
1

VLA COMPUTER MEMORANDUM NO, 158

GRIDDER SYSTEM

W. N. Brouw

September 15, 1981

Part l - Array Processor Programs

l. In t r o d u c t i o n

The array processor (AP) package consists of 3 programs:

TRAI,: Data selection, gain corrections, gridding. (Tralie=grid in Dutch)
FIFt: First phase FFT, output Of gridded U,V»piane
F2FTS Second phase FFT, c5utput o t maps.

Visibility data is Input into T«AL (i.e., API), sent via an ioP-
linic to FI FT (i.e., AP2) and sent to the transpose memory (TM). F 2 F t
(I.e., AP3) reads the data from the transpose memory and outputs the maps
to t^e user.

The package will work; in a 2- a p environmentr In which case T R a L and
FlFx run in the same AP, and send d a t a to T m . The second Ap will run
F2F t . Since F2FT runs after FI FT, it could# in principle, run again in
the same AP.

To accomodate the 2^3 A p difference, the actual routine names ares

for the 3-AP c ase: TRAL2
F1FT2
F2FT,

for the 2-AP case: TRAL1
FIFT1
F2FT.

All AP subroutines start with 2 initial letters:

TR: TRAL
TV; TRAL-actinq on "raw" visibility records
Ft: f i f t

F2: F2FT

All AP subroutines have the extension .Aps, and reside in [302,2«J,
Thev can be compiled by: APA aname, which produces a tJfl2,2 1 |name .APO
object module. An AP-load module can be generated by:

2

0TR2S TRAL2,BIN and TRAL2.FTN in (302,213
ftTRls TRAL1
&F12: F1FT2
(3FU: F1FT1
RF21S F2FT

In addition 2 libraries of general routines exist: QFFT,APS and
q LI b .APS, which can be compiled by a p a GQFFT, resp. APA **QLIB.

Each program is steered by data in the AP*memory, This memory area
should be filled before the program i s run, and should also be formatted
for efficient use. The formatting routines are separate entry points in
the 3 load modules, and are:

TRPM: TRAL general memory a^ea
TRPV; TRAL visibility selection area
TVPM: TRAL gain lists
F I p m : FlFT general memory area
F2 p m : F2FT general memory area.

The content of the various areas is described In Appendix A,

2, TRAL

Before running T R a L# the foilowina steps should be taken:

a. Reserve 64-word work area in Ap memory at DPAPTR.
b # Write general memory area (see Appendix A) into AP-memory

at MEMPTR,
C. CALL TRPM (DPAPTR,MEMPTR,C0NVSC,TAPSC,GAIMPTR)

where: C0NVSC=log2 (convolution function points per grid point)
TaPSc =log2 (taper function points per grid point)

GAifjPTRsaddress in AP-memory of gain memory area

The convolution and t a p e r functions should have a power of 2
number of points between grid points,

n O t e : All memory areas and function tables must reside in page 0 of
the AP memory*

d # Write value and map tables (see App. A) into AP-memory at
VALPTR# r e s p . MAPpTR.

e, CALL TRPV(DPAPTR, M A P P T P , VALPTR, VALLEN, bUFLEN)

where: VALLEN=length of one entry in value table
BUFLFNslength of one input buffer,

f, ^rite gain tables and gain m e m 0 ry area into Ap
g, CALL TVPM (DPAPTK# PPCOftSC# XlNXPTK, XINXLEi, GAINSC)

3

where: BPCORSC=27-log2 (number of real points in bandpass c o r r e c
tion table per correlator) (for line only)*

XlNXPTRspointer to .INX overflow area (see later)
XiNXL=length of ,INx overflow area

G AlN S C s 27-log2 (number of real points in gain correction
table per antenna),

TRPM should be called only once per run. TRPV and TVPtt can be
called as often as a change in the tables is necessary. In practice T r p v
and TVPM w i n also be called only once per run*

The program is started by:

CALL TRAL2 (DPAPTR, TYPE* WEIGHT# INXTYP)

or

CALL TRAL1 (DP a PTR, TYPE, WEIGHT, INXTYP)

W h e r e : TYPEs t jProduce Antenna pattern
r 2 •Produce Map

3 :Produce wap and Ahtenna pattern
w e i g h t s 0 :Natural weight

1 :uniform weight
INXTYPs 1 :2-lF continuum (a *C)

= 2 :4-lF continuum (a # C, B, D)
s 3 :1 -IF line (AA, Cc, BB, or DO)
= 4 :2-IF line (AA, cc, or BB , DD)
= 5 jline polarization

T R A l starts off by suppressing parity error detection. -Although
this makes the running of APTEST on a regular basis necessary# it turns
out that the AP generates parity error detections (although no actual
parity error) if data transfers to/fro^ the AP are done simultaneously
with the Ap runninq. It then calls TRpR, which initializes the memory
management, and sets switches in various routines,

TRAL then waits for input.

Input is sent to the AP via tw0 alternating b u f f e rs. The format of
a buffer depends on the last w o r d in the buffer. The low o rd e r 16-bits
of this last word determine the action to be taken by the Ap, and can be:

-1: «Jse data to generate a (weighted) point count for the
uniform weighting case.

-2; convert part of point count into actual weights.
4-1; Convolve data onto a grid
♦2: Send parts of the convolved data to FlFT.
+3: Stop AP

The remainder of the buffer contains:

4

if -1# or +1: A series of visibility records (new format). The
en <* is indicated by a visibility record with UsVsw.

if - 2 , or +2: A real value in the last but one buffer word
indicating how far the process can continue.
This value is given as U (grid points).

It is assumed that data is input with a decreasing value of I U • for
each successive pigeonhole.

As an example# let us assume that we are sending pigeonholes p
i (i=0#..*.#n) with U #and u ,as its I it I boundaries. We want
i,ma x i,min to have uniform weighting with a width \n , and a
correlation function with a width C# all in grid points.

in that case we send type -1 data for pigeonholes p (i=of ...#ic)
i Until U +w/2<U -0.5; then a type -2 with U +w/2; then
K # m a x 0,min k#min type ♦ I data for
pigeonhole p ; then a type +2 with U +C/2; etc.
0 0#min

TKAL1 will stop after each +2 tyoe to let the user run FIFT; TFAL2
will stop after a type ♦2 with a negative value (i.e., the last one).

Handshaking between AP and user is accomplished by:

user-to-AP: By writing code in last word of buffer (AP clears
this location after processing buffer).

AP-t°-User: A CTL5 interrupt is g e n e rated after processing each
b u f f e r # and a count, of the processed buffers is m a i n
tained in the a P - i»i T e s # register.

A filled b u f f e r will initiate the following DroceSsing:

Type=*l: t v u r : unravel visibility record into form more
usable. Checfc N and V (unrotated) against
limits? skip record if outside limits;
rotate u#v; select INX data from time table;
output U# V, w (nsec), wei ght and flags in
output buffer; back to THAfj if buffer empty;
e l s e :

TVSL: Check time intervals; skip record if outside
limits; include INX flags in data flaqs;
include correlator flags in data flags; undo
flaas to be bypassed.

T V G N : Update output record ptr to include data.

The visibility record buffer now has records:

o: U (nsec)

5

i: V Cnsec)
2: W (nsec)
3: weight (average time)
4: flags (floated, but definition as in input visibility)
5: data

ended with a record with U=v =0 ,

This buffer is used as input to*

TRCBW* For each record, calls:
t r c v w * For each vaiue table entry: convert

u, v, w in a rid points; determine position
weight buffer; test skip flag; determine
pointers to weighting function: checks U,
V, w in b u f f e r - l i m i t s ; calls t rCVLW once
or twice (if wrap around of buffer).

trcvl^s (in TrcVl module) Add weighted point count
to weight buffer.

After processing visibility buffer:

t r a l :

T y p e = - 2 : t R m w :

Clears buffer type; counts buffer in lITKS
register; interrupts user; checks and waits
for m0ref

From current
by step -1 u
input buffer
buffer into
update point
weight buffe
This is done
l i s t . NOTE:
to be the sa
to T R jvL.

wtjMAX (maximum u-line processed)
ntil end value specified in
: convert values in weight
a weight by takinq the inverse;
ers describing the extent of the
r; wrap around if necessary,
for each map specified in map
The uniform weight is assumed

me for all w-planes. Return

Type=+1: TVHRs see above (Type=-1)
TVSL: see above
T V G n : Determine Pair of gain tables from time;

interpolate to get correct gains; apply interpolated
gain; apply gain corrections from bandpass table.

The output buffer is now used as input to:

TRCHls 2 - AP system, or:
TPCB2: For each visibility record, call THCV. In

addition, t K c b 2 tests if an iOP transfer
is finished, and tries to start a new
transfer a synchronously.

6

TRCV: For each va lue table entry: converts
U, V, w into grid points; determines
correct convolution buffer for w-planej
test flags to skip data; if only antenna
pattern wanted* call T*CN; else* use value
table to construct complex data point (e.g.
I• (J, V) from input data; call Trsh.

TRSH: Shift complex data point over (1# m, n) given
in value ta ble entry; goto T r SB.

TRSB: Subtract s0 urces (I, m, n) given in
corresponding map table entry from data
point; goto TRCN.

TRCNS Determine position in appropriate convolution
buffer; determine weight * taper function *
data; get correct convolution function
buffer pointers; call TRCvL once or twice (it wrap
around necessary).

TRCVL: Do convolution.

Tvpe=+2: TRWBi:
TRWR2:

t r u b :

t r a l :

2-AP-system? save end vaiue given in ouffer
3-AP-system: save end value* for each map,
and each w-piane per map# get a line from
convolution buffer (call t r u b);
initialize I O P - t r a n s f e r ; return to TRAL.
N O T E : T R C b a°d T R A l will continue transfer
if more needed.
Get l^-nes from convolution buffer into
transfer buffer; clear line in convolution buffer
(and weight buffer if uniform weight);
update pointers to these buffers.
Clear buffer type; interrupt user; count
LITES' register; wait for more if end
vaiue was >o; eise: wait fQ r IOP transfer
and stop.

2.1. TRAL Timing

Timing is difficult to give, depending on a lot Of parameters.
However, some apDr°ximate times for reasonable assumptions about
buffer sizes, gives, for n visibility records, m mapsize, s
simultaneous maps, c point convolutions, w point uniform weight.

Natural weight, 2-IF continuum:

50N+17NS+5M+M*#2 + 4NS#*2 + 1 •3fJS(c +c**2) micro sec.
or, for 12 hours, itf sec integration, 1 map, 4x4 convolution
function* 28 antennas, 2tf48 mapsize: 16W sec.

4-iF continuum: 195sec (add 22N)

7

2-IF l i n e ,8 channels: 225 sec (add 40N)

Uniform weight, 2 IF continuum:

53 M + 2 4 n S + 1 0 M + 2 m * * 2 + 5 n S * * 2 + 1 . 3 N S (c +c * * 2) + n S(w + w * * 2) micro sec

or, for the above parameters* 220 sec

4 - i f continuum* 260 sec (add 11N)
2-IF lie, 8 channels: 275 sec (add 32N)

Times will be less for less filled U, V-pianes, simultaneous
maps etc. Note that gain corrections are responsible for about
3tf% of the times. Furthermore, the actual run times depend
greatly on transfer time of data to the AP.

3. f i f t

Before running FIFT, the following steps should be taken:

a. Reserve 64 -word work area in a *5 memory at D P a PTR.
b. Write general memory area (see App. A) into Ap-inemory at M E m PTR.
c. tfrite map tables (see App. A) with AP memory a t m a p p t r .
d. CALL FI PM (DPAPTR, MEMPTR, MAPpTR).

NOTE: For the 2-aP system o P A P t r should be the same as for fPAL,
F l p M should be called only once per run*

The program is started by:

CALL F 1F T 2 (DPAPTR, TYPE, WEIGHT, RDTM, NpART, PART, OUTSK,
BtTPV)

or, CALL f i f t i (...) for the 2 a p case.

w h e r e :t y p e ,w e i g h t :
r d t m =0:

= 1:
n p a r t :

p a r t :
o m t s k =0:

= 1:
BITRV=0:

=32:

see t r a l

Write data to transpose memory (Tm)
Add data to t m

number of parts in whicn final output map
is output (0, or power of 2)
Current Part number
No output to TM
Output to TM
Straight addressing of TM
Bit reversed addressing of t m

f i f t starts off by suppressing parity error detection, ann calls
FtPp, initializing the memory management, and settinq switches in various
routines. FiFT uses a set of l to 5 buffers to do its work; each buffer
has its "progress" indicator. FlFT c a lls a list of subroutines to see if

R

anything can be done# giving p r e ferenc e to filling the buffers from API #
or writing them to the TM.

The loqical order of routines called per buffer is:

F1R»2 (or FiRBt)
FlFp2 (or F1FK1)
F I S r

F10 r 2 (or F10B1)
FIT r

Fl Wr
F1FW

DPX

DPY

:Start read from APi
:Finish read from Apl
:Subtract sources
:0utput gridded data to user
:Fourier transform data
:Start output to t m
sFinish output to Tm

Each buffer is governed by a DPX/DPY indicator pair# containing:

Exponent
Hiqh mantissa
Low mantissa
Exponent
Low mantissa

512 ♦ buffer type
w*coordinate of data (tf#l#...)
U - c o o d d m a t e o f data (0,1#...)
Map number (0,1#...)
Start of data buffer of length: TYPE (Wr I, or 2) *
VTLEtf (length of full v-line)

The possible buffer type s are:

-1: buffer not present
w; Available for read
1: Read active
2: Antenna pattern read ready (for t y p e =3)
3: Map being read (for TYPEs.H
4: All reading finished
5; Source subtraction finished
6: Output to \\/4* finished
7 ; Antenna pattern transform finished (for TYpE=3)
8: a h transforms finished
9: write to TM active

10: Read from t m active (if pDTM=l)
11: Antenna pattern written (for TY P e =3)
12: Map being written to T^ (for TYPE=3)
13; Ma p being read from TM (f0 r r d t m = i 0 r t y p e =3)

The routines:

F1R r 2 calls FIF m with parameter 2 to check if a t y p e = 3 map
should be read? if not# it calls FIFM with 0 to find an empty buffer.
If an empty buffer is foun d, it determines the w -, m a p - and U-
coordlnates of the next data# tills in the buffer description and
starts a notification sequence to API.

Fl^pl acts as F1RB2# however# the actual read is suppressed#
since the data is already in the one buffer allowed.

9

F1F r 2

FlFRl

FI Sr

F 1 O r 2

FIO r I

f ITr

Fl'^R

F1FW

NOTfr 2

(in module Fl K B 2) checks if there is an IOP interrupt
from API. it determines the cause of the interrupt (handshaking or
data transfer) and either initiates a data transfer or handshaking.

(in module F1RB1) sets reading finished.

calls FiFM to find a buffer re ady for subtraction. If one
available, it obtains the source list from the current Map area, and
subtracts the sources from the data if TYPE=3, i.e., both the
antenna pattern and map have to be present.

checks if buffer available and output to 11/44 wanted.
In that case it checks if the output buffer (one o* an alternating
pair) is available (i.e., first word of buffer is zero), and
transfers data to this output buffer. The output buffer is then
scaled to 16-bit integers, and the 11/44 is notified by an
interrupt, and the buffer count.

The first 6 words of the output buffer contain (16-bit integers):

o: 0: Buffer empty
l: Buffer filled

\i : Maximum value in line
2: : Position of maximum v a lue (last point=^)
3: : minimum value in line
4: : Position of minimum value (last p o i n t 2 **)
5: : Scale (i#e., power of 2 to multiply data with)

is a ^op routiner output is not allowed.

calls F 1FM to check if anything is to be done. It tnen
expands the part of the V-ljn* input from APt by adding zeroes at
beginning and end and transforms via QSRFFT (antenna Pattern) or
Q5FFT (map). Both routines a re m OFFT. They use the same algorithm as
the FPs routines, but the output order is bit-reversed.

checks if anything to be done via F 1F M , and if output to
Tm wanted. It then initiates either a read from (RDTmsij or write
to (POTM=0) the TM.

(in module Ft w B) checks if there is a TM interrupt?
then checks which phase it is in (reading, writing, antenna pattern,
map) and either initiates a further read or write, or declares the
buffer free.

output to TM is done in 24 bit integers scaled per line. The
scale is output as a 10-bit integer in the low order 5-bits of
the first two words of a line.

3.1. F1FT Timing

10

The actual program timing is roughly for a mapsize M* with w
w - p l a n e s :

Antenna pattern: W(120+2M+(2+.2M)21og(M) micro sec.
Map: W(l00+3yi+(2 + .45M)21Og(M) micro sec,

or, about 12 seconds for a 2k an tenna pattern
20 seconds for a 2k ma p.

However# transfer times from a p 1 and to T m play a role as well,
IOP transfer rates are about 1 micro sec per word, and are concurrent
with calculations.

TM transfer times are# as far as I k n o w , about 15 micro sec per
word, resulting in about 60 sec for a map. If the griduing is
split into several parts n, this amounts to (2n-l)*bft sec.

4. K2FT

Before running F2 f t , the following steps should be taken:
a. Reserve 64-word work area in AP memory at DPAPTR.
b. write general memory area (see App. A) into a p memory

at m e m p t r

c. Write maP tables (see App. A) into AP memory at m APPTR.
d. Call F2PM (DPAPTR, MgMPTP, MAPPTR, WCNVSC)

where w c n v s C: Scale (snumber of table points per grid
point) of W-convolution correction function,

NOTE: Although the program for this correction is present, I
have no clear idea on ho» to generate this function.

f 2 P m is called once per run.

The program is started by:

CALL F2FT (DpAPTR, TYPE, AnTYP, FPAP, NOCC, B U R V)

w h e r e :

TYPE, A B T Y P :See TRAL
FPAP=v) :Full antenna Pattern in TM

=1 :Part of antenna Pattern in TM
NOCC=^ ;NO convolution function correction

=1 c o n v o l u t i o n function correction
B I t r v = o :Address t m straight

= 32 : Ri t-reverserj addressing of t m

F2FT starts off bY suppressing p a rity error detection (see TRAL
why), and calls F2PR, initializing the memory manaae^ent and setting

u

switches In the routines called*

F 2 f t uses a set of from 1 to 4 buffers# arranged and used In the
same way as in FlFT. The buffer description in this case is*

DPX: Exponent 2512 ♦ buffer type
High mantissa :w-piane (w# 1# *•*)
Low mantissa :V-coordinate (0# 1# ...)

DPY: Exponent 5512 ♦ map number (0* 1# .*.)

The

Low mantissa :Address of buffer o
dimension

er types are:

12 Buffer not present
02 Buffer empty
I 2 Being fil led
22 Filled
32 Fourier transform ready
4 2 w-plane handling active
5: W-plane s ready
f>2 Correction fo^ convolution
72 Read TM only for scales

F 2 f t # as FIFT, calls a set of routines to act on the buffers# giving
priority to t / o operations. The routines called, in their logical order
are;

F2R b checks if empty buffer available# determine Map number*
w"Plane# v-coordinate to be read* Only the V's n ec e s s a ry for the
output size are read, except the first o n e * which has always
to be read for the scales. A T m read is initiated.

F2FR checks if a Tm interrupt is present# and finds the
buffer oeing read. if the line being read contains the scales
they are saved in a separate scale buffer# The line is then scaled
and expanded by inserting zeroeg. (Note that input order is b i t - r e v e r s e d .)

F 2 tr Fourier transforms the data# using 052KFT (in QFFT).

f 2A h checks by calling F2 f m if anything to be done. if only
1 w-plane, the real part of the buffer is taken. If there is more than
I w-plane, the w-planes are all added with the appropriate phase
correction in a separate buffer. This buffer is transferred to a
standard buffer as soon as the last w-plane is read.

F2Cf checks if anything to be done# and then corrects the
data for the convolution function.

F20 r checks if anything to be d o n e . It transfers the data

1?

to one of an alternating pair Of output buffers, if available*
scales the line t0 16-bit integers, and n o tifies the 11/44 with an
interrupt and buffer count. The format of the
output buffer is as for F108.

4.1. F2FT Timing

Times are approximately for a m a p of size M, with w w-planes:

M .W(65+20M+(2+.45M).21Og(M)) micro sec.

or

100 sec for a full 2k map.

The time will, however# be dominated by the data transfer
from the TM and to the 11/44.

13

Appendix A: D a ta Formats

A.I. TRAL

A*l.l General Memory Area of 87 Woras

The area consists of 5 p a r t s ^ a i i co ntaining floating point

AP address of start of convolution buffers*
Length of convolution buffers,
AP address of first Input buffer
Length of one input buffer
Maximum w-coordinate (=# of w-pianes/2)
Length full uniform weight buffer.
Length full Convolution buffer for one w-plane.
Length one convolution line (sTYPE*V-lencfth)
Length one un if o r m weight line (=V-length+
convolution width)

Offset m uniform weight line to V=f>(=Vmin
- F L O O R (. 5 * C o n v . w i d t h))
Maximum u in uniform weight buffer

* of simultaneous lines in uniform weight
buffer.
u at bottom of weight buffer c= w u m AX- w u t p b T)

Length of one V-iine

of w-pianes
Offset to V=0 (=TYPE#v)

min
Offset In uniform weight buffer to v=«, U=U

ma x
(=(WUMAX-U)* W U L E N + W O F F)

m a x
u
max

Length one convolution line (=t y P E * V L E N)

of simultaneous lines in convolution buffer.

a p address of output buffer for antenna

numbers • If n<

P r o l o g u e :(0):
0: CBUf
l: CCNT
2: HUF1
3: b u f l e n

4: WMAX
5: w u r l e n

6: WL £ n

7: ULEN
8: WULEN

(9):
l : w IJTjEN
6: 4ULEN
7: WOFF

8: WUMAX
i p : w u b l e n

12: WUTPBT

13: W U r OT

(27):
0 : V l EN
l: WULEN
3: NW
5: OFF

7: WCOFF

8: UMAX

lw: ULF.N
12: WLEN
15: UTPBT
16: WULEN
2 0 : IJLe n
21: WUBLEN
22: APHUF

14

Pattern (lengthsVLEN, or 0 If T y p e =2)
23: MAPBUF AP address of output buffer for map.

(length = 2 * v L e N, or 0 if T Y P e =1).
24: WMOFF Offset to W from W= o (=WLE n #I n W-1)/2)

min
26: VOFF Offset to V=0 (sv * T Y P E) •

min
27: WOFF

MAD (55):
w: WUBOT
15 »HB Hiqh checking boundary convolution (=U

max
N C U / 2 . + 1 .)

3: UMAX
4: VLB (=V n + N C V / 2 #- l .)

mln
5: ULEN
6: WLEN
7: CVMIN V

mln
8: CUPTR AP address of u-convolution function table tor

U = 0.

9: t v P t r AP address of v-taper function table for V=0.
10: TUPTR AP address of u-taper function table for U = 0 f
U s CVPTR Ap address of v-c onvolutlon function table

for V=^
12: VHB (sV -NCV/2.+1.)

max
13: VMAX V

wax
14: ULB UMAX+NCU/2.
15: u t p b t

w m Aq (72):

" 1• WNU2 Half width uniform weight function in »J-
d i r e c t i o n (nsec).

w n v 2 Half width uni form weight function in v-
directlon (nsec).

l: WVl.B (SWVMIN-I) (WvMINsV - F L O O R (N C V / 2 •))
min

2: WUHB (SWUHAX+1)
4: WVMIN
5: WUMAX
6: WULEN
7: wuvsc # of points in weight function per nsec.
8: wuvsc
9: w u m a x

10: wvptr ap address of weight function table for v=n
115 WUPTR Ap address o* weight function table for Us»
12: W VHB (aWVMAX*!) (WyMA X^WVMIN + W(ILK|u«l)

15

135 WUTPBT
14: WVMAX

A . I . 2 Gain Correction Memory Area of 54 words (not specified values
should be zero)

t*: 8
l: SINROT SIN (Map rotation angle)
2: COSROT COS (Map rotation angle)
3: v l i m l (Low limit to be included in V) **2.
4: U l i MH (high U-limit')**2.
5: ULIML (low U-iimit)#*2.

12: VLIMH (high V-ilmit)**2«
14: BUFDLN # of read data points per visibility record.
16: r l i m h (high ((J**2+V4*2) **.5)**2.
19: R l i m l

21: 31
23: 63
25: INXBtlF AP address of gain table distribution table.
26: TIMLIM Ap address of time limit table.
27: CORFLP Ap address of correlator flag table.
29: BIPFL m o d (3-bypass f i a g # 4) #
34: LCORP AP address of bandpass correction table.

A . I . 3 value descriptions

The action on the input data is described in a list of value
descriptors. Each descriptor has a length Va l l e n . vaijL E n = 29+# °f
data descriptors# and is defined by user.

The format is:

0: =0: End of descriptor list.
<>0: AP address of map area describing maP to be

produced from output data.
1: f r e q * w-field width (g h z * radians)
2: FREQ# U-field width (g ^ z * radians)
3: FREQ* V-field width (g H z * radians)
4: (FREQ *U-field width)**-l
5: (FREQ *V-field wldth)#*-l
6: weight (multiplicative) to be used on data»
7: Test bits# describing input data points used in

forming output data point. The format is the
same as for the flag word in the input.

8: offset to real part of data point in visibility
record ♦ type * 4096.

Type= 1: -REAL +IMAG are used in convolution
2 :
3: ♦

16

4: + ♦

offset to imaginary P*rt of datapoint in visibility record ♦
type*4096.

Types 5: I*(+R e AL +IMAG) are used in convolution
6: i*(- +)
7: i*(- -)
8: !*(+ -)

=0 : No more data usaQe descriptors.

next Input data usaqe descriptor

VALLEN-20: 0
-19: 0

......

-4; L-coordinate of shift of input data in
fractions m^P width.

-3: M-coordinate
-2 : N-coordinate
-1: =0:no shift requested.

=l:Shlft requested

A. 1.4 Map descriptors

Each output map has a 6-word descriptor

w: =0:No more map descriptors
=AP address of co nvolution buffer for t^is map for
U=U , Vs0, W=0

max
l: AP address of uniform weight buffer for this map for

UswUMAX, V=0
2: 0 (becomes normalization sum)
3: = a P address of source list to be subtracted.

=0:no sources to be subtracted.
4: 0
5: 0

A . 1.5 Source List

Each source has a 4 word entry:

02 =0 : n o more sources
s lntensity of source

1: L-coordinate in fractions of map width
25 M-coordinate

17

3: N-coordinate

A . 1.6 Gain Tables

The input data are split into several datasets according to
SORTER rules (meridian transit date# frequency# sourcenaroe, etc.).
At any one time the gain tables for one dataset are in AP core.
Each INX record has a 9 word entry# followed by tne gain
tables for this record. The t NX format is 32-bit integers,

0S # of line channels
l: Length of one gain record
21 AP address of gaih tables for tnis INX,
3s Time increment (seconds) between gain records,
45 Date (IAO-45000)
5: Flags channel A
6s Flags channel B
7: Flags channel C
8s Flags channel 0
F.ach gain record starts with 2 words:

0S Time (seconds) of this record
is Time of next record, or > 8 4 0 0 m , if next recora is last,

followed by the gain tables.

D-Pad is the main co mmunication between routines. Its usage;

A . 1,7 D-Pad usage

DPXs ds AP address of MAD memory area
A P address of FiKT memory area in the 2 AP case.
AP address of wtPT memory area.
AP address o* gain memory area.

is
2s
3 S

DPYS tfs
IS
2 s

AP address of PPA area.
AP address of w m a d area.
AP address of W2PT area.

DPX/Y 4-31 are initially filled by TRPM using the data in
the memory area prologue.

in t r m n the wl p t area is exchanged with dPX/y 5-12.

In TRW 13 the W2PT area is exchanged with D P X / y 5-18

A«2 Fl FT

A . 2 #t General memory area of 5W words, cjiven in 2 consecutive

parts; unspecified words should be 0.

MKMl,ST(0)S
0 : W M I N Minimum W-coordinate (=(WW-l)/2)
2: VMIN V

4: VMXMN
win

V -v

6: V T L E N
max min

F F t length v-airection
7: VMOFF Offset to V in line (=v m i n + v t L E N / 2),

8: 6.
min

11: NW # of w-planes
13: UMAX U

14: -1
max

15: VOTLEN Output length in v-direction (e v e n * < * V T L E N) .
16: U M I N U (=CEIL(- n CU/2.))

18: VMXOFF
min

Offset to V in line (V T L £ n / 2 - V M A X - 1)

2 0: OBUF1
max

Ap address of output buffer to ll/44(or '*)
21: OBUF2 Ap address of output buffer to ll/44(or ^)
24: =0 This buffer not present

= 1 This buffer Present
25: BUF1 AP address of buffer
26-33 «

• As 24, 25 for 6UF2,...,BUF5

XME m IjST (34)
0 : NMWID Bits in map count (=15,-nearest power of 2

l : NMEXP
(# of maps))
T m address shift for map number +27.

2: n w w i d B its in w-piane (=15.-nearest power of 2

3: NWEXP
(NW))
TM a ddre ss shift for W-Piane # +27.

4: NUMSK (=2#*(nearest power of 2 (ULE n))-I)
5: NUFXP TM address shjct for U + 27,
7: INC64 64 * INcAD
9: INCAD T m address increment between V-points.

1 1 : RBFAD 65 Word b u f f e r area for T m reads

A « 2 # 2 Map descriptors

Each output. maP has a 6 word decriptor:

0 : =0 No more maps
= 1 Valid entry

l: 0
2:
3: =0 No source subtraction

19

= Ap address of subtraction source list (see
A l . 5 for format of list)

4: o
5: 0

A . 2.3 TM addressing

TM addresses have two formats, based on ABTYp*

a b T y P=0:

bitw:
l-a:
a-b*
b - c :
c-d?

Real/Iroaqinary
Map »
V-coordinate
w-coordinate
U-coordinate

*1:

Real/imaginary
V-coordinate
Map #
w-coordinate
U-coordinate

The values of a# b, c, and d depend on the length of each
field*

A,2.4 D-Pad usage

f)PX: 0: AP address of x m r m l s t area
D P Y : 0: Ap address of d p a area
DPX'Y 7-23 are filled fro*" M E m l s t area

In FlrtR DPX/Y 24-31 are exchanged with XMEMLsT.

A * 3 F2FT

A * 3.1 General Memory Are a of 64 wQ rdS (Unspecified entries Snouid
be zero)

(0):

4: VLEN Length of V-ljne (=MWAX- m m I N + {)
5: NW # of w-pianes
7; NMAP # of output maps
8: MMIN M

min
9: VLEN/2-1

in: U2I.F.N 2*outout length In u-direction (=2+u o t i ,n)
11: NMEXP T m address (in bits) of map # +27
13: NWEXP T m address (in bits) of w-coordinate >27
15: NVEXP TM address (in bits) of V-coordinate +27
16: VOFMIN Offset to V in f u n line

min
17: v o f m a x Offset to V in full line

20

max
18: LOTLEN Output length in L-coordinate (even)
19: LCPTP AP address of L convolution correction function
2 0: MMIN
21: MCPTR AP address of m convolution correction

function for
24: 0BWF1 AP address of first output buffer to 11/44
25: 0BWF2
30: WSCBWF AP address of list to scale buffer for W-planes
31: MSCBUF AP address of list pointing to scale buffers

for maps
32: UILEN Length of one input U-line
33: SPUMI (=UILEN+U)

min
38: VTLEN2 LOTLFN/2
39: w t l e n U-direction F f T length
4 0: UMAX
41: UTDUIM 2#(UTliEN/UlLEN-l)
42: VMIN
43: MW
44: WMIN
45: LOTOFF Offset to st ar t of output (= U T L E U - L O T L E N)
4<,: LOTLFN
47: w b u f AP address of w-plane addition buffer.
49: MF ACT (=0 . 5# (MFIELD/VTLEN) **2/NF IEIjD J
5tf: LMIN (=-L0TL»EN/2)
5i: 'WCPTR AP address of N convolution correction function
52: LFACT (=0.5*(LFIET,D/UTLEN)*#2)/NFIF.LD)
56: = 0 Buffer 1 not present

= 1 Buffer l present
57: BUF1 AP address of Buffer 1

58-63: As 56, 57 for BIJF2, 3, 4.

2 Map descriptions

Each output map has a 6 word descriptor:

o: = 0 No more maps
= 1 Valid entry

1: 0
2: Normalization factor

4, 5: 0

A . 2 #3 D-Pad usage

nPY:n d p a area a p address

The remainder of DPX/Y Is filled from m f m l s t .

21

Appendix ft

On August 10, 1981 the status ot the AP-software was:

•All routines tested for sizes up to 2^48
•No actual third dimension maps made*
-Probably an error in the flagging handler.
•Multiple input datasets not tested.
-MaD output in parts not tested.
-Limited number of possible tables tested.
•wo line data tested.

