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Introduction

The VLA  system requires the transmission of 50 MHz bandwidth signals 

through up to 21 km of coaxial cable. The amplitude variation over this band must 

be under ± 0. 5 dB and the phase nonlinearity must be less than ± 10°. These re

quirements are made difficult because of the frequency variation of attenuation and 

time delay in coaxial cables. These dispersive effects can be minimized by the 

choice of modulation system and carrier frequency.

Three types of modulation systems are evaluated. These are single-side- 

band (SSB), double-sideband (DSB), and double-sideband quadrature (DSB-Q) modu

lation. Besides the dispersive effects evaluated here, the following considerations 

apply to the choice of modulation system:

1) SSB and DSB-Q require a transmission band equal to the modulation 

bandwidth (50 MHz) plus a guard band (/v-, 25 MHz). DSB requires twice this band

width.

2) SSB modulators and demodulators are more complex than those re

quired for the DSB and DSB-Q systems. In particular, frequencies close to DC are 

not easily modulated. A modulation frequency range of 8 to 50 MHz is feasible.

3) The delay lines connected to the output of the IF transmission system 

require a SSB signal in the 50 to 100 MHz band. The interface is more convenient 

with a SSB transmission system.

4) The DSB-Q system allows two DSB signals to be put in one frequency 

band by modulating on carriers which are in quadrature. The crosstalk problem 

will be investigated in this memorandum.

A DSB-Q will be analyzed first*, the other systems can then be analyzed by 

applying special conditions to this system.
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Analysis

Consider the system shown in Figure 1. The input of the dispersive trans

mission line is given by:

P P
cos a)Qt + g 008 + + 2 008

+ sin uQt + |  sin [(a>0 + a^t + 0] + |  sin [(wQ - a^t - 0]

where coQ and are the carrier and modulation frequencies and p, q , and 0  the 

amplitudes and relative phase of the in-phase and quadrature modulation signals.

(Note that the carrier of the quadrature signal must be 90° out of phase with the 

in-phase carrier but the phase, 0 , of the modulation signals can be arbitrary.)

The transmission line is a linear system with properties completely described 

by the amplitude and phase response at the three input frequencies:

CO CO +  CO CO -  CO0 0 1 0 1

Amplitude........ 1 a b

Phase .............  <p <p + a <P ~ P

The carrier is extracted at the output of the transmission line and after suit

able phase adjustment is used to product-detect the in-phase transmission line output 

signal. The result is;

g(t) = ap  cos (o> t + a ) + bp  cos (u^ t + 0)

+ a q sin (u^ t + a + 0 )  - b q  sin (a^ t + /3 + 0) (1)

This result is illustrated in the vector diagram of Figure 2. The first two terms 

are the desired signals arising from upper and lower sidebands of the modulated 

carrier; for an ideal transmission line they will be identical with a = 0 = w t.

The last two terms represent cross-talk; for an ideal transmission line they will 

be equal and opposite.
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The parameters we wish to evaluate are the crosstalk, the amplitude varia

tion with frequency, and the dispersion. The crosstalk is defined as the ratio of the 

amplitudes of the desired and undesired signals. In the case of a real transmission 

line the amplitude parameters (a and b) have a higher order effect than the phase 

parameters (a and f$) and the crosstalk is given by:

Some numerical results are given in the next section.

The amplitude variation and dispersion effects can be evaluated by solving for 

the amplitude and phase of the sum of the first two terms of Equation (1). That is, 

we wish to solve the following equation for c and y (we will assume p = 1):

The dispersion, € , will be defined as the departure of y from a linear function of 

frequency (Wj),

„  ___ a + b
R = 20 log --r

a - b
(2)

c cos (u^t + t) = a cos (a^t + a) + b cos (a^t +0) (3 )

€ (4)

where

a) = 0 ( 5)

The solution of (3) for c and y gives:

c = a2 + b? + 2 ab cos (a - /3) ( 6)

to - g)2
2 ( 7)

and

= -i (asing + b sing) 

(a cos a + b cos/3)
(8)

'"V, 01 + &
2

a - B (a - b)
2 (a + b) ( 9)
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The approximations in (7) and (9) assume oi - (3 «  1; they are valid for dispersion 

effects much less than a radian. The approximation in going from (8) to (9) is 

illustrated by the construction in Figure 3 and can also be proved with trigometric 

identities.

It is of interest to evaluate the above quantities for a lossy transmission line. 

At UHF frequencies the transfer function of the line is given by,

1/2-ju>T0 -  (1 + j)kco
H(a;) = e (10)

where t q = 1VT/J and k is a loss constant. The amplitude function is thus,

. 1/2
|H(o>)| = e~ (11)

and the phase function is,

1/2 <p{u) = coTq + kco (12)

The amplitudes (a, b, and c) and phases (qj , /S , and y) can be expressed in

terms of a normalized frequency, x = c^/a^, and the line loss in nepers at the

l/2
carrier frequency, p e ka>0 . These results are given in Table I. The dispersion 

is then given by,

€ = tanh BSL + J * .  (13
8 2 16 1 '

The quantities corresponding to c and y for a SSB system can easily be 

seen to be a and a for an upper sideband and b and 0 for the lower sideband system. 

The dispersion in a SSB system (upper sideband) is then,

_ _£2? + (14) 
SSB 8 16 ' ’

Thus for small values of px/2 (tanh px/2<^px/2) the DSB system has a factor of 

px/2 less dispersion while for large values of px/2 (tanh px/2^1) the dispersions

are equal.
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The amplitude variations which result in the DSB and SSB systems are 

plotted in Figure 4. The plot shows on a logarithmic scale the amplitude varia

tion as the modulation frequency is varied or, alternatively, the amplitude 

variation at a given as the cable attenuation is increased.

Numerical results for five different examples of cable diameter, cable 

length, and carrier frequency are presented in Table n .

Conclusions

The most surprising result is the very small value of phase nonlinearity 

with either modulation system. This is true even when the cable attenuation is 

very high and the amplitude variation with frequency is large. For example, 

cable No. 1 in Table n  has 547 dB attenuation at 1 GHz, 13.6 dB variation in 

attenuation over a 50 MHz band starting at 1 GHz, and yet the phase nonlinearity 

is 1° for either SSB or DSB modulation. This result arises because the addi

tional phase shift introduced by the cable loss (6 .6°/dB) is very nearly a linear 

function of frequency for small ratios of modulation to carrier frequencies. In the 

above example the 13.6 dB attenuation variation causes a 90° phase shift as the 

modulation frequency is increased from 0 to 50 MHz. However, this phase shift 

is a linear function of frequency to within 1° and has the effect of increasing the 

cable time delay by 5 ns.

The general point is that cable attenuation variation will be more trouble

some than phase nonlinearity. The phase shift and loss are the same functions

1/2
of frequency (i. e ., a f ). However, a linear attenuation variation is harmful; 

a linear phase shift is not.

The results show that there will be crosstalk between the in-phase and 

quadrature signals in the DSB-Q modulation technique if the sidebands do not 

have equal amplitude. One dB amplitude difference gives 24 dB crosstalk;

3 dB gives 16 dB. These figures are tolerable but not comfortable.

The comparison of DSB and SSB modulation systems indicates that the 

DSB system is more tolerant to cable attenuation variation and phase linearity. 

However, the difference becomes small for the very large cable attenuations 

which are necessary in the array. This is shown clearly in Examples No. 1

and No. 4 in Table n . This difference is not worth the factor of 2 greater band

width requirement.
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The DSB modulation system becomes extremely good for short 2 km) 

lengths of cable between modulator and demodulator. Note that a cascade of sec

tions, each consisting of DSB modulator-cable-DSB demodulator, achieves much 

better performance than one long section. Thus, 10 sections of the type of 

Example No. 2 would give 0.8 dB attenuation variation and 0.15° phase nonlinearity 

over a 21 km path with no equalization. This is approximately a factor of 10 better 

than the single 21 km cable of Example No. 1. However, alarge number of fairly 

complex demodulator-modulator repeaters would be required. In the case of SSB 

transmission the insertion of demodulator-modulator units in the transmission 

line does not improve the performance.

The results can be used to predict the accuracy required to equalize the 

transmission lines. For example, if the cable No. 4 in Table n  is used, the 

attenuation variation across a 50 MHz band is 56 dB with SSB modulation (50 dB 

with DSB); thus equalizers with 2 percent attenuation accuracy are required to 

meet a 1 dB specification. This high accuracy is undesirable for the following 

reasons:

1) The equalizer manufacture and adjustment become difficult.

2) The cable loss varies 2 percent for a 8 °C temperature 

change; thus the equalizers would have to be readjusted for seasonal changes.

3) It is desirable to be able to move antennas without changing 

equalizers. A move may require differences of up to 1 km in cable length to 

the first equalizer. This length of cable produces a 5 percent attenuation varia

tion change.

The cable described as Example No. 1 in Table n  has 13.6 dB amplitude 

variation with SSB transmission. This cable would require 7 percent equalizers 

which is more reasonable.



TABLE I - PARAMETERS OF  LOSSY TRANSMISSION LINE

1/2 attenuation at con in dB — 1
P = = --------- ---- x —
H ~ o 8.68 w0

0)

Exact Value Series Exoansion

a = amplitude transmission 

at o>0 + = amplitude of

SSB demodulated signal.

e-p(l + X)1/2

e 'p

2
e

b = amplitude transmission 

at
0 1

e*P(l * x)1/2 

e~p

e

a  =  phase shift at cdQ + 

minus phase shift at cjq .

1/2
W1T0 + p K1 + x) “ !]

_ . f i x . f i id . f i 2d .  
“ lT0 2 8 16 • • •

/3 = phase shift at minus

phase shift at co - or.
0 1

« tT0 + P [(1 - X )^ 2 - 1]

X NN 1 --

. f i x . e j d  + fiid.
“ l * 2 8 16 • • •

c = amplitude of demodulated 

signal.
1/2 l/2 

e-p( 1 + x) + e-p(l-x)

2 e " P

, £x 
cosh “

y =  phase of demodulated 

signal. (Too Complex)
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TABLE H - TRANSMISSION CHARACTERISTICS OF  UNEQUALIZED CABLES

WITH DSB AND SSB MODULATION

Parameter 1 2 3 4 5

Cable Diameter in. 1 5/8 1 5/8 7/8 7/8 1 5/8

Length km 21 2.1 1.0 21 5.1

0)
0

Carrier Frequency ^ 109 109 109 . 33 x 109 . 15 x 109

Attenuation at 

Carrier Frequency
547 54.7 36.0 756 47.0

Rejection of ^  

Quadrature Signal
0.7 16 20 0 3

Amplitude Variation 

across 50 MHz Band dB 

SSB Modulation

13.6 1.4 0.8 56 7.8

Amplitude Variation 

across 50 MHz Band dB 

DSB Modulation

8.0 • o 00 .04 50 3

Phase Nonlinearity 

SSB Modulation
1.12° .12° .07° 13.7° 4.3°

Phase Nonlinearity 

DSB Modulation
1.03° .015° .01° 13.7° 3.1°

Increase in Time p 

Delay Due to Loss
5 ns . 5 ns .33 ns 20. 7 ns 2.9 ns
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Figure 1 Block diagram of doubled-sideband quadrature modulation transmission system. Two signals* 
p and q, are transmitted thru a common frequency band by modulation on carriers which are 
in quadrature.



<<-/9

'jkf*

\
ORoAs n t <  

V C c n ^

/
/<=•

C/feS&rv^ 4 c t ° * C '8  * .* r r > t * / < *  
^tSSucnwr- O ^ o O c / M ^ ^  

*S/6V4<- C*/»TV/«cff“  C<?«»5T)>l<

Coo

Figure 2 — Vector diagram illustrating the output of a double-sideband quadrature 

modulation system. The demodulated voltage is the sum of vectors 

ap, bp, aq, and -bq. If the transmission line was lossless, then 

a = b and at =  p .
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Figure 3 — Vector diagram used to make approximation used in Equation (9).




