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Tolerances on the Phase and Amplitude Responses of the VLA Receiving System

This report concerns recommendations on the tolerable deviations 

of the response of the RF and IF components of the receiving system from 

an ideal rectangular bandpass with identical phase character)'stics for all 

channels. Two forms of amplitude deviation are considered, a slope and 

sinusoidal ripple. The effects of such deviations are considered in terms 

of the degradation of the output signal-to-noise ratio and the errors in

troduced into the fringe visibility values if the response is not constant.

1. The Amplitude Response

transfer functions of the two receiving channels connected to a multiplier. 

The moduli of these functions, A(f) and B(f), will be referred to as the 

amplitude responses. The signal output at the peak of a fringe when the 

correlated components are in phase is proportional to the modulus of

For convenience we consider the amplitude and phase effects separately, and 

for the former will assume that the phase responses are identical in which 

case the exponential factor is unity.

A. Degradation of Sifrnal-to-Noise Ratio

Let A(f) e and B(f) e be the complex voltage

o



VLA Electronics Memo #107 -2-

The spectrum of the noise in a multiplier output is of the same form 

as that of a square law detector which is equal to the autocorrelation of the 

power spectral densities of the two channels (see, for example, Bracewell, 1962). 

Since we are concerned only with output noise near zero frequency the power 

per unit bandwidth is proportional to

I A2(f) B2(f) df

J 0

The ratio of the peak signal to the rms noise at the multiplier output is 

therefore proportional to

A(f) B(f) df

Jo

•j j I  A2(f) B2(f) df

We can now define a degradation factor D which is the ratio of the peak

signal to rms noise for an arbitrary response with limits f, and f0 divided
\ * ^

by the same ratio for a uniform response covering the same bandwidth;

ff 2
D = A2(f) B2(f) dfA(f) B(fJ J  (fg-f^

This is equal to the ratio of the mean to the rms value of A(f) B(f) and has 

a maximum of unity when A(f) B(f) is a rectangular function.

(D
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B. Effects on the ALC System

It is important to consider also the ability of the ALC

system to compensate for variations in the amplitude responses. Suppose that 

the ALC loops hold constant the rms amplitude levels at the inputs to the 

multiplier. The output signal voltage is then proportional to

This expression is unity if A(f) and B(f) are identical or differ only by 

a constant gain factor. If both responses are initially rectangular but 

A(f) then changes, the multiplier output changes by a factor F given by

which happens to be the same as the expression for D when B(f) is rectangular.

If the response varies more frequenctly than observations of calibration sources 

are made a corresponding error may be made in the measurement of visibility 

amplitude.

C. Gain Slope Across the Pass band

Consider the case where the response measured in dB is a 

linear function of frequency,

where C-j is a constant related to a, the difference in the decibel response 

at the band edges, by

rf,

f

2
A(f) B(f) df

rf.

f

2
A2(f) df x

f.
2
B2(f) df

( 2)

o 2  ^
A (f) = A2q e 1
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C l ^ 2 ~ ^ V  = 06 x  ^  ^ l O  e = a

Let D1 be the degradation in sensitivity when only A(f) has the sloping re

sponse and B(f) is constant across the band, and let D2 be the degradation

when both channels have identical slopes. Substitution in equation (1) then 

gives

Plots of D-j and D2 as functions of a are given in Figure 1

It may also be useful to consider the case where the decibel attenuation 

is proportional to /”f since this approximates the differential attenuation 

of a long cable. The results are more cumbersome than (3) and (4) but are 

recorded here for possible future reference:

(3)

and

(4)
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D. Sinusoidal Amplitude Ripple

Another amplitude response likely to be encountered is a 

sinusoidal ripple which we represent by

A(f) = Aq (1 + y cos 2tr nf) fl<f<f2

For simplicity we assume that there are an integral number of ripple cycles 

across the passband, i.e., n / ^  - f-j) is an integer. With this last con

dition the integrals in (1) are independent of the number of ripple cycles. 

If the ripples occur on one channel only we obtain
r l  \

(1 + Y cos 2irf) df i 9

D-j = F = rf---------------- --------  = r = T =  * 1 - Y / 4 .I! o J 1 + Y /2Q (1 + y COS 27rf)̂  df

and if both channels have identical ripples

2 +
(1 + y cos 2irf)̂  df 

D2 = J.° -  . . = .______* + ^  (6)

\/P (1 + y cos 2*f)4 df + | Y4

Plots of D-j and D2  as functions of y are given in Figure 2.

2. The Phase Response

The phase response of a receiving channel does not affect the 

rms noise level at the multiplier output or the action of an ALC loop, and it 

is necessary to consider only the effect on the fringe amplitude. The differ

ential phase response is
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The linear first term on the right-hand side represents a time delay which 

can be eliminated by correct adjustment of the delay system. The second 

term represents a calibratable phase offset which, assuming rectangular 

amplitude responses, is equal to the mean differential phase across the band. 

Only the third term should affect the fringe amplitude which, for rectangular 

amplitude responses, is proportional to the modulus of

^  J * a b w  d fe at

If <j>fln is small this becomes
HAB

-f,_

[1 - j *2 (f)] df + r
2

f1 AB

f2
^ ( f )  df

T1

The first integral is (f2 - f-j) (1 - ^  <<*>ab>  ̂w^ere <<*>AB> 1S mean sc*uare 

value of <j>̂B and the second integral is zero since <j>̂g has zero mean. The 

fractional loss in signal amplitude compared to the ideal case of <J>AB= 0 

is < ^ > .  In the case of the VLA where there are many receiving channels 

the tolerable phase response of any one of them must be specified in terms 

of the root-mean-square of the phase response after we have subtracted from 

it, first the mean response of all of the channels, second, any linear term 

that can be eliminated by delay adjustment, and third the mean phase offset. 

Call this result 4>p̂|ŝs* ^  remal’n,*n9 P^ase deviations for any two channels

connected to a multiplier combine randomly the fractional decrease in

. . . 2 
sensitivity resulting from the phase variations is
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3. Reflection in a Transmission Line

A reflection in a transmission line introduces sinusoidal terms 

into the amplitude and phase responses, and its effect on the signal-to-noise 

ratio can be determined by two different approaches which it is instructive to 

compare. The reflection causes a small component of the signal to suffer a 

delay x relative to the main component so the total signal amplitude as measured 

with a swept signal generator has the form

A(f) = Aq (1 + y cos 2Trfx)

and the number of ripples cycles across the passband is (f2 - f^x. The mean

1 ^
squared value of the sinusoidal phase term is . If the reflection occurs

in one channel only the sensitivity is reduced by a factor 1 - -J-y2 • from the

amplitude effect (equation 5) and 1 - -Jy from the phase effect. The com-

1 2
bined degradation factor is therefore 1 - ^y .

As an alternative approach we can say that the reflected component 

will not contribute to the fringes in the multiplier output if it is suf

ficiently delayed to become substantially decorrelated. For noise with a 

rectangular power spectrum the autocorrelation function is sin ttt (f2 - f-j)/ 

ttt (f2  " f-j) which has its first minimum when t is the reciprocal of 

the bandwidth. Thus when t is large enough to produce more than one complete 

ripple cycle across the band the correlation of the reflected component cannot 

exceed 0.13, and it is zero if there are an integral number of cycles across 

the band. The unreflected main component does not have the ripples in its 

spectrum, but the reflection causes a loss in sensitivity because the power in
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the main component is reduced by a factor 1 - y and the fringe amplitude

/ 2 1 2 .  
by a factor / 1 - y * I - ^ y  whilst the noise level in the output is

unaffected. This result is the same as obtained in the previous paragraph.

A consideration of the power lost in the reflected components in the

case where both channels contain a reflection shows that the signal resulting

from the main component is decreased by a factor 1 - y2 . In addition, if

the reflected components suffer equal delays they will produce an output signal

2
proportional to y , which could in principle add in phase with the main- 

component fringes. Unless the delays caused by the two reflections happen to 

be very close, however, it is more likely that the contribution of the delayed 

components will combine with the main fringes in some random phase, or be lost 

altogether if the delay difference is of the order of (f2 -

Note that sinusoidal amplitude ripples resulting from effects other 

than reflections, for example from stagger-tuned circuits, also give rise to 

signal components with differing time delays (see, for example, Goldman, 1954).

4. Proposed Tolerances

As basic figures let us consider the maximum tolerable loss in 

signal-to-noise ratio to be 5% and the maximum tolerable error in the measured 

visibility resulting from variation in the response to be about 2%. If the 

amplitude and phase responses contribute equally to the loss in sensitivity 

the maximum tolerable degradation is 2-1/2% in each case.

For the linear decibel response where the same slope occurs in 

both channels a 2-1/2% loss corresponds to a difference of 3.5 dB at the band 

edges. For a sinusoidal ripple in both channels the corresponding loss occurs

2
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for y = 0.165 which is a peak-to-peak ripple of 2.9 dB. In both these cases 

the factor F is less than 1% at the same limits. A total variation not 

exceeding 3.0 dB across the band is therefore a satisfactory amplitude 

specification.

A 2-1/2% loss resulting from phase variations corresponds to a mean 

square contribution from each channel of 0.025 or an rms contribution of 9°.

A variation of the phase response from zero to 9° rms could result in a 

2-1/2% error in the measurement of fringe visibility which is about the 

tolerable limit.

The above results suggest specifications of 3.0 dB and 9° on the 

total response in a receiving channel from the antenna to the multiplier 

input. The components most likely to introduce unwanted characteristics are 

those in the waveguide transmission subsystem and the analog delay subsystem 

(if it is used). If the combined effects of two such subsystems are to re

main within the overall specification we must specify for either one of them 

a maximum amplitude variation of 1.5 dB and a maximum contribution to the rms 

phase deviation of 6.4°. The initial specification for the delay lines 

(July 31, 1972) includes both a fixed and a variable phase error. It is 

suggested that an overall specification of 6.4° rms for the combination of 

these two effects be adopted.
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