
VLA COMPUTER MEMORANDUM NO. 174

M ore on Image Compression

F red S chwab
February 15, 1985

ABSTRACT. A new method of Image compression (i.e., a method to reduce the number of bits
needed to encode the essential information in a digital image) was developed ab ovo and described
by Arnold Rots in an earlier memorandum in this series (VLA Computer Memo. No. 173). Since
a great many data compression methods have already been described in published literature, I felt
that it might be worthwhile to consider a couple of the methods that receive prominent mention
there. One such method is based on the so-called singular value decomposition (SVD) of linear
algebra. Another is Huffman coding, a minimum-redundancy scheme for error-free data encoding;
a sub-optimal variant of this method, called Huffman shift coding, might be preferred on technical
grounds.

INTRODUCTION

A new method of image compression—i.e., a method to reduce the number of bits
needed to encode the essential information in a digital image—is described by Arnold Rots
in a recent VLA Computer Memorandum [18]. Many data compression methods (and
image compression methods, in particular) have already been described in the published
literature (see [5],[8],[17],[20]), so I felt that it would be worthwhile to examine a couple of
the methods that receive prominent mention there. (Our aim is to find a suitable scheme to
transmit pictures, over a slow communications link, to the remote users of a supercomputer.)

One interesting, and somewhat promising method is based on the so-called singu
lar value decomposition (SVD), a matrix factorization technique of linear algebra. This
method is the only one with which I was familiar when I set out to write a memorandum;
consequently, it is the first method that I describe. But, except perhaps if one is inter
ested in transmitting high precision, floating-point digital imagery—rather than coarsely
quantized images—it is not obvious that the SVD method would be the method of choice.
This question is highly intertwined with the degree of quantization, and therefore the issue
is somewhat difficult to resolve. The SVD method might be useful, however, for archival
storage of floating-point images: for example, rather than quantizing 32-bit floating-point
images to 16 bit integer, one could, in most cases, achieve much higher accuracy via factor-
of-two floating-point SVD compression.

Huffman coding is an optimal means of encoding data that have been quantized into
a finite number of levels. In transmitting a digital image by Huffman coding, the average
number of bits per pixel which is required never exceeds the entropy of the image by more
than one bit. Usually this excess, which is called the code redundancy, is much smaller
than one bit. Huffman coding employs variable-length codewords, the shorter words being
assigned to the more frequently occurring quantization levels. With standard Huffman
coding, a decoding table whose length is equal to the number of (occupied) quantization
levels is required. Especially when there is a large number of quantization levels, it may be
preferable to use a variant of Huffman coding, such as the so-called Huffman shift coding
technique. This increases the code redundancy by a small (but usually a tolerable) amount.

Given its simplicity and near-optimality, I believe that Huffman (shift) coding might
be a sensible choice for transmission of quantized digital imagery to the remote users of a
supercomputer facility. Other methods might be preferred in cases when one can tolerate
some degree of degradation of the data that is not precisely known. One manner of working

would be to quantize the data to the coarsest degree thought to preserve all of the desired
information, and then to employ an error-free coding method such as Huffman coding.

In this discussion I am assuming that one relies on some commercial package of net
working software to achieve data transmission and error correction. If not, then one would
need to consider the subject of error correction together with that of data compression, and
more careful thought would be required.

T he S V D C om pression T echnique

The idea of using the SVD to achieve image compression has been around since at least
the early 70’s, when it caught the fancy of the war research community (see [2],[3],[4], and
references cited therein). [2] is a good expository article; textbook accounts appear in [5]
and [16], The SVD, itself, has been known since at least 1890—J. J. Sylvester1 gives a one
page description in [19].

Prelim inaries. An arbitrary real m x n matrix (or “image”) A of rank r, with m > n,s
can be written in the form

(i)

where U is an m x m orthogonal matrix, V i s n x n orthogonal, and

(o \ 0

E =

y o

is an n x n diagonal matrix with <j\ > <ti > * • • > <rn > 0. When A is of less than full rank,
crr + 1 = ••• = an = 0. This representation of A is called its singular value decomposition
(SVD). The scalars <7i,... ,crn (which are the nonnegative square roots of the eigenvalues
of A t A) are called the singular values of A, the columns U i,. . . ,u m of U are called the left
singular vectors, and the columns v * , . .. ,v n of V are called the right singular vectors. The
U* are the orthonormalized eigenvectors of AATi and the v* are those of A TA. The SVD is
unique, up to trivial reorderings of any singular vectors that are associated with identical
singular values.

The SVD of A can be written as a linear combination of “outer products” of pairs of
vectors; i.e., as a sum of rank 1 matrices:

(2) A = a iU iv f + <r2u 2v^ + -----1- <rru rv * .

1 Sylvester stayed for a while in Charlottesville. In a preface to Sylvester’s Collected Works, H. F. Baker
writes: “Leaving University College in the session of 1840-41, he proceeded as Professor of Mathematics
across the Atlantic, to the University of Virginia, founded in 1824 at Charlottesville, Albemarle Co., where
his colleague, Key, of University College, had previously occupied the chair of Mathematics. Such a con
siderable change deserved a better fate than befell; in Virginia at this time the question of slavery was a
subject of bitter contention, and Sylvester had a horror of slavery. The outcome was his almost immediate
return; apparently he had intervened vigorously in a quarrel between two of his students. . . . On his return
from America Sylvester seems to have abandoned mathematics for a time.”

2Recall that rank A = r implies that A has r, but not r + 1, linearly independent rows (or columns). The
rank of an m X n matrix (m > n) representing a noisy (i.e., a measured) digital image normally equals n.
(Possible exceptions are cases of contrived, or model data, and cases of very coarsely quantized data.) The
restriction m > n is not essential; it just permits the use of simpler notation (one can work with A T when
the image has more columns than rows). (Superscript- T denotes matrix transpose.)

2

Here, let us denote the A:th partial sum as Ak; i.e., A* = £ £ = 1 **u*vf.• is (in the
least-squares sense) the best rank k approximation to A. The (squared) Euclidean norm3
of the difference between A and Ak is given by the sum of the squares of the singular values
corresponding to the omitted terms; i.e.,

(3) M l - A\\l = £ 0} ,
l = k+l

and so the root mean square error of approximation is

r.m.s. error = — £ m n 1i=k+i

If the singular values decrease rapidly, then, for relatively small values of k, Ak is close
to A.

An efficient and numerically stable algorithm for computing the singular value decom
position is given by Golub and Reinsch in [11]. Portable Fortran implementations of their
algorithm are available in the LINPACK package [9]. The LINPACK subroutine DSVDC
was used to obtain the test results that are presented below.

U se o f the SV D for C om pression o f D ig ita l Im ages. Expressing Eq. 3 in words, the
orthogonality constraints on U and V ensure that each of the rank 1 matrices u^v^, t < r,
has the same Euclidean norm; thus, the importance (in the mean-squared error sense) of
the tth term in the right-hand side of Eq. 2 is measured by a». Assuming that Ak is a good
enough approximation to A, the “image” can be faithfully represented by (m + n + l)k real
numbers (or, for a square (n x n) matrix, by (2 n + l)k numbers). For image transmission,
if the data are transmitted (in packets of m + n + 1 numbers) in the order (<ri,Ui,Vi),
(<72,U2,V2), . . . , then the received image can be built up in “real-time.” If the singular
values (there are only n of them) are transmitted first, then, on the receiving end, one can
determine (by plotting them) how much image compression can be achieved and what value
of & is appropriate.

Examples given in [2]-[5] and [16] illustrate that digitized photographs of natural
scenery (satellites, tanks, and women) often can be economically represented by truncated
SVD’s. Examples given below illustrate that the same can be said for radio maps.

0 (m n 2) arithmetic operations are needed to compute the SVD of an m x n matrix, by
the Golub and Reinsch algorithm (see [9, ch. 11] for the exact operation counts); thus the
decomposition is more computationally burdensome than, say, an FFT of the same sized
matrix. In addition, reconstructing the matrix or “image” requires k — 1 additions and
about k multiplications, per matrix element or “pixel.” By these considerations, to use the
SVD to achieve economical image transmission, one would partition the matrix representing
a large image into a set of smaller submatrices. The question of choosing a sensible partition
of the image is addressed below.

Transmitting the full SVD of an m x n matrix requires sending more numbers ((m + n-f
l)n numbers) than the quantity which is present in the image itself (~ twice the amount in
the case of a square matrix). In all instances, the actual compression ratio achieved depends
on whether one chooses to quantize the singular vectors prior to transmission (and on how
coarsely they are quantized)—a bit more on this below.

3i.e., the square root of the sum of the squares of the matrix elements.

3

Examples.
Example 1: A “high dynamic range9 map. A 256x256 VLA map of the jet in NGC6251

is shown in Fig. 1. This is a “high dynamic range” image produced by the CLEAN deconvo
lution algorithm. The intensity of the unresolved “core” at the tip of the jet is 0.7 Jy/beam,
the features along the jet are at a level of a few mJy, and the r.m.s. level (the noise) in areas
away from the jet is ~ 80 /zJy. A plot of the singular values (normalized to (T\) is shown
in Fig. 2a, and a plot of the r.m.s. error of the kth truncated SVD approximation to this
image (normalized to the peak in the original image) is shown in Fig. 2b. Selected rank 1
images, u^v?’, comprising the SVD of this image are shown in Fig. 3. Most of the energy of
the compact core is represented by the first two singular values. Selected truncated SVD
representations Ak are shown in Fig. 4. The r.m.s. errors of the approximations by A40 and
Aso are 55 /iJy and 44 /iJy, respectively—well below the r.m.s. noise level in the original
image.

Example 2: A *low dynamic range9 map. Selected truncated SVD representations of
a “low dynamic range” 20 cm. VLA (CLEAN) map are shown in Fig. 5. This is a map of
a region containing a large number of point-like sources. In this example the r.m.s. noise
level is a few percent of the map peak. No reproduction of the original map is included
here, as it would be indistinguishable from the picture of A4q that is shown. The singular
values, and the r.m.s. errors of the approximations by the Ak, are shown in Figs. 2c and
2d, normalized as in Example 1. The singular value plot would bear a strong resemblance
to the plot in Fig. 2a if the spike were removed from the latter. It is interesting to note
(from Fig. 5) that various ones of the point sources seem to pop out as k increases—and it
is fairly obvious why this should be so.

Example S: A adirty beam.9 Truncated SVD representations of a “dirty beam” (cor
responding to the VLA observation of Example 2) are shown in Fig. 6; the singular value
profile and an error plot are shown in Figs. 2e and 2f. Ago furnishes an adequate pictorial
display of the original image, so a picture of the dirty beam itself is not included here. The
dirty beam looks much more “complex” than the deconvolved maps used in the previous
two examples, and, indeed, the singular values decrease much less rapidly in this instance—
here there is not a lot of potential for image compression. If a few iterations of the CLEAN
algorithm were applied to this image, then a spike (much like the spike in Fig. 2a, which
is due to the presence of a compact “core”) would appear on the leftmost portion of the
singular value profile. The depth of the spike would depend on the number of CLEAN
iterations, and its width would depend (roughly) on the width of the CLEAN “restoring
beam.”

All three of the singular value plots have various “knees” or bends. Those in Figs. 2a
and 2c both have inverted knees in the range k = 20-30. Empirically (and intuitively) it
seems that the horizontal location of this knee should depend (in the typical radio map of
a fairly empty region) on the depth of “cleaning”.

Figs. 2a and 2c also have fairly sharp bends in the range k = 140-170, whereas in
Fig. 2e there is a gradual bending in the neighborhood of k = 180. Both of the CLEAN
maps (Examples 1 and 2) were converted to 16-bit integer format before the singular value
analysis was performed, but the dirty beam (of Example 3) was kept in 32-bit floating
point format. These shallow bends in the CLEAN maps appear to be due to truncation
(i.e., to the relatively coarse quantization that was applied). The knee in the dirty beam
is of greater depth and of more gently sloping character. Its ordinate (~ 10-8 -10-7) is
of the same order of magnitude as the unit-roundoff characteristic of 32-bit floating-point
arithmetic. And the benign properties of floating-point arithmetic with rounding probably
account for the gentleness of the bend.

4

R em arks. Choosing a sensible partioning of the image is not very difficult. First of all, the
Golub and Reinsch algorithm is computationally expensive enough (about 7mn2 + l l n 3/3
arithmetic operations are required) that the decomposition of blocks larger than, say, 256 x
256 probably oughtn’t to be considered. Second, given that the map is to be reconstructed
on a modest-sized computer rather than on a supercomputer, it would be unreasonable
to expend more than a hundred or so arithmetic operations per pixel in doing so. The
vector registers on a supercomputer such as the Cray usually are best suited to vector
operations on vectors of length 64, or so. Thus, 64 X 64 might be a reasonable block size for
partitioning. However, nothing should prevent one from going smaller; 16 x 16 is mentioned
in the textbook by Pratt [16] as having been used in practical applications.

Some further economy can be achieved by this partitioning of the image. Namely, in
fairly empty regions of the map, relatively fewer singular values and singular vectors need
to be retained than in other regions (assuming that one is aiming for the same r.m.s. error
level in each area). Although this extra degree of sophistication entails greater programming
effort, it is clear that there would be a substantial payoff in many instances.

H uffm an C oding

For a message (read map) composed from the letters (read pixel values) of a finite-
length alphabet (read set of quantization levels) binary Huffman coding [14] is an optimal
encoding technique, in the sense that the number of bits in the encoded message is the
minimum number which is required (by any such binary substitution code) to allow a
unique decoding of the message. Huffman coding employs variable-length codewords. As
in Morse code, the shorter codewords are assigned to the more frequently occurring letters
of the alphabet. The code is called a prefix code because no codeword is a prefix of (or the
beginning of) another codeword.

Let pi denote the relative frequency of occurrence, within the message, of the tth letter
of the n-letter alphabet (i.e., in our case, pi is the occupancy rate of the tth quantization
level, and n = 2N). Huffman’s method for constructing the code based on { p i , . . . ,p n}
can be described as follows: Set k = n. For k > 1, let pi and pj denote the smallest and
second smallest elements of {p i,...,p*:}. Replace p,- and pj by (pt + py), and, retaining
all parentheses, repeat the construction on the remaining k — 1 elements, until k = 1. For
example, if n = 7 and { p i,. . . ,p 7 } = {.4,.08,.08,.2,.12,.08,.04} the construction is

{.4, .08, .08, .2, .12, .08, .04} k = 7
{.4, .08, .08, .2, .12, (.08 + .04)} k = 6

{.4, (.08 + .08),.2, .12, (.08 + .04)} k = 5
{.4, (.08 + .08), .2, (.12 + (.08 + .04))} k = 4

{.4, ((.08+ .08) + .2), (.12 + (.08 + .04))} k = 3
{.4, (((.08 + .08) 4- .2) (-12 + (.08 + .04)))} k = 2

{(.4 + (((.08 + .08) + .2) + (.12 + (.08 + .04))))} k = 1.

The length li of the codeword for the tth letter is given by the corresponding depth of paren
thesis nesting; in this case (/ i ,. . . , h) = (1 ,4 ,4 ,3 ,3 ,4 ,4). The codewords themselves are
determined by the order in which the parenthesizing occurs; in this example, the codewords
are (1,0111,0110,010,001,0001,0000). This description is borrowed from Knuth [15]; the
better known graphical construction of Huffman is illustrated in [12] and [17].

The amount by which the quantity /av = /,pt, the average number of bits used
to encode a letter of the message, exceeds the binary entropy of the message is called the

5

code redundancy r; i.e., r — X3»P*1°S2P*- With Huffman coding, r is minimized,
and t never exceeds unity. The code has two additional special properties: the maximum
codeword length max; /» is minimized, as is the total length U of the encoding table.

The ratio r\ = — —Il Ei js called the code efficiency.
2 2 i h P i

Gallager [10] shows that the redundancy of a binary Huffman code satisfies the upper
bound r < pmax + (In 2 — In In 2 — l) / ln 2 ~ Pmax + 0.0861, where praax = maxip,- denotes
the probability of occurrence of the most likely letter (and that for pmax > | , r < pmax)-
Thus, without actually constructing any Huffman codes, it’s possible to get a good idea of
the degree of image compression that is achievable with the technique (simply by tabulating
image statistics—entropy, in particular). Nevertheless, I decided to work out some real-life
examples of Huffman encoding, so that it would appear that I had done some real work.
Although Gallager’s bound is quite a tight bound, in the sense that the redundancy can be
almost as large as his formula allows, in all of my examples his upper bound considerably
overestimates r. (It’s strictly tight in the limit pmax —> 0.)

E xam ples. An integer programming algorithm for construction of minimum-redundancy
codes is given by Hu arid Tucker in [13]. Yohe [21] has written an Algol language im
plementation of their algorithm. My own Fortran translation of Yohe’s subroutine was
used to obtain the test results reported here; a listing appears in the Appendix to this
memorandum.

My test results are summarized in Tables 1-3, which correspond, respectively, to the
Examples 1-3 presented above. Each of the three test maps was quantized to 2N levels equi-
spaced between the map extrema (i.e., a linear “transfer function” was used), for N = 8,
12, and 16. In addition to an analysis of the basic maps themselves (labeled “Original” in
the Tables), results are presented for maps obtained by performing differencing operations
(the original maps sire recoverable from these differences). The “1-D differenced” map
corresponding to the image (/»y) is formed according to the formula

j > 1,
J = 1,

9., = { f; ’ k , ~' ■I 1*3 >
and the “2-D differenced” map by

hi . — / f*i ~ - f*,j-1 + f i-1,3-1 > * > 1> j > 1 ,
\ f%j, otherwise.

Although 2n+1 quantization levels are needed to represent g and 2N+2 to represent h, the
differencing operations typically yield maps with smaller numbers of occupied quantization
levels and smaller entropy—hence, greater potential for compression. This differencing
technique is advocated in the textbooks by Gonzalez and Wintz [12] and Rosenfeld and
Kak [17]. (A similar differencing technique—along with a “pyramidal” transmission scheme,
allowing progressive data transmission—is considered in Rots’ memorandum. Huffman
coding could be used in transmission of these differences, but possibly to no great advantage,
because a different encoding might be desired at each level of the pyramid, in which case a
number of different decoding tables would have to be transm itted.)

Tables 1-3 are, for the most part, self-explanatory. In most cases—except when the
entropy is less than 1— the code redundancy is only around several hundredths o f a bit, and
the code efficiency often exceeds 99%. It’s interesting to note how small is the fraction of
occupied quantization levels in the case of a high dynamic range image. And in general,

6

the more highly processed an image is, the less information it contains; e.g., “dirty maps”
have a higher information content than maps from which the point source response has
been deconvolved. This is a fortunate situation, for it will generally be the more highly
processed images that one will want to transmit from the supercomputer to a remote station.
The differencing schemes generally yield a significant improvement in the achieved data
compression ratio.

D isadvantages. Although Huffman coding is conceptually very simple, (and perhaps also
for this reason) it has a number of obvious disadvantages.

First, a possibly very long decoding table is required. In the case of image transmission,
the number of entries in the table is equal to the number of occupied quantization levels.
(More precisely, one has the choice of transmitting either a one-column table of 2N entries
or a two-column table of length equal to the number of occupied quantization levels.) The
need for such a long table can be overcome by the use of a variant of Huffman coding, called
Huffman shift coding, which is described below.

Since the Huffman codewords are of variable-length, special effort is required in coding
and in decoding, and the data generally must be packed, for transmission, into fixed-length
records. The encoding, the packing, and the de-packing and decoding are awkward to
program in, say, Fortran (in PLI it would be easy, though), so one would probably resort
to doing this paxt of this task in assembly language. This would require the services of a
competent programmer (or possibly two in our case—one for the supercomputer and one
for the computer on the receiving end).

A consequence of the need for a decoding table and of the variable-length property of
the code is that the time required for decoding varies from record to record and is not pre
dictable. Sometimes so-called “alphabetic coding” is used in lieu of Huffman coding. With
alphabetic coding, the numerical binary order of the codewords corresponds to the alpha
betic order of the encoded “letters” (in our case, to the numerical order of the quantization
levels). This results in a minimum mean search time for decoding, but also, generally, in
slightly higher code redundancy. Still, the decoding effort remains variable. The subroutine
shown in the Appendix can be used to compute alphabetic codes as well as Huffman codes.

The amount of effort needed to compute the code is another consideration. While
the computational complexity of the Hu-Tucker algorithm, employed in the subroutine I
used, is 0 (n 2), where n is the number of occupied quantization levels, there does exist
an 0 (n log n) algorithm—I just don’t know where it is written down. Nevertheless, our
supercomputer presumably would be capable of the task. And, if Huffman shift coding is
employed (see below) the computational burden of the task of code construction can be
greatly diminished.

Huffman coding is not widely used in the computer industry, especially so in appli
cations where special-purpose hardware is used for encoding and decoding. Instead, so-
called algebraic encoding is employed. Algebraic codes (BCH codes, Reed-Solomon codes,
quadratic residue codes, Golay codes, Hamming codes, etc.) in fact do not require any
decoding table at all; instead, algorithms are used to decode the bit patterns. On the other
hand, these codes are ones which often are designed specifically with built-in redundancy, to
be used for automatic error detection and error correction rather than for data compression.

There are, however, scattered published results on the use of algebraic codes for data
compression, in cases where some data degradation is allowed. For example, the quadratic
residue code of type (23,12) over the finite field G F(2) can be used to encode 23-bit data in
12-bit codewords—one 12-bit codeword per 23-bit datum (see [6] for details). This entails

7

occasional decoding errors, in at most three binary digits out of the 23.4 According to
[6], Shannon gave similar results in 1959 for the Hamming codes. Such schemes might be
attractive for our needs, assuming that the decoding errors occur sufficiently infrequently;
for, in visual display of astronomical data, isolated overbright pixels stick out like a sore
thumb (and thus cannot be mistaken for reality), and isolated underbright ones generally
go unnoticed. I intend to pursue this matter further—I think that further results are given
in [8]. This reference, which the U. Va. library has just put on hold for me, has so far been
unobtainable.

Scattered results such as the one just mentioned form the body of a discipline known
as rate distortion theory. Shannon formulated the major problem of rate distortion study
in 1959: Given a measure D of data distortion (r.m.s. error, or whatever), what is the
minimum information rate R{D), in bits per source sample, required to transmit a given
message over a communications channel with an average distortion no greater than D, and
what encoding algorithm(s) can be used to encode (and decode) the data and achieve this
rate? Some early references on the subject are [1] and [7]. The image processing textbooks
do not describe any recent results. I plan to search for an up-to-date bibliography on the
subject.

H uffm an shift coding. Huffman shift coding is described by Gonzalez and Wintz in [12]
and is further discussed by Rosenfeld and Kak in [17]. The objective is to modify Huffman
coding so that a smaller decoding table is required; this lessens the burden of decoding.
Assuming that n, the number of quantization levels is divisible by m, so that n = mq , one
can get by with a decoding table of length m + 2. (Here we have to take n = 2N to be
the total number of quantization levels, rather than the number of occupied levels.) The
histogram of quantization levels is divided into q equal parts, each of length m. Two extra
codewords are employed: one, the “shift-down” word, is used to tell the decoder that the
next symbol to be decoded occurs within the next lower section of the histogram (unless the
next word too is a shift-down word, in which case the symbol is in an even lower section);
similarly, the “shift-up” word says to move to the next higher section of the histogram.5

A number of comparisons of Huffman shift coding with standard Huffman coding are
given in [17]. Typically, in the examples given there, the code redundancy is increased
by about 0.2 bits—occasionally the increase is as much as one-half bit (sometimes they’ve
taken m as small as 14, which seems to me to be overdoing it). Generally this increase
in redundancy is equivalent to a few percent increase in the encoded data bulk, and it
probably would have been smaller if Gallager’s method had been employed there. I haven’t
experimented with this technique, but it could certainly be used to alleviate any excessive
burden incurred in the data decoding or entailed by the table transmission requirement.

D iscussion

The main advantage that the SVD compression technique has over Huffman coding or
Huffman shift coding lies in its potential use in a progressive transmission scheme, like the

4Such use of this code, one of the perfect Golay codes, is the reverse of its usual use: as a triple error-
correcting 23-bit binary code for 12-bit data.

5The textbook [17] describes a poor method of incorporating the shift words; there, probabilities are
assigned to these protocol words, and they are treated like everything else. An optimal method is given
by Gallager [10], who shows how to construct a prefix code with an unused codeword of length two bits
and whose redundancy r ' satisfies r1 < 1. Further, he shows that r' does not exceed the redundancy of
the Huffman code by more than the quantity 2pz, and he states that one cannot do better. (Here, the
probabilities are assumed to be ordered monotonically, so that p2 denotes the second largest.) This is
the method d e s c r ib e d in (12], w h e re , in s te a d o f two s h i f t w o rd s , a s in g le 2 - b i t “cyclic shift” codeword is
employed. Whether this method is best, or whether one ought to r e p e a t G a l l a g e r ’s construction to obtain
a second 2- or 3-bit shift word, I guess depends on the actual data.

8

one described by Rots. A practical implementation of SVD compression for data transmis
sion would entail quantization of the singular vectors prior to their transmission. I haven’t
considered this matter in detail; however, in the case of 16-bit data, say, if one could get
by with quantizing the singular vectors to 8 bits, then the compression factors implicit in
my Examples would double. Quantization to about 12 bits would certainly be safer.6 I’m
starting to favor the ordinary encoding techniques over SVD compression for their simplic
ity and because, as in the case of SVD compression of Boating-point data, their behavior is
highly predictable and doesn’t depend very greatly on statistical assumptions.

I apologize—especially to Arnold Rots—for not having checked the performance of
Rots’ pyramidal transmission scheme on my test examples. The appearances are that his
scheme would outperform simple Huffman substitution encoding in the cases of coarsely
quantized, high dynamic range data (such as the NGC6251 jet image quantized to 8 bits).
Huffman coding would probably perform better on images of high information content.
Huffman shift coding, though, might not more than marginally outperform the pyramidal
transmission scheme in these cases. Probably the chief attraction of Huffman coding is its
simplicity.

Compression ratios somewhat higher than are mentioned here may be sorely needed
with a slow communications link to the supercomputer. Then the question becomes what
kind of distortion of the data to accept, and I don’t think that a satisfactory answer has
been given.

R eferences

1. H. C. Andrews, Bibliography on rate distortion theory, IEEE Trans. Inf. Theory IT -1 7 (1971), 198-199.
2. H. C. Andrews and C. L. Patterson, Older product expansions and their uses in digital image processing,

Amer. Math. Monthly 82 (1975), 1-13.
3 . , Outer product expansions and their uses in digital image processing, IEEE

Trans. Computers C -25 (1976), 140-147. Essentially identical to [1],
4 . , Singular value decompositions and digital image processing, IEEE Trans.

Acoust., Speech, Signal Processing A S S P -2 4 (1976), 26-53.
5. H. C. Andrews and B. R. Hunt, Digital Image Restoration, Prentice-Hall, Englewood Cliffs, NJ, 1977.
6. E. F. Assmus and H. F. Mattson, Coding and combinatorics, SIAM Review 16 (1974), 349-388.
7. T. Berger, Rate Distortion Theory, Prentice-Hall, Englewood Cliffs, NJ, 1971.
8. L. D. Davisson and R. M. Gray, Data Compression, Dowden, Hutchinson & Ross, Stroudsburg, PA,

1976.
9. J. J. Dongarra, C. B. Moler, J. R. Bunch, and G. W. Stewart, UNPACK Users’ Guide, Society for In

dustrial and Applied Mathematics, Philadelphia, 1979.
10. R. G. Gallager, Variations on a theme by Huffman, IEEE Trans. Inf. Theory IT -2 4 (1978), 668-674.

6Don Wells has made an interesting suggestion: that some of the singular vectors, perhaps only the
first pair or perhaps the first several pairs, should be quantized and transmitted, and then another SVD
computed— the SVD of a residual image, corrected for the (easily calculable) quantization error already
committed— and some of it transmitted; and the process repeated as long as need be. Indeed, some scheme
of this ilk would probably be required for absolutely reliable quantized SVD transmission; and, given that
the SVD computations are ideally suited to vectorization on the supercomputer, this might be entirely
practical. Little or no extra effort would be required on the receiving end. An appropriate number of
singular vector pairs to transmit might be that number such that the resulting r.m.s. quantization error
is of about the same size as the singular value corresponding to the first omitted pair. Don also suggests
using Huffman coding to compress the singular vectors prior to their transmission. The supercomputer then
would have to make a “dry run” through the SVD compression procedure in order to make up a histogram
of the singular vector quantization (it wouldn’t be practical to separately encode each pair of vectors, since
the image presumably has been partitioned into small blocks). It’s difficult to ju d g e the merits of a scheme
of this complexity without actually trying it, and it’s hard to know when one has done the job “right,”
because of the possibility for endless refinement.

9

11. G. H. Golub and C. Reinsch, Singular value decomposition and least squares solutions, Numerische Math
14 (1970), 403-420.

12. R. C. Gonzalez and P. Wintz, Digital Image Processing, Addison-Wesley, Reading, MA, 1977.
13. T. C. Hu and A. C. Tucker, Optimal computer search trees and variable-length alphabetical codes, SIAM J.

Appl. Math. 21 (1971), 514-532.
14. D. A. Huffman, A method for the construction of minimum-redundancy codes, Proc. IRE 40 (1952),

1098-1101.
15. D. E. Knuth, Huffman’s algorithm via algebra, J. Combinatorial Theory, Series A 32 (1982), 216-224.
16. W. K. Pratt, Digital Image Processing, Wiley, New York, 1978.
17. A. Rosenfeld and A. C. Kak, Digital Picture Processing, Volume 1, Second edition, Academic Press, New

York, 1982.
18. A. Rots, Transmission of digital images over slow communication lines, VLA Computer Memo. No. 173

October 1984.
19. J. J. Sylvester, On the reduction of a bilinear quantic of the nth order to the form of a sum of n products

by a double orthogonal substitution, Messenger of Math. 19 (1890), 42-46. Reprinted in The Collected
Mathematical Papers of James Joseph Sylvester, Volume IV, Chelsea, New York, 1973, pp. 654-658.

20. L. C. Wilkins and P. A. Wintz, Bibliography on data compression, picture properties, and picture coding, IEEE
Trans. Inf. Theory IT -17 (1971), 180-197.

21. J. M. Yohe, Algorithm 428: Hu-Txcker minimum redundancy alphabetic coding method, Collected Algorithms
from CACM, Association for Computing Machinery, New York, 1972.

10

Figure 1. A photographic representation of a 256 X 256 “high dynamic range” digital image portraying
radio em ission (at 6 cm . w avelength) from the je t o f N G C 6251 (the m ap courtesy o f Rick P erley).

F ig u r e 2 . a) A plot o f the singular values cr,- of a 256 X 256 im age o f the radio je t in N G C 6251 (see F ig. 1).
b) A plot of the r.m .s. error of the k ih truncated SV D representation , A k , o f the sam e im age, c) A plot
o f the singular values in E xam ple 2. d) A plot o f the r.m .s. error, for E xam ple 2. e) A plot of the singular
values in E xam ple 3. f) A plot o f the r.m .s. error, for E xam ple 3.

12

i - 40
F ig u r e 3. Selected “outer product” or rank 1
je t in N G C 6 2 5 1 , for t = 1, 2, 3, 4, 5, and 40.

images, u ,-v^, comprising the SVD of the radio map of the

13

l l i

! k = 10

k = 20

F ig u r e 4 . P hotographs o f the truncated SV D representations of the im age show n in F ig . 1, for k = 10,
20, 30, and 40. (Continued on next page.)

14

k = 30

k = 40

Figure 4 (cont’d).

15

■ “ 1 v ■ !
\ r : : . j

» * *
< . A * * • #

m

* . . . * £

¥■ ; • :

* f.
* * ,

, » 1
* f

, t
v * - - *

%

• # *

%■

: y

F ig u r e 5 . Truncated SV D representations A h (k = 10, 20, 30, and 40) o f a “low dynam ic range” 256 X 256
(20 cm . w avelength) V L A m ap o f a region— surrounding a H erbig-K aro object— w hich conta ins a large
number of unresolved sources (this map the courtesy of Stephen Reynolds). (Continued on next page.)

16

Figure 5 (cont’d).

17

k = 20

F ig u r e 6 . Select truncated SV D representations A ^ (k = 10, 20, 40, and 80) o f a “d irty beam .” (C on tin ued
on n ext page.)

18

Figure 6 (cont’d).

19

Table 1. Huffman coding of the NGC6251 jet image.

Image
Number
of bits Entropy

of occupied
quant, levels

Ave. code
word length

Maximum
length max pi

Compression
ratio

Original 8 .2081 33 1.0381 10 .9732 7.706
12 1.8278 111 1.8698 15 .5472 6.418
16 5.6735 615 5.7069 16 .0416 2.804

1-D differenced 8 .1277 48 1.0248 9 .9862 7.806
12 1.4964 104 1.6424 14 .6621 7.306
16 5.0108 463 5.0316 16 .0630 3.180

2-D differenced 8 .1519 40 1.0280 9 .9824 7.782
12 1.5556 89 1.6856 14 .6025 7.119
16 4.5475 270 4.5824 16 .0822 3.492

Table 2. Huffman coding of the radioimage of the field containing the Herbig-Haro object.

Image
Number
of bits Entropy

of occupied
quant, levels

Ave. code
word length

Maximum
length max p,

Compression
ratio

Original 8 2.7077 112 2.7404 17 .2895 2.919
12 6.6688 611 6.6929 16 .0195 1.793
16 10.6013 3416 10.6276 16 .0016 1.506

1-D differenced 8 1.9830 90 2.0514 15 .4744 3.900
12 5.7965 512 5.8159 16 .0357 2.063
16 9.7402 2360 9.7607 16 .0026 1.639

2-D differenced 8 1.7309 55 1.8332 14 .5421 4.364
12 5.0035 381 5.0289 16 .0606 2.386
16 8.9527 1866 8.9784 16 .0043 1.782

Table 3. Huffman coding of the '

Number
Image of bits Entropy

Mirty beam” test image.

of occupied Ave. code
quant. levels word length

Maximum
length max pi

Compression
ratio

Original 8 4.8146 93 4.8349 15 .0683 1.655
12 8.7970 994 8.8201 16 .0049 1.361
16 12.6414 6350 12.6690 16 .0005 1.263

1-D differenced 8 4.0112 83 4.0404 16 .1213 1.980
12 7.9922 728 8.0167 16 .0084 1.497
16 11.8904 6297 11.9163 16 .0008 1.343

2-D differenced 8 3.3301 65 3.3625 16 .1929 2.379
12 7.2721 596 7.3116 16 .0136 1.641
16 11.1834 4326 11.2142 16 .0012 1.427

20

APPENDIX

SUBROUTINE HUTREE(U.Q.L)
C This subroutine, a Fortran version of the Algol routine given
** CAd Algoritha *428. o&& be used to co&struot alnlmuo-
C redundancy variable-length binary codes, by an algorithm which C Is due to Hu and Tucker-
C On input. H Is the number of letters In the 'alphabet' for
C which a code Is to be constructed, and Q(I) is the (integer)
C frequency of occurrence. In the message, of the I'th letter
C On output. LCD is the length. In bits, of the alnlaua-redundanoy
C enoodlng of the I'th letter of this alphabet.
C (The aotual encoding Isn't oooputed by this subroutine, but
C the routine can easily be modified to do the Job.) The oode has
C the property that both the sua of the L(I) and the maximal L(l)
C are ainlalzed. eubjeot to the oondltlon that the code be a
C minlaua-redundanoy code (I.e.. that sua Q(I)*L(I) be alnlsal).
C As it is set up. the subroutine ooaoutes a so-called non-
C alphabetic (Huffman) code. If the L(I) are initialized to 0
C rather than to one on entry, then an alphabetic code results.
C (In the latter case, the numerical binary order of the oode words
C corresponds to the alphabetlo order of the enooded letters __
C this constraint results In a minimus aean search time In decoding
C (but greater redundancy. In general).) See the CACM listing of
C the Algol routine for nore details. (This routine doesn't seea
C to wont properly in the non-alphabetlo case if any of the Q(I)C are equal to zero).
C The approximate operation oount Is 4,H**2*2*H. But tt would
C be possible to improve the algorithm to have run-time proportional C to S log N rather than H**2.

IMPLICIT IJJTEGER (A-Z)
DIXENSIOM <3(20.L(2I)
PARAMETER CtMAX-9330)

C H mustn't exceed NMAX.
DIMEMSIOS P(KMAZ) , S(NMAX-l) .D(NHAX-1)MAEI-l
00 10 I-l.N

L(I) - 1
P(I)-<}(I)

10 HAJ£1-MAXN*Q(I)
DO 70 M-l.N-l

1-0
PSI9-KAXX

20 1-1*1
30 IF (I.GE.H) GO TO 60

IF (P(I).EQ.O) GO TO 20
MI32-MAZN
Jl-I
MINLl-L(I)
HISl-P(I)
DO 40 J-I*1.N

IF (P(J).GT.O) THEM
IF (P(J).LT.MI31.OR.(P(J).EQ.MI31.AND.L(J).LT.MIXL1)) THE »

MIN2-HIH1
J2-J1
MINL2-MINL1
HIJIl-P(J)
Jl-J
MINLl-L(J)

ELSE IF (P(J) LT.MIS2.OR.
(P(J) . EQ.MIU2. AKD.L(J) .LT.MIHL2)) THEN
MIN2-P(J)
J2-J
HINL2-L(J)

END IF
IF (L(J).EQ.O) GO TO 90

EKD IF
40 CONTINUE
50 PT-P(J1)*?(J2)

SCMLT-L(J1)*L(J2)
IF (PT.LT.PMIN.OR.(PT.EQ.PMIH.AHD.SUMLT.LT.SUML)) THEN

PMIN-PT
11-Jl
12-J2
SUKL-SCMLT

EKD IF
I-J
GO TO 30

60 IF (II.GT.12) THE8
Jl-Il
11-12
I2-J1

ESD IF
S(M)—I1
D(H)-I2
P(11)-PMIN
P(12)-0

70 L(U)-StRU.»l
L(S(M-l))-0
DO 80 H-H-l.l.-l

L(D(H))-L(S(M))*1
eO L(S(M))-L(D(M))

RETCRN
END

21

