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ABSTRACT. A new method of Image compression (i.e., a method to reduce the number of bits 
needed to encode the essential information in a digital image) was developed ab ovo and described 
by Arnold Rots in an earlier memorandum in this series (VLA Computer Memo. No. 173). Since 
a great many data compression methods have already been described in published literature, I felt 
that it might be worthwhile to consider a couple of the methods that receive prominent mention 
there. One such method is based on the so-called singular value decomposition (SVD) of linear 
algebra. Another is Huffman coding, a minimum-redundancy scheme for error-free data encoding; 
a sub-optimal variant of this method, called Huffman shift coding, might be preferred on technical 
grounds.

INTRODUCTION

A new method of image compression—i.e., a method to reduce the number of bits 
needed to encode the essential information in a digital image—is described by Arnold Rots 
in a recent VLA Computer Memorandum [18]. Many data compression methods (and 
image compression methods, in particular) have already been described in the published 
literature (see [5],[8],[17],[20]), so I felt that it would be worthwhile to examine a couple of 
the methods that receive prominent mention there. (Our aim is to find a suitable scheme to 
transmit pictures, over a slow communications link, to the remote users of a supercomputer.)

One interesting, and somewhat promising method is based on the so-called singu
lar value decomposition (SVD), a matrix factorization technique of linear algebra. This 
method is the only one with which I was familiar when I set out to write a memorandum; 
consequently, it is the first method that I describe. But, except perhaps if one is inter
ested in transmitting high precision, floating-point digital imagery—rather than coarsely 
quantized images—it is not obvious that the SVD method would be the method of choice. 
This question is highly intertwined with the degree of quantization, and therefore the issue 
is somewhat difficult to resolve. The SVD method might be useful, however, for archival 
storage of floating-point images: for example, rather than quantizing 32-bit floating-point 
images to 16 bit integer, one could, in most cases, achieve much higher accuracy via factor- 
of-two floating-point SVD compression.

Huffman coding is an optimal means of encoding data that have been quantized into 
a finite number of levels. In transmitting a digital image by Huffman coding, the average 
number of bits per pixel which is required never exceeds the entropy of the image by more 
than one bit. Usually this excess, which is called the code redundancy, is much smaller 
than one bit. Huffman coding employs variable-length codewords, the shorter words being 
assigned to the more frequently occurring quantization levels. With standard Huffman 
coding, a decoding table whose length is equal to the number of (occupied) quantization 
levels is required. Especially when there is a large number of quantization levels, it may be 
preferable to use a variant of Huffman coding, such as the so-called Huffman shift coding 
technique. This increases the code redundancy by a small (but usually a tolerable) amount.

Given its simplicity and near-optimality, I believe that Huffman (shift) coding might 
be a sensible choice for transmission of quantized digital imagery to the remote users of a 
supercomputer facility. Other methods might be preferred in cases when one can tolerate 
some degree of degradation of the data that is not precisely known. One manner of working



would be to quantize the data to the coarsest degree thought to preserve all of the desired 
information, and then to employ an error-free coding method such as Huffman coding.

In this discussion I am assuming that one relies on some commercial package of net
working software to achieve data transmission and error correction. If not, then one would 
need to consider the subject of error correction together with that of data compression, and 
more careful thought would be required.

T he S V D  C om pression  T echnique

The idea of using the SVD to achieve image compression has been around since at least 
the early 70’s, when it caught the fancy of the war research community (see [2],[3],[4], and 
references cited therein). [2] is a good expository article; textbook accounts appear in [5] 
and [16], The SVD, itself, has been known since at least 1890—J. J. Sylvester1 gives a one 
page description in [19].

Prelim inaries. An arbitrary real m x n matrix (or “image”) A of rank r, with m > n,s 
can be written in the form

(i)

where U is an m x m orthogonal matrix, V i s n x n  orthogonal, and

( o \  0

E =

y o

is an n x n diagonal matrix with <j\ > <ti > * • • >  <rn > 0. When A  is of less than full rank, 
crr + 1 =  ••• =  an =  0. This representation of A  is called its singular value decomposition 
(SVD). The scalars <7i,... ,crn (which are the nonnegative square roots of the eigenvalues 
of A t A) are called the singular values of A, the columns U i,. . .  ,u m of U are called the left 
singular vectors, and the columns v * , . .. ,v n of V  are called the right singular vectors. The 
U* are the orthonormalized eigenvectors of AATi and the v* are those of A TA. The SVD is 
unique, up to trivial reorderings of any singular vectors that are associated with identical 
singular values.

The SVD of A  can be written as a linear combination of “outer products” of pairs of 
vectors; i.e., as a sum of rank 1 matrices:

(2) A =  a iU iv f  +  <r2u 2v^ + -----1- <rru rv *  .

1 Sylvester stayed for a while in Charlottesville. In a preface to Sylvester’s Collected Works, H. F. Baker 
writes: “Leaving University College in the session of 1840-41, he proceeded as Professor of Mathematics 
across the Atlantic, to the University of Virginia, founded in 1824 at Charlottesville, Albemarle Co., where 
his colleague, Key, of University College, had previously occupied the chair of Mathematics. Such a con
siderable change deserved a better fate than befell; in Virginia at this time the question of slavery was a 
subject of bitter contention, and Sylvester had a horror of slavery. The outcome was his almost immediate 
return; apparently he had intervened vigorously in a quarrel between two of his students. . . .  On his return 
from America Sylvester seems to have abandoned mathematics for a time.”

2Recall that rank A  =  r implies that A has r, but not r +  1, linearly independent rows (or columns). The 
rank of an m X n matrix (m >  n) representing a noisy (i.e., a measured) digital image normally equals n. 
(Possible exceptions are cases of contrived, or model data, and cases of very coarsely quantized data.) The 
restriction m >  n is not essential; it just permits the use of simpler notation (one can work with A T when 
the image has more columns than rows). (Superscript- T  denotes matrix transpose.)
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Here, let us denote the A:th partial sum as Ak; i.e., A* =  £ £ = 1  **u*vf.• is (in the 
least-squares sense) the best rank k approximation to A. The (squared) Euclidean norm3 
of the difference between A  and Ak is given by the sum of the squares of the singular values 
corresponding to the omitted terms; i.e.,

(3) M l -  A\\l =  £  0} ,
l = k+l

and so the root mean square error of approximation is

r.m.s. error = —  £  m n  1i=k+i

If the singular values decrease rapidly, then, for relatively small values of k, Ak is close 
to A.

An efficient and numerically stable algorithm for computing the singular value decom
position is given by Golub and Reinsch in [11]. Portable Fortran implementations of their 
algorithm are available in the LINPACK package [9]. The LINPACK subroutine DSVDC 
was used to obtain the test results that are presented below.

U se o f  the SV D  for C om pression o f  D ig ita l Im ages. Expressing Eq. 3 in words, the 
orthogonality constraints on U and V  ensure that each of the rank 1 matrices u^v^, t < r, 
has the same Euclidean norm; thus, the importance (in the mean-squared error sense) of 
the tth term in the right-hand side of Eq. 2 is measured by a». Assuming that Ak is a good 
enough approximation to A, the “image” can be faithfully represented by (m +  n +  l)k  real 
numbers (or, for a square (n x n) matrix, by (2 n +  l)k  numbers). For image transmission, 
if the data are transmitted (in packets of m  +  n +  1 numbers) in the order (<ri,Ui,Vi), 
(<72,U2,V2), . . . ,  then the received image can be built up in “real-time.” If the singular 
values (there are only n of them) are transmitted first, then, on the receiving end, one can 
determine (by plotting them) how much image compression can be achieved and what value 
of & is appropriate.

Examples given in [2]-[5] and [16] illustrate that digitized photographs of natural 
scenery (satellites, tanks, and women) often can be economically represented by truncated 
SVD’s. Examples given below illustrate that the same can be said for radio maps.

0 (m n 2) arithmetic operations are needed to compute the SVD of an m x n matrix, by 
the Golub and Reinsch algorithm (see [9, ch. 11] for the exact operation counts); thus the 
decomposition is more computationally burdensome than, say, an FFT of the same sized 
matrix. In addition, reconstructing the matrix or “image” requires k — 1 additions and 
about k multiplications, per matrix element or “pixel.” By these considerations, to use the 
SVD to achieve economical image transmission, one would partition the matrix representing 
a large image into a set of smaller submatrices. The question of choosing a sensible partition 
of the image is addressed below.

Transmitting the full SVD of an m x n  matrix requires sending more numbers ((m + n-f 
l)n  numbers) than the quantity which is present in the image itself (~  twice the amount in 
the case of a square matrix). In all instances, the actual compression ratio achieved depends 
on whether one chooses to quantize the singular vectors prior to transmission (and on how 
coarsely they are quantized)—a bit more on this below.

3i.e., the square root of the sum of the squares of the matrix elements.
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Examples.
Example 1: A “high dynamic range9 map. A 256x256 VLA map of the jet in NGC6251 

is shown in Fig. 1. This is a “high dynamic range” image produced by the CLEAN deconvo
lution algorithm. The intensity of the unresolved “core” at the tip of the jet is 0.7 Jy/beam, 
the features along the jet are at a level of a few mJy, and the r.m.s. level (the noise) in areas 
away from the jet is ~  80 /zJy. A plot of the singular values (normalized to (T\) is shown 
in Fig. 2a, and a plot of the r.m.s. error of the kth truncated SVD approximation to this 
image (normalized to the peak in the original image) is shown in Fig. 2b. Selected rank 1 
images, u^v?’, comprising the SVD of this image are shown in Fig. 3. Most of the energy of 
the compact core is represented by the first two singular values. Selected truncated SVD 
representations Ak are shown in Fig. 4. The r.m.s. errors of the approximations by A40 and 
Aso are 55 /iJy and 44 /iJy, respectively—well below the r.m.s. noise level in the original 
image.

Example 2: A *low dynamic range9 map. Selected truncated SVD representations of 
a “low dynamic range” 20 cm. VLA (CLEAN) map are shown in Fig. 5. This is a map of 
a region containing a large number of point-like sources. In this example the r.m.s. noise 
level is a few percent of the map peak. No reproduction of the original map is included 
here, as it would be indistinguishable from the picture of A4q that is shown. The singular 
values, and the r.m.s. errors of the approximations by the Ak, are shown in Figs. 2c and 
2d, normalized as in Example 1. The singular value plot would bear a strong resemblance 
to the plot in Fig. 2a if the spike were removed from the latter. It is interesting to note 
(from Fig. 5) that various ones of the point sources seem to pop out as k increases—and it 
is fairly obvious why this should be so.

Example S: A adirty beam.9 Truncated SVD representations of a “dirty beam” (cor
responding to the VLA observation of Example 2) are shown in Fig. 6; the singular value 
profile and an error plot are shown in Figs. 2e and 2f. Ago furnishes an adequate pictorial 
display of the original image, so a picture of the dirty beam itself is not included here. The 
dirty beam looks much more “complex” than the deconvolved maps used in the previous 
two examples, and, indeed, the singular values decrease much less rapidly in this instance— 
here there is not a lot of potential for image compression. If a few iterations of the CLEAN 
algorithm were applied to this image, then a spike (much like the spike in Fig. 2a, which 
is due to the presence of a compact “core”) would appear on the leftmost portion of the 
singular value profile. The depth of the spike would depend on the number of CLEAN 
iterations, and its width would depend (roughly) on the width of the CLEAN “restoring 
beam.”

All three of the singular value plots have various “knees” or bends. Those in Figs. 2a 
and 2c both have inverted knees in the range k =  20-30. Empirically (and intuitively) it 
seems that the horizontal location of this knee should depend (in the typical radio map of 
a fairly empty region) on the depth of “cleaning”.

Figs. 2a and 2c also have fairly sharp bends in the range k =  140-170, whereas in 
Fig. 2e there is a gradual bending in the neighborhood of k =  180. Both of the CLEAN 
maps (Examples 1 and 2) were converted to 16-bit integer format before the singular value 
analysis was performed, but the dirty beam (of Example 3) was kept in 32-bit floating
point format. These shallow bends in the CLEAN maps appear to be due to truncation 
(i.e., to the relatively coarse quantization that was applied). The knee in the dirty beam 
is of greater depth and of more gently sloping character. Its ordinate (~  10-8 -10-7 ) is 
of the same order of magnitude as the unit-roundoff characteristic of 32-bit floating-point 
arithmetic. And the benign properties of floating-point arithmetic with rounding probably 
account for the gentleness of the bend.

4



R em arks. Choosing a sensible partioning of the image is not very difficult. First of all, the 
Golub and Reinsch algorithm is computationally expensive enough (about 7mn2 + l l n 3/3  
arithmetic operations are required) that the decomposition of blocks larger than, say, 256 x 
256 probably oughtn’t to be considered. Second, given that the map is to be reconstructed 
on a modest-sized computer rather than on a supercomputer, it would be unreasonable 
to expend more than a hundred or so arithmetic operations per pixel in doing so. The 
vector registers on a supercomputer such as the Cray usually are best suited to vector 
operations on vectors of length 64, or so. Thus, 64 X 64 might be a reasonable block size for 
partitioning. However, nothing should prevent one from going smaller; 16 x 16 is mentioned 
in the textbook by Pratt [16] as having been used in practical applications.

Some further economy can be achieved by this partitioning of the image. Namely, in 
fairly empty regions of the map, relatively fewer singular values and singular vectors need 
to be retained than in other regions (assuming that one is aiming for the same r.m.s. error 
level in each area). Although this extra degree of sophistication entails greater programming 
effort, it is clear that there would be a substantial payoff in many instances.

H uffm an  C oding

For a message (read map) composed from the letters (read pixel values) of a finite- 
length alphabet (read set of quantization levels) binary Huffman coding [14] is an optimal 
encoding technique, in the sense that the number of bits in the encoded message is the 
minimum number which is required (by any such binary substitution code) to allow a 
unique decoding of the message. Huffman coding employs variable-length codewords. As 
in Morse code, the shorter codewords are assigned to the more frequently occurring letters 
of the alphabet. The code is called a prefix code because no codeword is a prefix of (or the 
beginning of) another codeword.

Let pi denote the relative frequency of occurrence, within the message, of the tth letter 
of the n-letter alphabet (i.e., in our case, pi is the occupancy rate of the tth quantization 
level, and n =  2N). Huffman’s method for constructing the code based on { p i , . . . ,p n} 
can be described as follows: Set k =  n. For k > 1, let pi and pj  denote the smallest and 
second smallest elements of {p i,...,p*:}. Replace p,- and pj  by (pt +  py), and, retaining 
all parentheses, repeat the construction on the remaining k — 1 elements, until k =  1. For 
example, if n =  7 and { p i,. . . ,p 7 }  =  {.4,.08,.08,.2,.12,.08,.04} the construction is

{.4, .08, .08, .2, .12, .08, .04} k =  7
{.4, .08, .08, .2, .12, (.08 +  .04)} k =  6

{.4, (.08 +  .08),.2, .12, (.08 +  .04)} k =  5
{.4, (.08 +  .08), .2, (.12 +  (.08 +  .04))} k =  4

{.4, ((.08+  .08) +  .2), (.12 +  (.08 +  .04))} k =  3
{.4, (((.08 +  .08) 4- .2) (-12 +  (.08 +  .04)))} k =  2

{(.4 +  (((.08 +  .08) +  .2) +  (.12 +  (.08 +  .04))))} k =  1.

The length li of the codeword for the tth letter is given by the corresponding depth of paren
thesis nesting; in this case ( / i ,. . . , h )  =  (1 ,4 ,4 ,3 ,3 ,4 ,4 ). The codewords themselves are 
determined by the order in which the parenthesizing occurs; in this example, the codewords 
are (1,0111,0110,010,001,0001,0000). This description is borrowed from Knuth [15]; the 
better known graphical construction of Huffman is illustrated in [12] and [17].

The amount by which the quantity /av =  /,pt, the average number of bits used 
to encode a letter of the message, exceeds the binary entropy of the message is called the

5



code redundancy r; i.e., r — X3»P*1°S2P*- With Huffman coding, r is minimized,
and t never exceeds unity. The code has two additional special properties: the maximum 
codeword length max; /» is minimized, as is the total length U of the encoding table.

The ratio r\ =  — —Il Ei  js called the code efficiency.
2 2 i h P i

Gallager [10] shows that the redundancy of a binary Huffman code satisfies the upper 
bound r < pmax +  (In 2 — In In 2 — l) / ln 2  ~  Pmax +  0.0861, where praax =  maxip,- denotes 
the probability of occurrence of the most likely letter (and that for pmax > | ,  r < pmax)- 
Thus, without actually constructing any Huffman codes, it’s possible to get a good idea of 
the degree of image compression that is achievable with the technique (simply by tabulating 
image statistics—entropy, in particular). Nevertheless, I decided to work out some real-life 
examples of Huffman encoding, so that it would appear that I had done some real work. 
Although Gallager’s bound is quite a tight bound, in the sense that the redundancy can be 
almost as large as his formula allows, in all of my examples his upper bound considerably 
overestimates r. (It’s strictly tight in the limit pmax —> 0.)

E xam ples. An integer programming algorithm for construction of minimum-redundancy 
codes is given by Hu arid Tucker in [13]. Yohe [21] has written an Algol language im
plementation of their algorithm. My own Fortran translation of Yohe’s subroutine was 
used to obtain the test results reported here; a listing appears in the Appendix to this 
memorandum.

My test results are summarized in Tables 1-3, which correspond, respectively, to the 
Examples 1-3 presented above. Each of the three test maps was quantized to 2N levels equi- 
spaced between the map extrema (i.e., a linear “transfer function” was used), for N  =  8, 
12, and 16. In addition to an analysis of the basic maps themselves (labeled “Original” in 
the Tables), results are presented for maps obtained by performing differencing operations 
(the original maps sire recoverable from these differences). The “1-D differenced” map 
corresponding to the image (/»y) is formed according to the formula

j  > 1, 
J =  1,

9., =  { f; ’ k , ~' ■I 1*3 >
and the “2-D differenced” map by

hi . — /  f*i ~ -  f*,j-1 +  f i-1,3-1 > * >  1> j  > 1 ,
\  f%j, otherwise.

Although 2n+1 quantization levels are needed to represent g and 2N+2 to represent h, the 
differencing operations typically yield maps with smaller numbers of occupied quantization 
levels and smaller entropy—hence, greater potential for compression. This differencing 
technique is advocated in the textbooks by Gonzalez and Wintz [12] and Rosenfeld and 
Kak [17]. (A similar differencing technique—along with a “pyramidal” transmission scheme, 
allowing progressive data transmission—is considered in Rots’ memorandum. Huffman 
coding could be used in transmission of these differences, but possibly to no great advantage, 
because a different encoding might be desired at each level of the pyramid, in which case a 
number of different decoding tables would have to be transm itted.)

Tables 1-3 are, for the most part, self-explanatory. In most cases—except when the
entropy is less than 1— the code redundancy is only around several hundredths o f a bit, and 
the code efficiency often exceeds 99%. It’s interesting to note how small is the fraction of 
occupied quantization levels in the case of a high dynamic range image. And in general,
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the more highly processed an image is, the less information it contains; e.g., “dirty maps” 
have a higher information content than maps from which the point source response has 
been deconvolved. This is a fortunate situation, for it will generally be the more highly 
processed images that one will want to transmit from the supercomputer to a remote station. 
The differencing schemes generally yield a significant improvement in the achieved data 
compression ratio.

D isadvantages. Although Huffman coding is conceptually very simple, (and perhaps also 
for this reason) it has a number of obvious disadvantages.

First, a possibly very long decoding table is required. In the case of image transmission, 
the number of entries in the table is equal to the number of occupied quantization levels. 
(More precisely, one has the choice of transmitting either a one-column table of 2N entries 
or a two-column table of length equal to the number of occupied quantization levels.) The 
need for such a long table can be overcome by the use of a variant of Huffman coding, called 
Huffman shift coding, which is described below.

Since the Huffman codewords are of variable-length, special effort is required in coding 
and in decoding, and the data generally must be packed, for transmission, into fixed-length 
records. The encoding, the packing, and the de-packing and decoding are awkward to 
program in, say, Fortran (in PLI it would be easy, though), so one would probably resort 
to doing this paxt of this task in assembly language. This would require the services of a 
competent programmer (or possibly two in our case—one for the supercomputer and one 
for the computer on the receiving end).

A consequence of the need for a decoding table and of the variable-length property of 
the code is that the time required for decoding varies from record to record and is not pre
dictable. Sometimes so-called “alphabetic coding” is used in lieu of Huffman coding. With 
alphabetic coding, the numerical binary order of the codewords corresponds to the alpha
betic order of the encoded “letters” (in our case, to the numerical order of the quantization 
levels). This results in a minimum mean search time for decoding, but also, generally, in 
slightly higher code redundancy. Still, the decoding effort remains variable. The subroutine 
shown in the Appendix can be used to compute alphabetic codes as well as Huffman codes.

The amount of effort needed to compute the code is another consideration. While 
the computational complexity of the Hu-Tucker algorithm, employed in the subroutine I 
used, is 0 (n 2), where n is the number of occupied quantization levels, there does exist 
an 0 (n  log n) algorithm—I just don’t know where it is written down. Nevertheless, our 
supercomputer presumably would be capable of the task. And, if Huffman shift coding is 
employed (see below) the computational burden of the task of code construction can be 
greatly diminished.

Huffman coding is not widely used in the computer industry, especially so in appli
cations where special-purpose hardware is used for encoding and decoding. Instead, so- 
called algebraic encoding is employed. Algebraic codes (BCH codes, Reed-Solomon codes, 
quadratic residue codes, Golay codes, Hamming codes, etc.) in fact do not require any 
decoding table at all; instead, algorithms are used to decode the bit patterns. On the other 
hand, these codes are ones which often are designed specifically with built-in redundancy, to 
be used for automatic error detection and error correction rather than for data compression.

There are, however, scattered published results on the use of algebraic codes for data 
compression, in cases where some data degradation is allowed. For example, the quadratic 
residue code of type (23,12) over the finite field G F(2) can be used to encode 23-bit data in 
12-bit codewords—one 12-bit codeword per 23-bit datum (see [6] for details). This entails
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occasional decoding errors, in at most three binary digits out of the 23.4 According to 
[6], Shannon gave similar results in 1959 for the Hamming codes. Such schemes might be 
attractive for our needs, assuming that the decoding errors occur sufficiently infrequently; 
for, in visual display of astronomical data, isolated overbright pixels stick out like a sore 
thumb (and thus cannot be mistaken for reality), and isolated underbright ones generally 
go unnoticed. I intend to pursue this matter further—I think that further results are given 
in [8]. This reference, which the U. Va. library has just put on hold for me, has so far been 
unobtainable.

Scattered results such as the one just mentioned form the body of a discipline known 
as rate distortion theory. Shannon formulated the major problem of rate distortion study 
in 1959: Given a measure D of data distortion (r.m.s. error, or whatever), what is the 
minimum information rate R{D), in bits per source sample, required to transmit a given 
message over a communications channel with an average distortion no greater than D, and 
what encoding algorithm(s) can be used to encode (and decode) the data and achieve this 
rate? Some early references on the subject are [1] and [7]. The image processing textbooks 
do not describe any recent results. I plan to search for an up-to-date bibliography on the 
subject.

H uffm an shift coding. Huffman shift coding is described by Gonzalez and Wintz in [12] 
and is further discussed by Rosenfeld and Kak in [17]. The objective is to modify Huffman 
coding so that a smaller decoding table is required; this lessens the burden of decoding. 
Assuming that n, the number of quantization levels is divisible by m, so that n =  mq , one 
can get by with a decoding table of length m +  2. (Here we have to take n =  2N to be 
the total number of quantization levels, rather than the number of occupied levels.) The 
histogram of quantization levels is divided into q equal parts, each of length m. Two extra 
codewords are employed: one, the “shift-down” word, is used to tell the decoder that the 
next symbol to be decoded occurs within the next lower section of the histogram (unless the 
next word too is a shift-down word, in which case the symbol is in an even lower section); 
similarly, the “shift-up” word says to move to the next higher section of the histogram.5

A number of comparisons of Huffman shift coding with standard Huffman coding are 
given in [17]. Typically, in the examples given there, the code redundancy is increased 
by about 0.2 bits—occasionally the increase is as much as one-half bit (sometimes they’ve 
taken m as small as 14, which seems to me to be overdoing it). Generally this increase 
in redundancy is equivalent to a few percent increase in the encoded data bulk, and it 
probably would have been smaller if Gallager’s method had been employed there. I haven’t 
experimented with this technique, but it could certainly be used to alleviate any excessive 
burden incurred in the data decoding or entailed by the table transmission requirement.

D iscussion

The main advantage that the SVD compression technique has over Huffman coding or 
Huffman shift coding lies in its potential use in a progressive transmission scheme, like the

4Such use of this code, one of the perfect Golay codes, is the reverse of its usual use: as a triple error- 
correcting 23-bit binary code for 12-bit data.

5The textbook [17] describes a poor method of incorporating the shift words; there, probabilities are 
assigned to these protocol words, and they are treated like everything else. An optimal method is given 
by Gallager [10], who shows how to construct a prefix code with an unused codeword of length two bits 
and whose redundancy r ' satisfies r1 <  1. Further, he shows that r' does not exceed the redundancy of 
the Huffman code by more than the quantity 2pz,  and he states that one cannot do better. (Here, the 
probabilities are assumed to be ordered monotonically, so that p2 denotes the second largest.) This is 
the method d e s c r ib e d  in (12], w h e re , in s te a d  o f  two s h i f t  w o rd s , a  s in g le  2 - b i t  “cyclic shift” codeword is 
employed. Whether this method is best, or whether one ought to  r e p e a t  G a l l a g e r ’s construction to  obtain 
a second 2- or 3-bit shift word, I guess depends on the actual data.
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one described by Rots. A practical implementation of SVD compression for data transmis
sion would entail quantization of the singular vectors prior to their transmission. I haven’t 
considered this matter in detail; however, in the case of 16-bit data, say, if one could get 
by with quantizing the singular vectors to 8 bits, then the compression factors implicit in 
my Examples would double. Quantization to about 12 bits would certainly be safer.6 I’m 
starting to favor the ordinary encoding techniques over SVD compression for their simplic
ity and because, as in the case of SVD compression of Boating-point data, their behavior is 
highly predictable and doesn’t depend very greatly on statistical assumptions.

I apologize—especially to Arnold Rots—for not having checked the performance of 
Rots’ pyramidal transmission scheme on my test examples. The appearances are that his 
scheme would outperform simple Huffman substitution encoding in the cases of coarsely 
quantized, high dynamic range data (such as the NGC6251 jet image quantized to 8 bits). 
Huffman coding would probably perform better on images of high information content. 
Huffman shift coding, though, might not more than marginally outperform the pyramidal 
transmission scheme in these cases. Probably the chief attraction of Huffman coding is its 
simplicity.

Compression ratios somewhat higher than are mentioned here may be sorely needed 
with a slow communications link to the supercomputer. Then the question becomes what 
kind of distortion of the data to accept, and I don’t think that a satisfactory answer has 
been given.
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Figure 1. A photographic representation of a 256 X 256 “high dynamic range” digital image portraying 
radio em ission  (at 6 cm . w avelength) from  the je t  o f N G C 6251  (the m ap courtesy  o f Rick P erley ).



F ig u r e  2 . a) A  plot o f the singular values cr,- of a 256 X 256 im age o f the radio je t in N G C  6251 (see F ig. 1). 
b) A  plot of the r.m .s. error of the k ih truncated SV D  representation , A k ,  o f the sam e im age, c) A  plot 
o f the singular values in E xam ple 2. d) A  plot o f the r.m .s. error, for E xam ple 2. e) A  plot of the singular  
values in E xam ple 3. f) A  plot o f the r.m .s. error, for E xam ple 3.
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i - 40
F ig u r e  3. Selected “outer product” or rank 1 
je t in N G C 6 2 5 1 , for t =  1, 2, 3, 4, 5, and 40.

images, u ,-v^, comprising the SVD of the radio map of the
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l l i

! k = 10

k = 20

F ig u r e  4 .  P hotographs o f the truncated  SV D  representations of the im age show n in F ig . 1, for k  =  10, 
20, 30, and 40. (Continued on next page.)
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k = 30

k = 40

Figure 4 (cont’d).
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F ig u r e  5 . Truncated SV D  representations A h  ( k  =  10, 20, 30, and 40) o f a “low dynam ic range” 256 X 256  
(20 cm . w avelength) V L A  m ap o f a region— surrounding a H erbig-K aro object— w hich conta ins a large 
number of unresolved sources (this map the courtesy of Stephen Reynolds). (Continued on next page.)
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Figure 5 (cont’d).
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k = 20

F ig u r e  6 .  Select truncated  SV D  representations A ^  ( k  =  10, 20, 40, and 80) o f a “d irty  beam .” (C on tin ued  
on n ext page.)
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Figure 6 (cont’d).
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Table 1. Huffman coding of the NGC6251 jet image.

Image
Number 
of bits Entropy

#  of occupied 
quant, levels

Ave. code
word length

Maximum
length max pi

Compression
ratio

Original 8 .2081 33 1.0381 10 .9732 7.706
12 1.8278 111 1.8698 15 .5472 6.418
16 5.6735 615 5.7069 16 .0416 2.804

1-D differenced 8 .1277 48 1.0248 9 .9862 7.806
12 1.4964 104 1.6424 14 .6621 7.306
16 5.0108 463 5.0316 16 .0630 3.180

2-D differenced 8 .1519 40 1.0280 9 .9824 7.782
12 1.5556 89 1.6856 14 .6025 7.119
16 4.5475 270 4.5824 16 .0822 3.492

Table 2. Huffman coding of the radioimage of the field containing the Herbig-Haro object.

Image
Number 
of bits Entropy

#  of occupied 
quant, levels

Ave. code
word length

Maximum
length max p,

Compression
ratio

Original 8 2.7077 112 2.7404 17 .2895 2.919
12 6.6688 611 6.6929 16 .0195 1.793
16 10.6013 3416 10.6276 16 .0016 1.506

1-D differenced 8 1.9830 90 2.0514 15 .4744 3.900
12 5.7965 512 5.8159 16 .0357 2.063
16 9.7402 2360 9.7607 16 .0026 1.639

2-D differenced 8 1.7309 55 1.8332 14 .5421 4.364
12 5.0035 381 5.0289 16 .0606 2.386
16 8.9527 1866 8.9784 16 .0043 1.782

Table 3. Huffman coding of the '

Number 
Image of bits Entropy

Mirty beam” test image.

#  of occupied Ave. code
quant. levels word length

Maximum
length max pi

Compression
ratio

Original 8 4.8146 93 4.8349 15 .0683 1.655
12 8.7970 994 8.8201 16 .0049 1.361
16 12.6414 6350 12.6690 16 .0005 1.263

1-D differenced 8 4.0112 83 4.0404 16 .1213 1.980
12 7.9922 728 8.0167 16 .0084 1.497
16 11.8904 6297 11.9163 16 .0008 1.343

2-D differenced 8 3.3301 65 3.3625 16 .1929 2.379
12 7.2721 596 7.3116 16 .0136 1.641
16 11.1834 4326 11.2142 16 .0012 1.427
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APPENDIX

SUBROUTINE HUTREE(U.Q.L)
C This subroutine, a Fortran version of the Algol routine given 
** CAd Algoritha *428. o&& be used to co&struot alnlmuo- 
C redundancy variable-length binary codes, by an algorithm which C Is due to Hu and Tucker-
C On input. H Is the number of letters In the 'alphabet' for 
C which a code Is to be constructed, and Q(I) is the (integer)
C frequency of occurrence. In the message, of the I'th letter 
C On output. LCD is the length. In bits, of the alnlaua-redundanoy 
C enoodlng of the I'th letter of this alphabet.
C (The aotual encoding Isn't oooputed by this subroutine, but 
C the routine can easily be modified to do the Job.) The oode has 
C the property that both the sua of the L(I) and the maximal L(l)
C are ainlalzed. eubjeot to the oondltlon that the code be a 
C minlaua-redundanoy code (I.e.. that sua Q(I)*L(I) be alnlsal).
C As it is set up. the subroutine ooaoutes a so-called non- 
C alphabetic (Huffman) code. If the L(I) are initialized to 0 
C rather than to one on entry, then an alphabetic code results.
C (In the latter case, the numerical binary order of the oode words
C corresponds to the alphabetlo order of the enooded letters __
C this constraint results In a minimus aean search time In decoding 
C (but greater redundancy. In general).) See the CACM listing of 
C the Algol routine for nore details. (This routine doesn't seea 
C to wont properly in the non-alphabetlo case if any of the Q(I)C are equal to zero).
C The approximate operation oount Is 4,H**2*2*H. But tt would 
C be possible to improve the algorithm to have run-time proportional C to S log N rather than H**2.

IMPLICIT IJJTEGER (A-Z)
DIXENSIOM <3(20.L(2I)
PARAMETER CtMAX-9330)

C H mustn't exceed NMAX.
DIMEMSIOS P(KMAZ) , S(NMAX-l) .D(NHAX-1)MAEI-l 
00 10 I-l.N 

L( I ) - 1 
P(I)-<}(I)

10 HAJ£1-MAXN*Q(I)
DO 70 M-l.N-l 

1-0
PSI9-KAXX 

20 1-1*1
30 IF (I.GE.H) GO TO 60

IF (P(I).EQ.O) GO TO 20
MI32-MAZN
Jl-I
MINLl-L(I)
HISl-P(I)
DO 40 J-I*1.N

IF (P(J).GT.O) THEM
IF (P(J).LT.MI31.OR.(P(J).EQ.MI31.AND.L(J).LT.MIXL1)) THE »

MIN2-HIH1
J2-J1
MINL2-MINL1
HIJIl-P(J)
Jl-J
MINLl-L(J)

ELSE IF (P(J) LT.MIS2.OR.
(P( J) . EQ.MIU2. AKD.L( J) .LT.MIHL2) ) THEN 
MIN2-P(J)
J2-J
HINL2-L(J)

END IF
IF (L(J).EQ.O) GO TO 90 

EKD IF 
40 CONTINUE
50 PT-P(J1)*?(J2)

SCMLT-L(J1)*L(J2)
IF (PT.LT.PMIN.OR.(PT.EQ.PMIH.AHD.SUMLT.LT.SUML)) THEN 

PMIN-PT
11-Jl
12-J2
SUKL-SCMLT 

EKD IF 
I-J
GO TO 30 

60 IF (II.GT.12) THE8
Jl-Il 
11-12 
I2-J1 

ESD IF 
S(M)—I1 
D(H)-I2 
P( 11)-PMIN 
P(12)-0 

70 L(U)-StRU.»l
L(S(M-l))-0 
DO 80 H-H-l.l.-l

L(D(H))-L(S(M))*1 
eO L(S(M))-L(D(M))

RETCRN
END
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