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I. INTRODUCTION

The Dec-10, which currently is used to calibrate virtually all VLA data, is scheduled to be 
‘retired’ at a time no earlier than December, 1988. This computer performs a large number of 
essential tasks for the VLA, of which data calibration takes, by far, the largest amount of CPU 
time. In the future, all data calibration will be done within AIPS, using a set of tasks known as 
the ‘AIPS Calibration Package”. At the same time, the new MODCOMPs will be on line, with the 
potential for greatly increased data  flow.

These changes will have major effects on our computing requirements, and it is obviously 
of great importance to attem pt an estimation of what these will be. To do this, I have set up 
a ‘RUNFILE’ in AIPS, on both our VAX 11/780 and our CONVEX C -l, which fully edits and 
calibrates a typical database, using ‘standard’ techniques. To allow detailed comparisons, I have 
also constructed a Dec-10 ‘MIC’ file which performs essentially identical operations. In setting up 
these packages, I have attem pted to be realistic at every step, mimicking the effort expended by an 
experienced user.

A primary goal was to measure the elapsed time (‘wall-clock time’) required to execute the 
package, on different machines, under different loading factors (i.e., running 1, 2, 3, and 4 indepen
dent jobs in parallel). To allow easier interpretation, in almost all cases the machines were arranged 
to have no other jobs running at the times of the various tests. Exceptions to this will be noted in 
the detailed descriptions. It is also of interest to record both the CPU and elapsed time usage for 
each task, and this has been done in most cases. CPU times for the DEC-10 are not well-defined 
(being strongly dependent on load factors), so only elapsed times were recorded.

The results of these benchmarking tests are described in Sections II through V. Section VI is a 
short discourse on the new AIPS task TVFLG. In the last section, I attem pt an estimation of our 
future computing needs to support data reduction by taking the current calibration throughput of 
the Dec-10 and adjusting it by various factors (such as increased data flow by the new MODCOMP 
system, and external calibration by users), to produce an estimate based in ‘equivalent Dec-10 
units . This is then converted into CONVEX or VAX units by using the ratios determined in 
Sections II to V.

It must be pointed out that the use of these procedures has reduced to near zero the ‘human 
time’ required in calibration -  that time required to think about the inputs, read the instructions, 
make and correct mistakes, etc. Most importantly, the package ‘knows’ where the bad data are, so 
that the (usually) considerable time taken to find bad data  (by whatever means) has been reduced 
to zero. To reach a ‘totally realistic’ elapsed time, one must add in the time expended by an 
individual in executing the various steps. This is obviously highly dependent upon user experience 
and data quality. I have made no attem pt to quantify these times. Clearly, these times will greatly 
affect the required disk space and, through system inefficiencies, will influence to a lesser degree, 
the required CPU.

II. THE DATABASE AND RUNFILE

I selected an ‘A’-configuration run of 4-hours duration at 6-cm wavelength for the tests. The 
averaging time was 10 seconds, resulting in about 288,000 visibilities in each of the 2 IFs. (Here, 
we use the AIPS convention: IF 1 corresponds to the ‘A /C ’ IFPairs, IF 2 to ‘B /D ’). This com
bination represents a sort of average continuum database. This database was chosen mainly for
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its convenience, not for its quality. As it turned out, the data are of exceptional quality, requiring 
almost no flagging.

The calibration paths cannot be made exactly identical, since the Dec-10 route requires two 
tasks, EXPVIS and UVLOD, which have no parallel in the AIPS system. Conversely, the AIPS 
calibration package requires SPLIT, and (temporarily) DBCON and INDXR, which are not required 
in the Dec-10 route. All these extra tasks were benchmarked as well. After loading the data on 
the appropriate computer, and running DBCON and INDXR for the AIPS calibration path, the 
RUNFILE/MICfile performed the following operations (all processing was on both IFs):

1. A scan and summary listing of the database.
2. A Matrix listing of both IFs, with ampscalar scan averaging and rms. Calibration was NOT 

applied (a significant difference for all machines).
3. ‘Column’ listings of small amounts of data, required to find the few bad data points.
4. Flagging the bad data. I flagged both a single record for all antennas, and an entire scan for 

a single antenna. (Only the former was required. I ran the latter, just to see if there was any 
significant difference in execution time.)

5. Setting the flux density of 3C286.
6. Running CALIB on 3C286, both IFs.
7. Listing the solutions of the above.
8. Applying these solutions with CLCAL to all data.
9. Running LISTR to list the amplitudes of the phase calibrators. This step must be run twice, 

once for each IF.
10. Repeating steps 5 through 8, with the two phase calibrators instead of 3C286.
11. Running PCAL to determine the antenna polarizations.
12. Running LISTR, twice, to show the RL and LR correlations, and to determine the R-L phase 

correction.
13. Running CLCOR, to apply the above correction.
14. Repeating 12, to check that the correction is correct.
15. Running LISTR, calibration applied, amplitude and rms output.

Polarization calibration procedures on the Dec-10 differ slightly from the AIPS route, so the 
MIC file differed slightly in the final steps. However, the same operations were carried out.

I expect tha t many will question the necessity of step (15), since a similar (and cheaper) LISTR 
was run in step (2). However, cautious observers will often execute this step as a final check. I 
would expect tha t even when the wondrous TVFLG is widely used, observers will still execute 
a final matrix listing. For the purposes of comparing throughput, the actual path chosen is less 
im portant than ensuring the path is the same on all machines. I will comment on the impact of 
omitting unnecessary steps, and on anticipated code improvements in the next section.

In the RUNFILE, I have inserted numerous ‘INP tasknam e’ commands, to simulate a user’s 
actual effort. On the Dec-10 and CONVEX, these insertions have negligible effect on the run times. 
However, on the VAX, a very different picture emerged, as may be expected by anyone who has 
tried to type ‘IN P’ on a loaded VAX. Summing the total elapsed times of all tasks, and comparing 
to the wall-clock time, as recorded in the logfile, of the entire procedure gives an estimate of the 
loading caused by typing ‘INP xxx’. On the VAX, the minimum difference between these times was 
12 minutes. Monitoring the CPU usage (‘MON PR O C /TO PC PU ’) shows tha t 30% of the VAX 
CPU is required to write the inputs onto the terminal screen! (when the machine is running no 
other jobs). Those who disbelieve this figure are invited to prove it wrong!

III. SUMMARY OF RESULTS
Perhaps the most important statistic is the elapsed time for fully calibrating ones data -  from 

the time the MODCOMP tape is mounted to the time one is ready to image the data. These times
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are shown, in seconds, in Table 1. Displayed are the total throughput times when running one job 
on an otherwise unloaded machine.

In this table, the firs>t column displays the appropriate task of operation. The second and 
third columns give the total elapsed time to execute these operations, when following the ‘Dec-10’ 
calibration route. The two different columns indicate the final destination of the Dec-10 calibrated 
data. Note that the times differ only for UVLOD and DBCON. X’s mean that the listed task is 
inappropriate for the route. Question marks following some of the CONVEX entries indicate that I 
was unable to obtain an idle machine when the task was run, so the time listed is my best estimate. 
I expect the error to be less than 10% in all cases. The fourth and fifth columns list the elapsed 
times following the ‘AIPS’ calibration route. The last column contains a comment on the operation 
performed.

The block of four tasks near the top of the Table list the operations necessary to load the 
data  onto the various machines. The Subtotal listed is the total of these operations. The next 
row, labeled ‘Calibration’, lists the elapsed times to perform the full calibration. The detailed 
breakdown of the tasks within this is given in the Table 4. The next block of four tasks lists the 
required times for transferring the data to a form ready for imaging, with the total given in the 
next-to-last line. The final line gives the grand total elapsed times.

This chart contains some interesting values. In terms of total throughput, the AIPS calibration 
package, on a CONVEX, is about twice as fast as following the Dec-10 Calibration route. However, 
the AIPS calibration package on the VAX is 50% slower than the Dec-10 route. Note, however, 
that the line listed ‘Calibration’ shows distinctly different ratios. Here, the CONVEX outperforms 
the Dec-10 by a factor less than 1.5, while the VAX is now slower than the Dec-10 by nearly a 
factor of three. These differences are due mainly to the extra operations of EXPVIS, UVLOD and 
DBCON, required in the Dec-10 calibration path.

Table 1. IDLE MACHINE RUN TIMES FOR CALIBRATION (seconds)

STD. CAL. AI]PS CAL.
TASK VAX CONVEX VAX CONVEX Comment

FILLER 2340 2340 X X Fill onto Dec-10
FILLR X X 3173 1000(?) Fill into AIPS

DBCON X X 637 235 Join the two databases
INDXR X X 136 20 Create Index file

SUBTOTAL 2340 2340 3946 1255 Total for loading data

CALIBRATION 3300 3300 9247 2445 Total for Calibration

EXPVIS 2100 2100 X X Export data from Dec-10
UVLOD 630 200? X X Load Dec-10 data  on AIPS
DBCON 670 175? X X Join IFs into 1 database
SPLIT X X 3007 750? Separate Multi-source dbase

SUBTOTAL 3400 2500 3007 750 Total for D ata exporting

GRAND TOTAL 9040 8115 13200 4450

Considerable improvements in throughput may accrue from changes in both procedure and 
code. If we delete the final LISTR from the processing path, the toted runtime decreases by 
approximately 20% on the CONVEX, and 30% on the VAX. In the near future, the AIPS tasks
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DBCON and INDXR will not be required (as the new MODCOMP format will usually hold an 
entire database on one tape). Deleting both these tasks, and the final LISTR, reduces the run 
times by 25% for the CONVEX, 35% for the VAX. Finally, it is entirely possible that speedups of, 
say, 30% are possible in the code. Combining these factors, we might predict a final runtime half 
of the values listed in the bottom line for the AIPS CAL. route. In terms of the currently available 
Dec-10 route, an optimistic estimate is that the throughput of the CONVEX will be four times, 
and for VAX, slightly better than, the current throughput. Recall that these figures are valid for 
single jobs running on an otherwise unloaded machine.

IV. THE IMPACT OF MACHINE LOADING

The values given in the last section would be all that are needed if we knew that only one 
job was running at a time, or that the machine responses were perfectly linear with load factors. 
Neither of these conditions are expected to occur, so numerous tests were performed to measure 
the machine reaction to loading. As stated in the Introduction, this was measured by running the 
procedures in parallel. It is difficult or impossible to run the tape I/O  jobs in parallel, so only the 
calibration portion was tested this way.

In Table 2 are the total elapsed run times, in minutes, for the procedure described in section
II. Column 1 gives the load factor, defined as the number of procedures running in parallel. The 
remaining columns give the elapsed times in minutes. For the VAX and CONVEX, no other jobs 
were running. For the Dec-10, only the entry for loadfactor =  4 has been notably affected by other 
users. Perhaps 10 or 20 minutes need to be subtracted. The entries do not tally exactly with the 
entries in Table 1, since the AIPS tasks DBCON and INDXR are added. Removing these reduces 
the VAX and CONVEX entries by about 10%.

Table 2. TOTAL ELAPSED TIMES (minutes)

# Dec-10 VAX CONVEX
1 55 167 45
2 81 320 63
3 110 510 93*
4 165 [700] [125]

The entries in square brackets have been predicted, using values under smaller load factors. The 
starred Convex entry is partially predicted, since the Runfile did not run to completion, requiring 
me to estimate the additional time. This was a small quantity, so an error in this estimate is of 
little consequence.

It will be noted that the VAX run times are nearly linear, indicating tha t the jobs which 
dominate the elapsed time (LISTR, CALIB, and PCAL) each saturate the machine. This was 
confirmed by monitoring the system CPU usage -  each of these tasks used typically 80% or more 
of the CPU. Both the CONVEX and DEC-10 responses are distinctly non-linear, with saturation 
for the Dec-10 not occuring until 4 jobs are running concurrently.

In table 3, I present the run times normalized by the Dec-10 run time. The final line is 
somewhat questionable, as it utilized predicted times for the Convex and VAX, as well as a curiously 
long run time for the Dec-10, (which may be explained by the presence of some other users on the 
system when the test was run.)
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Table 3. RUN TIMES NORMALIZED BY D EC-10 RUN TIM E

# VAX CONVEX
1 3.0 0.80
2 4.0 0.78
3 4.6 0.85
4 [4.2] [0.76]

The actual entries in this table are less im portant than their trends with load factors. I believe 
the central points here are: (1). The CONVEX and DEC-10 react very similarly under loading, 
so that runtime ratios derived in Section III can be used for all practical load factors. (2). The 
runtime ratios between the VAX and DEC-10 are strongly affected by loading, such that under 
realistic load factors (greater than 3), the rough equivalency of these machines under a single job 
will become greater than a 2:1 ratio against the VAX.

V. DETAILED BREAKDOWN OF RUN TIMES

Different tasks run at different rates on the machines, and the ratios between run times are 
different between machines. This is presumably due to the differing mix of I/O  rates, CPU, and 
how much of each is required by each task. To assist in judging what tasks need to be optimised, 
I present in Table 4 the elapsed times, per task and per loading factor. In addition, for the AIPS 
tasks, the CPU times are also recorded. In all cases, the format is

CPU time/Elapsed time.
This breakdown is not easily gotten for the Dec-10, since the ‘CPU-time’ on this machine is a 

strong function of the loading. Rather than ‘compare apples with oranges’, I have opted for listing 
the elapsed run times for a single job on an empty machine.

Clearly, the tasks which should be looked at for optimization are LISTR (and/or TVFLG, see 
the next section), CALIB, PCAL, and perhaps CLCAL. After this, it clearly would be useful to 
attem pt improvement of FILLR and SPLIT (see Table 1 for comparison).

VI. THE AIPS TASK TVFLG

It will quickly be noted that the task LISTR dominates the run times. It is certainly wasteful 
to produce such extensive listing of data  when, in general, so little requires purging. Further, 
having the listings is only the beginning, as one must run column listings to actually find the times 
needing flagging. The user time required in these operations can be enormous.

The new task TVFLG will probably revolutionize this aspect of data processing. I believe that 
it will largely replace LISTR as the chief instrument for identification and purging of corrupted 
data. One must note, however, that although it is easier to use that LISTRs, it will not be any 
cheaper. To estimate the impact of TVFLG, I ran this task on the data on both the CONVEX 
and VAX. I did virtually no flagging, so the times reported are for making the BT map. The 
CPU/Elapsed times (multiplied by two, in order to account for both RR and LL polarizations, 
since TVFLG does only one at a time) are 620/750 for the CONVEX, and 2344/2800 for the VAX. 
Note tha t these are very comparable to the initial LISTR, with RMS’s. Use of TVFLG will also 
eliminate the need for column listings, but these take very little machine time, so their elimination 
will not affect the basic conclusions. I make here the obvious point that widespread use of TVFLG 
will require many more TVs.

So, for the purposes of estimation, we may replace the first LISTR in the procedure with 
TVFLG, with essentially no adjustment in runtime or CPU time. (Recall that I am not attem pting 
to estimate the ‘human time’ factor, which almost certainly will be improved with TVFLG).
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Table 4. CPU TIMES AND RUN TIMES FOR VARIOUS TASKS

AIPS DEC-10 VAX CONVEX Comments
TASK 1 job 2 jobs 1 job 2 jobs 3 jobs

DBCON - 523/637 535/1257 159/235 152/330 154/470 Unneeded in Dec-10
INDXR - 41/136 44/251 19/20 19/40 20/57 Unneeded in Dec-10
LISTR 3 3/9 9/16 1/5 1/5 1/6 Scan, summary listings
LISTR 815 1087/1219 1096/2365 348/494 308/620 312/948 Ampsc. amp&rms, No cal.
LISTR 14 82/132 88/233 28/44 28/60 28/84 Four scan-length column listings

UVFLG 18 2/7 2/11 1/2 1/2 1/3 Flagging part of one scan, all ant.
UVFLG 4 1/4 1/7 1/2 1/2 1/3 Flags all of one scan, one antenna
SETJY 2 3/10 3/12 1/1 1/1 1/1 Set flux of 3C286
CALIB 20 46/92 48/149 16/28 17/45 17/58 Solution of 3C286
LISTR 10 14/45 15/64 2/17 2/9 2/13 List solutions, Amp and phase
CLCAL 12 94/400 96/496 41/70 41/93 44/147 Apply above solutions, boxcar
LISTR 160 316/392 328/708 90/108 92/204 ? List calibrator amplitudes
SETJY 4 6/20 6/21 2/2 1/1 1/1 Set fluxes for 2 sources
CALIB 230 360/460 367/784 118/144 123/250 123/371 Solve for gains on all cals.
LISTR 18 55/116 57/148 17/32 14/36 14/45 List solutions for all cals.
CLCAL 23 87/375 90/468 40/65 48/109 51/162 Apply cals, 2-point interpolation
PCAL 154 496/859 503/1226 135/200 134/283 137/412 Solve for antenna polarization
LISTR 26 80/176 error 24/32 error error List R-L phases

CLCOR 20 28/112 30/127 12/14 12/25 13/37 Rotate R-L phases
LISTR 27 78/173 89/383 24/30 ? error Check R-L phases
LISTR 1709 3586/3949 3797/9346 792/896 782/1578 error Amps. avg. &rms, Cal. Applied



VII. AN A T T E M PT  TO PR ED ICT FU TURE COMPUTATION NEEDS

I have adopted the following method to estimate future CPU needs: Convert our current 
calibration effort into ‘equivalent Dec-10 units’. Then adjust by known or predicted factors to 
allow for expected changes in data flow, changes in calibration path and techniques, changes in 
code, etc. Finally convert to the hypothetical future calibration computer by the throughput 
ratios. Note that this method automatically accounts for the ‘inefficiency’ factor of inexperienced 
users, since we are using current usage of the Dec-10 as our benchmark.

The various factors I have considered are probably incomplete, and the values derived are 
certainly not beyond question. I list below these factors, and the considerations which figured in 
their estimation.
1. U sage o f  th e  D ec-10. To estimate that fraction of the Dec-lO’s CPU which currently goes to 
calibration, I monitored the total Dec-10 CPU usage over a typical 5-day period. Approximately 
60% of the available Dec-10 CPU time available was used. My estimate of the fraction of this 
which supports Dec-10 Calibration is 90% (others agree). Thus, we can state that close to 50% 
of the available CPU is used to calibrate data. This is a large fraction, and agrees well with all 
users’ impressions tha t the Dec-10 is essentially running at full capacity most of the time. It is 
essentially impossible to recover all, or even most, of the unused CPU time, as this would require 
rigid scheduling of when calibration could be done, as well as probably expanding the remote 
calibration group. I would expect the loading of any future calibration computer to be very similar 
to that experienced on the Dec-10 -  fully saturated during daytimes, mostly saturated in evenings, 
fairly empty at night. As pressure mounts, more calibration will naturally be done at night, but I 
doubt we could ever reach 100% usage, all the time. Probably half the unused CPU time could be 
recovered, leading to a factor of 0.75.
2. S p e c tra l L ine D a ta  (C u r re n t  D a ta  F low ). Most calibration of spectral line data is already 
done on the Dec-10. The im portant exceptions are the production of BT images, to allow editing, 
and the actual application of the determined gains. These tasks are done by the pipeline. The cost 
of producing a BT image on the Dec-10 should be similar to producing a LISTER, with rms. This 
process takes about 1/6 of the total run time, and since 1/3 of all observing time is in spectral 
line, the added cost of this operation is very small, perhaps 5% of the current load. Much more 
im portant is the effect of applying gains. Both antenna gains and passband gains must be applied. 
Were both of these to be done on the Dec-10, the programs SPECTR and EXP VIS would need 
to be run repeatedly -  a horrendously expensive route. I will instead presume the existence of a 
spectral-line EXPVIS, whose cost is proportional to data volume. Noting we are currently taking 
equal volumes of spectral line data as continuum, that applying the gains takes about 1/3 of the 
processing time, and doubling this factor to allow for passband calibration, leads to a factor of 
about 1.7. Because of other uncertainties in procedure (such as the probable future use of more 
complicated flagging routines to handle low-frequency spectral line), I feel a realistic estimate of 
this factor is 2.
3. T h e  E ffect o f  th e  N ew  M odcom ps. The effect of turning on the new MODCOMPs will 
clearly have a major effect on both data volume and CPU requirements. In spectral line, the 
volume of data  taken in this mode will greatly increase, potentially by 20-fold. Most programs 
will not utilize this explosive factor, however. Basic calibration (done on channel 0) will mainly 
be affected by the larger number of baselines. However, this portion of calibration takes a small 
fraction of the total CPU. Bandpass calibration will also be more expensive, since most of the data 
increase will be due to a larger number of channels. Bandpass calibration is about as expensive 
as antenna gain calibration so I expect the increased CPU requirements for this process also to be 
small. However, the effect of the data volume increase on CPU times to apply the derived gains 
and flags should be im portant. And, if editing on the basis of BTF cubes becomes common (which
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is quite likely at 327 MHz), there will be great increases in required CPU to support this too. We 
should also consider the possible non-linear factor which makes calibration more expensive with 
increased database size (due to I/O  considerations). My best guess is that calibration of future 
spectral line data  will require triple the current capacity.

The main effect of the new system on continuum observing will be to encourage a small 
fraction of programs to observe in polarization spectral line mode with a shorter time integration. 
The calibration of these types of programs will be very expensive, but fortunately, the total impact 
will be diluted by the small number of programs requiring (or requesting) this mode. I guess a 
doubling of current capacity will be required to handle increased continuum. Overall, I will use 3 
as the factor required to handle the increased data flow from the new Modcomps.
4. C ode  a n d  P ro c e d u ra l Im p ro v e m e n ts  As stated in Section III, improvements in both 
procedure and code are likely to increase throughput by a factor of 2. Perhaps greater factors are 
possible in the future, especially with regard to spectral line processing.
5. A t-H o m e  C a lib ra tio n  I don’t believe that there will be any great savings in the fact that 
most observers will be able to calibrate their data ‘at home’. Many of these users don’t have the 
resources, especially the disk space, to calibrate data. Many observers will opt to use our systems, 
where resident experts are around to help them out of their difficulties. (Travel costs are cheap 
compared to machine costs). And, I don’t believe there will be any significant reduction in remote 
calibration. Any time one offers a free service, with the results essentially guaranteed, there will 
be no lack of takers. My best estimate for this savings is 0.75. Optimists might prefer 0.5

I summarize these arguments in Table 5. Factor is defined as the rate by which data calibration 
throughput will be retarded by the listed consideration. The four factors are multiplied to arrive 
at the predicted product factor. This is then converted into needed CONVEXes and VAXes, using 
the ratios determined in Sections III and IV.

Table 5. SUMMARY OF DATA THROUGHPUT FACTORS AND CALIBRATION NEEDS

Consideration Factor
Dec-10 Usage 0.75
Spectral Line 2

New Modcomps 3
Code/Procedure Improvements 0.5

At-Home Calibration 0.75
Product Factor 2

Conversion to CONVEX 0.5
Needed CONVEXes 1
Conversion to VAX 3

Needed VAXes 6

The ‘bottom line’ is that one CONVEX C-l will be required to handle all our future calibration 
needs.
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