NATIONAL RADIO ASTRONOMY OBSERVATORY SOCORRO, NEW MEXICO VERY LARGE ARRAY PROGRAM

VLA COMPUTER MEMORANDUM NO. 153

SOLUTIONS FOR ANTENNA GAIN

B. G. Clark

December 1979

Although in the practical case one should solve the equations for antenna gain and phase with the appropriate weights for good signalto-noise properties, it is nice to have simplified formulae for use for back-of-the envelope calculations and other simple uses. There are explicit inversions of the least-squares matrix available for one simple case, and, since I am always mislaying the piece of paper I have them written on, I would like to insert them into the repository of numbered memos.

The case for which we have a simple explicit solution is that in which we have all correlations present and with equal signal-to-noise ratios rather greater than one. Note that the requirement is for equal signal-to-noise ratio; this development is unsuitable for use with the self-calibration algorithms even if all antennas do have the same sensitivity, because the signal varies from correlator to correlator.

Let c_{ij} be the complex correlation between the i^{th} and j^{th} an-tennas. Then let

$$a_{ij} = Log (|c_{ij}|)$$

$$(a_{ji} = a_{ij})$$
and
$$p_{ij} = Argument (c_{ij})$$

$$(p_{ji} = -p_{ij} \quad and$$

$$p_{ii} \equiv 0 \equiv a_{ii})$$

We suppose equations of condition, to be solved by least-squares, for A_i and P_i , the antenna amplitude and phase responses respectively.

$$a_{ij} = A_i + A_j$$
$$P_{ij} = P_j - P_i$$

These equations of condition reduce to the equation systems

$$\sum_{j=i}^{N} [1 + (N-2) \delta_{ij}] A_j = \sum_{j=1}^{N} a_{ij}$$

and

$$\sum_{j=1}^{N} (N \delta_{ij} - 1) P_j = \sum_{j=1}^{N} P_{ji}$$

where δ_{ij} is the Kronecker delta representation of the unit matrix. The first of these equations is explicitly solved by

$$A_{i} = \frac{1}{N-2} \sum_{j=1}^{N} a_{ij} - \frac{1}{(N-1)(N-2)} \sum_{i=1}^{N} \sum_{j=i}^{N} a_{ij}$$

The second matrix is, obviously, singular; if an arbitrary constant is added to any solution, it remains a solution. The general solution of the phase equation is

$$P_{i} = \frac{1}{N} \sum_{j=1}^{N} p_{ji} + C$$

where C is an arbitrary constant.