a<b, the (2n-1)-degree polynomial defined by

n-I Bk(x-b) k n- Ak(x-a) k

p(x) = (x-a)n k' + (x-b)n k!k
k=O k=O

k  k

where A -dk[ f(x) and B -dk [ f(x
dx (x-b) nx=a k dx (x-a)

is the unique polynomial of that degree whose 0-th through (n-1)-th

derivatives match those of f at a and b. The remainder is given by

(2n)
f(x) - p(x) = (2n) (x-a)n(x-b)n where min(x,a)(<max(x,b).

A related method, known as "two-point Pade" can be used to construct

rational approximations from the Taylor series about two points.



some fixed p0>0] yields an approximation of the form:

p(r) = sign(r)*[Ar 4 (a Iri+a 2 r 2 +a 3 1r1 3 ) + r 4 (b 0 +b Ar+b 2 Ar 2 +b 3 r 3 )],

where Ar = Il-p 0 . The bracketed expression is just a seventh-order
-3polynomial in Ir. Choosing p = .75, one has IEI<10 3 for IpI<.88

over the range .551<vs,v 6 <.673. Additionally, IEI<10 2 for Ipl<.96.

The error curve shown in the last column of Table II exhibits typical

behavior: for Ipi<.94 over the range of interest in (v 5 ,v6), I6
overestimates ]rI 1. The coefficients for p are computed from the

-1
first three derivatives of rI  evaluted at two points, r=0 and r = r 0

= r (p0 ). The bulk of the effort required to find the coefficients is

in the computation of r 0 . Computation of 351 sets of coefficients in

32-bit arithmetic (which gives sufficient accuracy) on the IBM 360/65

requires 1.9 seconds. With some streamlining of the computation, one

ought to be able to compute 4x351 sets of the coefficients in com-

parable time either on the Modcomp, or, with microcoding of the scalar

arithmetic, on the AP. Evaluation at 256 points of 4x351 seventh-

order polynomials requires about 0.66 seconds on the AP. Details of

the coefficient computation are given in the Appendix.

Table I presents, in detail, the quality of the approximations,

subject to the criterion that IEI<10 - 3 over the range of interest in

(v 5 ,v 6 ). Table II shows a typical set of error curves for the various

approximations.

Use of the two-point Taylor approximation appears to be feasible,

even in the worst-case observing mode. Computation of the coeffi-

cients in that approximation requires much less time than does compu-

tation of the number of Maclaurin coefficients needed to give similar

accuracy. If high accuracy only to IpI somewhat less than .9 is

required, use of one of the low-order truncations of the Maclaurin

series is recommended.

Much simpler corrections than those given above can be used with

correlators whose digitizer thresholds are maintained by feedback at

their optimal settings.
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APPENDIX

A.1 Computation of v 5 and v 6

Reference [9] includes tabulations of 84 best uniform rational

approximations to inverf. One which is well-suited to our needs is:

p 0 + p 1 (x
2 -.5625) + P2(x 2 -. 5625)2

inverf(x) -  q0 
+ ql1 (x 2 -. 5625) + q 2 (x 2 -. 5625)2

-7
Ixi<.75, max. rel error = 8.3x10 ,

P 0 = 1.591863138 q0 = 1.467751692

pl = -2.442326820 q -3.013136362

P2 = 0.37153461 q2 1.00000000

Rounding the coefficients to 38-bit precision (28 bit mantissa) should

do little harm. The next lower precision approximation from [9] was

used in the 360 computations.

Compute v 5 according to v 5 = 2 inverf{1-<gl2[xl(t)]>}, andv 6

correspondingly. The approximation is valid for any measured auto-

correlation in the range [.25,1].

A.2 Computation of r

rl(p 0 ) is needed to high accuracy (say 6 digits) for computation

of the coefficients of the two-point Taylor approximation. Calcula-

tion of r I (.75) to this accuracy requires, on average, 3.45 ms. on the

IBM using a slightly streamlined version of the algorithm in [6] to

compute L(v 5 ,v 6 ,.75) and L(v 5 ,v 6 ,-.75). The streamlining was accom-

plished by eliminating two of the computations of the error function

in each evaluation of L; the needed values are implicit in the auto-

correlation measurements. No routine to compute erf is included in

the standard library of the AP, but approximations are readily avail-
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able (see Luke: Mathematical Functions and Their Approximation, or

Hart: Computer Approximations, or [2]).

On the IBM the algorithm in [7] is not competitive in timing with

that in [6]. However, on the AP, if it is microcoded, [6], which is

full of branches, would likely be slower than [7].

A.3 Coefficients for the two-point Taylor formula with n=4, a=0,

b=rl (P 0 )

a) To get A0 , Al, A2, A3:

Define

2 5(V52+v62)
= - e , = (v52-1)(v-1)&, = 1/, y - /&4, r = r(P)

Then A0 = 0, A1 = a/r0
4 , A2 = 8 A1 /r 0 , A3 = (y/r 0

2 +60A1 )/r 0
2 .

b) To get B0 , BI, B2, B 3 "

dr A d 2 r d3r
Define & = = I , = (see A.4).dpDefine p=p0 d p  p=p dp p  P=p0

Set a = 1/&, -3 = -2/, y = (332 - )/

Then B0  / r 0 4

B 1 = (a-4p0 /r 0 )/r 0
4 ,

B2 = [f+(20p 0/r 0 -8a)/r 0 ]/r 0
4 ,

B3 = {y+[-12f+(60a-120p/rO)/r 0 ]/r}/r 0
4 .3

c) Finally, ak = Ak/k!, bk = Bk/k!
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A.4 Derivatives of rI

The first three derivatives of rI about p#0 are needed for the

two-point Taylor formula with n=4.

- 5(v +v6 )/(1-p)drI 2 e V62)/(p2)

d- cosh(--)
dp nR11-pZ

Define y = p(1-p 2 -v5 2-v62) + v5v6 (1+p2 ) tanh( _p

d2rI drI
Then d =- (1-p) dp

Finally,

d3 r (1-p2)2 (1+2p2)-2(1-p 2) (1-p)2 (1-2p)v5v 6-(1-p
2 ) (1+5p 2 )(v5-v6 )

2

- L n(1-p 2 )9/2

(v5
2-2pv5v6+v6

2)
[(1-p) 2v5v 6-P(v5-v 6)

2 ]2 -p/2 2 p 6)
+(1-_2)9/2e- 2(I-

(1-p2 )2 (1+2p 2 )-2 (1-p2 )(1+p) 2 (1+2p)v5v 6 -
( 1-p2 )(1+5p2 ) (V5V 6 )

2

n(1-p2) 9 / 2

(v5
2+2pv 5v6+v 6

2 )

[(1+p) 2v5v 6 +p(v5-v6)22 
2 2(1-p)

n(1-p2)9 /6

Note that the lengthiest parts of these expressions involve p,

which would be held fixed at P0 for correction by the two-point Taylor

formula.
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