NATIONAL RADIO ASTRONOMY OBSERVATORY

Charlottesville, Virginia

VLA Electronics Memorandum No. 127

VLA STAND-ALONE COMPUTER CONTROL

Joseph Greenberg

November 1974

VLA STAND-ALONE COMPUTER CONTROL

TABLE OF CONTENTS

Page
Introduction 1
Operating Instructions 1
Trouble Shooting 2
Logic Description 2
Card 1 Control 3
Card 2 Input Multiplexing 10
Card 3 Command Board and Card 4 Monitor Board 14
Program Explanation 17
Program Block Diagram 18
Program Block Locations 21
Subroutine 680 Flow-Chart 22
Program Listing 24
Constant Storage 31
Sidereal Time Program 36
Alt-Az Scanning Version of Program 37
Fast Version of Program 40
Card Wiring Lists 43
Cable Wiring Lists 47

INTRODUCTION

A Hewlett Packard 9810A calculator is used as the stand-alone control of the VLA-Two Antenna Prototype. Upon pushing the "Position Command Update" switch, a right ascension and declination are read in from the digiswitches. Using the time from a sidereal clock, the coordinate conversion is made with azimuth and elevation, binary commands given every half second.

Also, the azimuth and elevation are read from the 'Antenna Control Test Unit' and the reverse calculation made. The actual right ascension, declination, and hour angle are output to light-emitting diode displays. The calculations include corrections for refraction. The remaining display is the local sidereal time from the digital clock.

OPERATING INSTRUCTIONS

To load the program and constants, press the two calculator keys FMT, GO TO, starting the card-reader motor To load a card, insert it into the upper slot of the card reader, oriented with the card-side to be used pointing downward. Load first, sides one and two of the program card. Press CONTINUE and load sides one and two of the constant card. The card-reader motor should then stop.

The display will now flash and the "Position Command Out of Limits" L.E.D. will come on. Dial in the r.a. and dec. of the source on the digiswitches. Depress the "Position Command Update" switch. The L.E.D. will flash. In about three seconds, the system will be tracking. The actual r.a., dec., and hour angle to which the telescope is pointed can be seen on the displays.

Dialing in an illegal r.a. and dec. will cause the "Position Command Out of Limits" L.E.D. to come on. The system will go into stand-by mode, waiting for the "Update" switch to be pushed. This can be used to halt the telescope at the last position command. The following conditions are illegal:

Having a declination greater than 90 or less than -90°. Having a source whose position is less than the minimum altitude specified on the constant card.

If the system is tracking a source which goes below the minimum altitude, the system will go into stand-by mode, and the "Position Command Out of Limits" L.E.D. will come on. The corrective action in all cases is to change the r.a. and dec. command to a legal value, then depress the "Update" switch.

TROUBLE SHOOTING
If the system refuses to operate, key the following sequence on the calculator: STOP, END, CONTINUE, (the card-reader motor will come on, so make sure there is no card in the slot), CONTINUE, STOP, CONTINUE. The system should now track upon pushing the "Update" switch If this does not help, turn off the calculator for a few seconds, then reload the program and data.

Changing steps ll06-1107 to 23 from 15 will have the tracking program do the Alt-Az to r.a., dec., and h.a. calculation using the Position Command instead of the Monitor Word. This simulates the telescope tracking a source.

LOGIC DESCRIPTION
The logic necessary to interface the calculator is contained on four wirewrap boards. Boards numbers one and two are located in the "Stand-Alone Computer Control" chassis. Boards three and four are located in the "Antenna Control Test Unit". They are labeled boards B and D, respectively.

The "Stand-Alone Computer Control" box is connected to the calculator by cable J-1 to the "Antenna Control Test Unit" box by cable J-2.

Refer to the block diagram of all four boards and the individual board schematics as an aid to understanding.

On the schematics, when a card output pin gets connected to another card, a number such as $4-22$ is next to the pin: 4 refers to card 4 and 22 refers to pin 22.

The calculator is interfaced with the logic via an HP 11202A I/O TTL Interface. For a full description of the interface refer to the 11202A I/O TTL Interface Service Manual.

CARD 1 CONTROL

Board 1 contains the basic timing logic of the system. The "Control" line from the calculator is received by a resistor-capacitor filter and a Schmitt trigger. This was necessary to eliminate noise problems and also provide a delay. The resistor pull-up is necessary since the calculator outputs are open collector. A high to low transition of "Control" indicates the calculator is ready for input or output.

The "Flag" line gives control back to the calculator when returned in a low state. During output, it signals that the data has been accepted. During input, it tells the calculator the data is ready.

The signal from the Schmitt trigger, through two gates, is the clock. The Clock is reinverted and passes through an RC filter for a delay. This signal is received as the "Flag" by a shmitt trigger in the 11202A Interface. The "Flag" is acknowledged by "Control" returning high (see timing diagram).

During an output operation, "Control" goes low eight times. During each cycle, one bit is output from each of the eight output lines; thus, a number from

the x-register is output in a sixty-four bit block. The present system allows the input-output operations to occur as rapidly as possible.

One Shot Two (OS2) triggers on the positive edge of the clock for a twenty micro-second pulse. During output, the data comes on line five microseconds before control goes low and remains until control goes high. Since the "Flag" is delayed by the RC following the clock, "Control" going high is delayed by much more than twenty micro-seconds. Thus, the data is on line during the entire high time of OS2, making it a convenient strobe (see timing diagram). The number $-1.23456789012 \times 10^{12}$ would be output in a sixty-four bit block as follows:

$-1.23456789012 \times 10^{12}$								Each row represents one cycle. Each column
'128'	'64'	'32'	'16'	'8'	'4'	' ${ }^{\prime}$ '	'1]'	
0	0	0	0	1	1	0	0	
0	0	0	0	0	0	0	1	
0	0	0	1	0	0	1	0	represents one output
0	0	1	1	0	1	0	0	wire as identified at
0	1	0	1	0	1	1	0	the bottom by
0	1	1	1	1	0	0	0	.
1	0	0	1	0	0	0	0	Note it is the resistor
0	0	0	1	0	0	1	0	color code from right
'8'	'4'	'2'	'1'	'8'	'4'	'2'	'1'	to left. The first
v	B	G	Y	-	R	Br	Bl	row output is the exponent in binary.

Negative exponents are represented by two's compliment. The second row represents the sign. A "+" is all zeros. The last six rows represent, in order, the twelve digits of the number in $B C D$, two digits per row.

The output lines have been inverted to get them in positive logic.

OSl triggers on the positive edge of the Clock. It has a period about nine times the cycle rate. Since it is retriggerable, it stays high until about three milliseconds after the last cycle.

The 16 and 8 bits of the exponent specify the output device. The two flip flops in $3 C$ store this output address. Due to the RC delay there is a time lag from when CTL goes low to when OSl goes high. The NOR of $2 \mathrm{D}-13$ provides the address strobe pulse at the beginning of the output when CTL and OSl are both low. This address goes to the demultiplexer in position 2C. An exponent of 0 to 7 indicates the hour angle output. Eight to fifteen indicates the right ascension and declination. Sixteen to thrity-one indicates the Position Command Output. Since the exponent is output first, the logic is positioned to the correct address before the significant data is output.

Since the displays have memory, the data is demultiplexed to them so that sixteen wires can transmit sixty-four bits. Eight wires are the eight output lines. Each of the other eight wires represents a row in the sixty-four bit block and goes low during the time the row is on line. To provide these strobes, an octal counter clocks on the negative edge of the clock (see timing diagram). The count is then fed to a one of eight demultiplexer to provide the strobes to the display digits. OSl is used to reset the counter to zero after each inputoutput operation. The display wiring can be seen on page 14 of NRAO Electronics Division Internal Report \#128.

OS2 is fed to the one of four demultiplexer in position 2 C as a strobe for the data. From there, it goes to the appropriate one-of-eight demultiplexer. The right ascension and declination are output as the twelve digits and sign of one, sixty-four block. The hour angle is output as the third through eighth digits of a separate block. An address for the Input Multiplexing is output
as the 4 and 2 bits of first digit of the same block. This number is stored in the D flip-flops of position 3F. The "Position Comand Out of Limits" light is activated by the 80 hr . bit of the hour angle.

The $1 / O$ line goes high for an input operation and low for an output. It is inverted and used to inhibit OS2 during input operations. This prevents the output devices from having garbage stobed into them during an input operation.

The "Encoder Protect" signal goes low when the calculator is in input mode, the input multiplexer is set to the "Monitor Word Input Port", and OSl is low. (i.e. When the Monitor Word is being input.)

The Position Command must be shifted into its shift-registers when they are not being read. The Antenna Control Test Unit supplies a five micro-second positive pulse every ten milli-seconds. When the pulse is not on, the data may be shifted in. If the output address is set to the Position Command and the I/O line is low for output, the NOR of 2 D 4 goes high. The inverted output of flipflop $3 D 5$ will be high from the clocking action of the trailing edge of the previous firing of $\overline{O S l}$. NAND $3 E l l$ gates these to give a low to the input of NAND lG3. (See the Position Command Output Timing Diagram, page 9.) Thus lG3 remains high even though Control has gone low, so the calculator waits. The five microsecond pulse is gated so as not to act when control is high.

When Control is low, the pulse then sets FF 3D5. This drives NAND 3Ell high and allows the Flag command through. The trailing edge of OS2 clocks the shift registers.

I/O is gated with the Clock to provide a distinct clock for input operations. This is necessary because the Monitor Word is asynchronously loaded into shift registers. An output operation, preceding the input, would shift out the data if the clock were not inhibited. The LST input data shares this clock because it is updated

TIMING DIAGRAM

POSITION COMMAND OUTPUT TIMING DIAGRAM

OS2

at a 10 kHz rate, so has time to recover. The digiswitches and Monitor Word each need another gate for the exclusive use of a clock. On the digiswitches, this prevents the "Position Command Update" switch from being reset before the digiswitches have been read. Since the Monitor is updated at 20 Hz , sharing a clock could cause the data to be wiped out, then read, before it is reupdated. The "Digiswitch Clock", "Monitor Clock", and the "Encoder Protect" derive their signals by appropriate gating with the address flip-flops of the Input Multiplexing.

FF 2A9 freezes the clock display when low. The clock still keeps the correct time. The display can be frozen by the front panel pushbutton or by the plug-in extension pushbutton. There is a Restart button on the front panel, also.

A Carigella Standard-Time Recelver is used to receive WWV. A suitable antenna should be provided. WWV provides a $5 \mathrm{mlllisecond}, 1000 \mathrm{~Hz}$ pulse every second and a 0.8 second, 1000 Hz pulse at the beginning of each minute. The one minute pulse is used to freeze the display.

The receiver audio output goes into a 1000 Hz tuned amplifier. The amplifier output is rectified and goes into a 50 millisecond RC filter, then a Schmitt Trigger. This filters out the 5 ms . second pulses. The digital signal clocks the flip-flop and freezes the display. The front panel amplifier gain control should be used in conjunction with the volume control to set the triggering level.

CARD 2 - INPUT MULTIPLEXING
There are two input modes used in the sytem. The right ascension and declination digiswitches are input in one, sixty-four bit block of the same format as the output block.

The digiswitches are wired as shown on page 17 of Electronics Division Internal Report \#128. The 40 hour bit is permanently on as a placeholder. A multiplexing scheme is used analogous to that in outputing. Note that the "Digiswitch clock" to the "Digiswitch Strobe Demultiplexer" on Card 2 corresponds to $\overline{\mathrm{Clock}}$ on the earlier timing diagram. Data is taken on the rising edge of Control which falls inside the strobe. Diodes on the digiswitches are necessary to eliminate undesirable current paths. The 8820, dual-line receivers provide the level shifting which corrects for the voltage drop across the diodes.

The input multiplexing addresses given from Card 1 are as follows: 00 is the Local Sidereal Time; 01 is the Monitor Word; 10 is the digiswitches. The multiplexers output into the calculator input lines in negative logic

Card 2 also contains the CMOS Local Sidereal Time digital clock. It is powered by a lead-acid battery with a float charger. Leave the charger plugged in at all times. If this is not possible, turn OFF the clock, then recharge the battery every six months. The clock will remain running for about six days after a power failure. A 2.628617 MHz oscillator is divided by 2^{18} to give a tenth sidereal second or 10.027379 Hz clock. This is divided to hours, minutes, seconds, and tenth seconds. Note the 74 Cl 62 has synchronous clear while the 74 Cl 60 has an asynchronous clear.

The seven switches under the clock add to the digits by delivering an extra pulse to the respective counter. Note that carrying is still in effect. Caution should be exercised in using the 10 hours switch since it is possible to increment to 28 or more hours if the resetting 24 hours is skipped. The Subtract One Second Switch causes the second counter to be disabled during one of its pulses. This switch should not be depressed more than once per second.

The L.S.T. Display chips are strobed on the positive edge of the 10 kHz signal by a one shot. Counting occurs on the negative edges. The buffers provide the necessary drive power for TTL. Inhibiting the one-shot freezes the display.

The time is input in the following matrix:

	1	2	3	4	5	6	7	8	
1	0	0	1	1	0	0	-	2	
2	0	0	1	1	-	-	-	3	
3	0	0	1	0	1	1	0	0	UP
4	0	0	1	1	0	-	-	5	
5	0	0	1	1	-	-	-	9	
6	0	0	1	0	1	1	0	0	UP
7	0	0	1	1	0	-	-	5	
8	0	0	1	1	-	-	-	9	
9	0	0	1	0	1	1	1	0	
10	0	0	1	1	-	-	-	9	
11	0	0	1	1	1	1	1	1	END
	v	B	G	Y	0	R	Br	B1	

The first three columns are hardwired at the Input Multiplexer. The last five columns represent shift registers outputing to the Input Multiplexer. The last rows are gained by tying one-half of a 7496 shift register in each of the columns.

The first and second, fourth and fifth, and the seventh through tenth rows input the hours, minutes, and seconds, respectively. The third and fifth rows perform and "up" operation. The ninth row is a decimal point. The eleventh row is the terminator. The end result is the hours, minutes, and seconds in the z, y, and x registers.

The shift registers are loaded on the rising edge of a 10 kHz signal from the digital clock. The loading is inhibited when OSl from card 1 is high. This prevents the shift registers from being loaded while they are shifting. The calculator takes the data when control goes high. After the RC delay, Clock goes high and new data is shifted to the input lines.

CARD 3 - COMMAND BOARD AND CARD 4 - MONITOR BOARD

The Position Command is output and the Monitor Word is input in the following 64-bit block:

STORAGE REGISTER	128	64	32	16	8	4	2	1
7	X	X	X	1	0	X	X	X
\int^{6}	0	MSB	20	19	18	17	16	15
AZIMUTH $\left\{\begin{array}{l}5 \\ 4\end{array}\right.$	0	14	13	12	11	10	9	8
	0	7	6	5	4	3	2	LSB
$\text { ELEVATION }\left\{\begin{array}{l} 3 \\ 2 \\ 1 \end{array}\right.$	0	0	MSB	19	18	17	16	15
	0	14	13	12	11	10	9	8
	0	7	6	5	4	3	2	LSB
0	X	X	X	X	X	X	X	X
	V	B	G	Y	0	R	BR	BLK
MONITOR WORD								
CHIP POSITIONS		4-1D	4-1A	4-1B	4-1C	3-1A	3-1B	3-1C
POSITION COMMAND								
CHIP POSITIONS		3-3D	4-2G	4-2F	4-3E	3-2G	$3-2 F$	$3-3 \mathrm{~F}$

Note that the upper-left of the schematic contains the logic that is identical on both boards. That is columns 1, 2, and 4 of Card 3 or columns 8, 16, and 32 of Card 4. Board 3 also contains the Position Command, 128 column, while Board 4 contains the Monitor 128 column.

The Position Command is shifted into 74164 shift registers. The 7406 's invert the output and are open-collector so they can be wire-ored. The Calculator Inhibit line when grounded clears all the shift registers. This gives all ones on the open-collectors.

A five micro-second pulse from the Antenna Control Test Unit every 10 ms. delays the calculator until it is safe to read the Position Command, as explained in the logic of Card l. NAND 2D8 on Card 4 gates this pulse with the Calculator Inhibit signal so that the calculator is not delayed if the the Calculator Position Command is inhibited.

The negative edge of a 20 Hz signal from the Antenna Control Test Unit fires the one-shot on Card 3, which loads the Monitor Word into 74165 shift-registers. The one-shot is not fired when the Encoder Protect signal is low. This prevents the shift registers from being loaded while the data is being shifted out.

The commands 3 FMT 42 XTO sets the input address to the Monitor Word. Then FMT 32 XFR UP FMT $6 \mathrm{x}^{2}$ inputs the Monitor Word and places the decimal equivalent of each row into the storage register indicated on the chart.

Having 16 in register 7 gives the 64 -bit block the equivalent of an exponent of 16 to set the output address to the Position Command. Keying FMT $61 / \mathrm{x}$ DN FMT 42 XTO converts the binary equivalent of the numbers stored in registers 0-7 into a 64-bit block and outputs it as the Position Command.

The Position Command is output in positive logic. The Monitor Word is input in negative logic.

PROGRAM EXPLANATION

The program is made up of several subroutines organized as shown in the block diagram. An explanation of the block diagram follows. Finally, there is a listing of the program steps showing the effects on the three display registers. Also included is an address list of the constants.

On the block diagram, the corresponding step numbers are to the left of each block.

Definitions:

Hour Angle - The angle, in hours, centered at the pole, from the zenith to the source. Positive 0-12 hours is to the west. Negative 0-12 hours is to the east.

Right Ascension - Sidereal time minus the hour angle. 0 to 24 hours.
Declination - Angle from the celestial equator to the source. Positive to the north. $+90^{\circ}$ to -90°.

The first thing the program does is call for the data card to be input.
The initialization sets up the logic to the proper addresses.
The time is next read continuously in a loop. The "Update" button being pushed adds 40 hours to the time and allows exit from the lop. The digiswitch twelve digits have been input into one register and now have to be decoded into the decimal r.a. and a decimal dec.

If the absolute value of the declination is greater than ninety, the "Position Command Out of Limits" light is activated and the time continuously read again.

The "Initial Calculations" consist of terms that need to only be calculated once for a given r.a. and dec.

The local sidereal time is input again. Subroutines 17 and 91 calculate an Altitude-Azimuth Command from the r.a., dec., and time. Subroutine 1434 adds constant

PROGRAM BLOCK DIAGRAM
offsets and also a term to the altitude to counteract refraction. The Alt-Az command is stored to be later used as an initial value to interpolate from. This concludes the starting sequence.

The Main Loop starts by recalling the altitude and checking to see if it is below the lower limit specified on the data card. If so, the "Position Command Out of Limits" light is activated and the time continuously read.

If the altitude is legal, the local sidereal time is input and stored. If the time is greater than 30 hours, the UPDATE switch has been pushed and the program branches back to the Decode Digiswitch section. If not, Subroutine 17 does the first half of the Right Ascension-Declination to Altitude-Azimuth Command calculation.

The Position Command and Hour Angle are output four times per cycle of the Main Loop. These outputs are evenly spaced and are numbered 0-3.

The first operation in Output Block 3 is to recall Altitude 3. Subroutine 115 then converts Alt. 3 to a three digit, base 128 number. Azimuth 3 is similarly recalled. Subroutine 150 converts it to a three digit, base 128 number, then converts the entire position command to binary and outputs it in a sixty-four bit block. Hour Angle 3 is recalled and converted to hours, minates, and seconds. It is output along with the Position Readout's input address.

Subroutine 215 inputs the Altitude and Azimuth Monitor word in binary and converts them to decimal. Offsets are subtracted and the values stored.

Now, Subroutine 91 completes the second half of the R.A.-Dec. to Alt. -Az. Command calculation.

Subroutine 1434 adds constant offsets stored in registers 54 and 55 to the altitude and azimath commands. $360 / 2^{21}$ was added to each of these to facilitate rounding off. A variable refraction correction is then added to the altitude.

To the Azimuth offset in 54 , also add -60° if the scope is on the southwest leg, -119° for the southeast leg, or -180° for the north leg. The total offset must be between -269° and $+90^{\circ}$.

Subroutine 680 interpolates the Alt. Az. Command to give the four values per cycle. The Subroutine also determines the state of the most significant bit of the Azimuth Command. A fuller explanation will later be given.

Output Block 0 outputs Alt. $0, \mathrm{Az} .0$, and H.A. 0 in the same format as Output Block 3.

Subroutine 1313 is the first half of the Alt. -Az. Position to R.A., Dec., and H.A. Readouts calculation. Output 1 follows. Subroutine 1393 finishes the Alt. -Az . Positions to R.A., Dec., and H.A. Readouts calculation.

Subroutine 605 places the R.A. and Dec. Readouts in the format of a sixty-four bit block in hours, minutes, and seconds, and outputs them to the displays. Subroutine 322 interpolates the hour angle positions and stores values 0-3.

Output 2 is the same as previous outputs with the local sidereal time specified as the next input.

The program now cycles back to the beginning of the main loop.
In Electronics Division Internal Report No. 128, "45-Foot Stand-Alone Computer Control", the flow chart of $S / R 23$ applies to $S / R 17$ in this report. Likewise $S / R 78$ applies to $S / R 91$ here, $S / R 94$ to $S / R 1313, S / R 189$ (from step 203 down) to $S / R 1393$, $S / R 323$ to $S / R 322, S / R 605$ to $S / R 605$ here, and $S / R 1434$ to $S / R 1434$.

The subroutines may be used independently also. First press END to clear any subroutine return addresses. To use a subroutine, GO TO the beginning of it, then press CONTINUE.

Examples:

To output a binary Position Command given one in degrees, using Subroutines
115 and 150:

```
Key - GO TO LBL 1 (enter elevation) CONTINUE GO TO LBL 2 (enter Azimuth) CONTINUE
```

To input the Monitor Word in degrees:
Key - GO TO 0215 CONTINUE. The Altitude will now be in Z and the Azimuth in Y.

STEP NUMBERS	BLOCK NAME
0000-0002	Go to Start Sequence
0003-0011	Part of Subroutine 91
0017-0084	Subroutine 17 - First Half R.A.-Dec. to Alt.-Az. Command
0091-0109	Subroutine 91 - Second Half R.A.-Dec. to Alt. -Az. Command
0115-0142	Subroutine 115 - Altitude to Binary
0150-0185	Subroutine 150 - Azimuth to Binary and Alt.-Az. Command Output
0190-0206	Redefining the Latitude
0215-0260	Subroutine 215 - Input 'Monitor Word', Convert to Decimal
0270-0307	Subroutine 270 - Hour Angle Output specifying Local Sideral Time as next input
0322-0444	Subroutine 322 - Interpolating the Hour Angle
0454-0600	First Half Start Sequence
0605-0665	Subroutine 605 - R.A. and Dec. Output to displays
0680-0756	Subroutine 680 - Interpolate the Alt.-Az. Commands
0942-1031	Second Half Start Sequence
1032-1263	Main Loop
1266-1305	Subroutine 1266 - Hour Angle Output specifying Position Readout as next input
1313-1372	Subroutine 1313 - First Half Alt.-Az. Position to R.A., Dec., and H.A. Readouts
1393-1424	Subroutine 1393 - Second Half Alt.-Az. Position to R.A., Dec... and H.A. Readouts
1434-1587	Subroutine 1434 - Pointing Corrections
1588	End

The spaces between blocks are empty.

S/R 680 INTERPOLATE THE ALT-AZ COMMANDS -
EXPLANATION OF THE FOLLOWING FLOW CHART

The subroutine starts out with a straightforward interpolation of the Altitude command.

The Azimuth Command is to go from 90° to 630° as shown above. This assumes the telescope can rotate 270 degrees to either side of 360 degrees. Note: It takes a command of 300° to point due north due to the 60° offset. In the start sequence, at step 1013, 360 degrees is added to the azimuth if it is less than 91 degrees. This has the effect of always starting a source tracking on the CCW portion of the above spiral. If a source had an azimuth of 90 degrees it would start at 450 degrees on the spiral. It could not run into the counter-clockwise limit of 90 degrees, since, in the northern latitudes, sources in the south track only from east to west.

If statement 706 prevents an impossible Azimuth of less than 91 degrees. An imaginary switch, located at 360 degrees, is used to keep track of which arm of the spiral the scope is located. A physical switch is not needed since the source always starts on the counter-clockwise rotation of the spiral, as defined by the initialization process. This unambiguously defines the starting location of the scope on the spiral. The If Statement at 715 determines the state of the switch by testing whether the previous Azimuth command was greater than or less than 360°.

If Statement 724 tests for the clockwise limit of 629 degrees. If this is hit, the scope is rewound 360 degrees by the 360 not being added.

The net result is the Azimuth Command tracks continuously around the spiral, unless a limit is hit, then appropriate rewinding is taken.

PROGRAM LISTING

The following sections presents a listing of the program step numbers, step functions, the effects on the display registers, and explanatory remarks.

The following texts are required reading for understanding the programming of the calculator:

Model 9810A Calculator Operating and Programming
Hewlett-Packard 9810A Calculator Mathematics Block Operating Manual
Hewlett-Packard 9810A Calculator Peripheral Control Operating Manual
The program steps are expressed in the mnemonics shown in the Appendix of the Operating and Programming manual.

A remark such as $34=11.3$ says that 11.3 is stored in register 34 .

CONSTANT STORAGE

Most of the constants are stored in registers 00-108 as shown in the following address listing. The values that change during program execution are preceded by 'temp' on the listing.

In order to change the value of a constant, first type the new value into the x-register. To store the value key $X T O$ _ _ , where the blanks represent the register as a three digit number (ex. 003). In order to make a new constant card with the changed values on it, place the blank card into the card-reader slot and key FMT XTO. Record on both sides of the card, then the card-reader motor will stop.

The Latitude can be changed by the following sequence:
(Load Program and Constant Cards as usual)
STOP STOP
GOTO LBL. L
(ENTER Latitude degrees)
UP (\uparrow)
(ENTER Latitude minutes)
UP (\uparrow)
(ENTER Latitude seconds)

CONTINUE

The program will store the revised latitude. Tracking will begin upon the
'Update' button being pushed.
Place the lower altitude limit in register 025 in decimal degrees.
Add 0.0001717 to the linear Azimuth offset, to facilitate rounding off, then store this value in register 054.

Registers 017,045 , and 098-108 contain the constants for the refraction correction.

A variable offset to the sidereal time allows the clock to be set to the sidereal time of a site, other than where the telescope is. The offset is stored in register 39 of the constant card and register 50 for the Fast Program. If an offset of x hours is desired, store in register 39 the constant $x+0.000707$ hours and in $50 x+0.000533$ hours.

Example: For an offset of -42 seconds store $-42 / 3600+0.000707=$ -0.01096 in 39 and $-42 / 3600+.000533=-0.01113$ in 50.

Some constants are stored in the form of program steps. The counterclockwise limit of scope rotation is stored as steps 1006-1008 to the nearest degree, and also in steps 704-705. The clockwise limit of scope rotation minus 360 is stored in 720-722. To change these values, key GTO (desired step number) PRGM. The step number and its value will now be displayed. Key in the new value. Key RuN. To record a revised program card, key END RECORD, then record both sides of the new card.

Storage
Register

0
Co

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
16

15

100
10^{4}
.01
10^{8}
10^{6}

Contents

Temp command sin $d \sin \phi$
Temp command $\cos d \cos \phi$ Temp command R.A.

Temp HAO
Temp Az position readout
Temp HAl
Temp command Az (pointing corr.),
used in IND address
$.0186=180 / \pi \times 3.25 \times 10^{-4}$
$.000988 \mathrm{hrs} .=3560 \mathrm{~m} . \mathrm{s}$.

$$
.0003433=720 / 2^{21}
$$

Minimum altitude 8/45

1/15

Temp ALT 3
Temp AZ 3
Temp HA 3
$.000707 \mathrm{hrs}$.$\quad Loop time offset =1$ cycle ($2030 \mathrm{m.s}$.)

+ Input IST to Output 3 ($514 \mathrm{~m} . \mathrm{s}$.)
$=2544 \mathrm{~m} . \mathrm{s}$.

Storage
Register

```
Contents
. }2
Temp HA2
Temp ALTO
Temp ALTl, Temp command cos Az
Temp ALT2
-.8007 = - 180/\pi \times 10-6 < 43 < 325 Used in pointing correction
Temp AZO
Temp AZl
Temp AZ2
Temp variable alt. offset
.000533 hrs.
Constant Azimuth offset
    +.0001717 (360/2 21)
    .0001717
    719.9999999
    6 3 . 9 9 9 9 9 9 9 ~
    Temp counter
Fast program loop time offset =
    l cycle (1.02 sec) + Input LST
    to Output 3 (.91 sec)
(-60 for SW leg, -119 for SE leg,
    -180 for North leg) must be between
-269}\mp@subsup{}{}{\circ}\mathrm{ and + 90
Constant Altitude Offset
```

Comments

Contents
.25
Temp HA2
Temp ALTO
Temp ALTl, Temp command cos Az
Temp ALT2
$-.8007=-180 / \pi \times 10^{-6} \times 43 \times 325$
Temp AZO
Temp AZ1
Temp AZ2
Temp variable alt. offset .000533 hrs .
$+.0001717\left(360 / 2^{21}\right)$
.0001717
719.9999999
63.9999999

Temp counter

CONSTANT STORAGE (CONT.)

Storage Register	Contents
80	
81	
82	
83	
84	
85	
86	
87	
88	
89	
90	Temp ALT Command
91	Temp Time Storage
92	Temp Command sin (d)
93	$\operatorname{Sin} \phi-\phi=$ latitude
94	$\operatorname{Cos} \phi$
95	Temp Conmand cos z, ALT Command, Input ALT, sin ALT, HA
96	180
97	Temp Command HA
98	120, - . 0018962
99	130, - . 0015054
100	14°, - . 0012148
101	$15^{\circ},-.0009942$
102	16\%, - . 0008240
103	170, - . 0006906
104	180, - . 0005846
105	190, - . 0004993
106	20°, - . 0004299
107	21°, - . 0003729
108	22°, - . 0003256

Comments

98-108 are 2nd and 3rd term refraction errors for indicated angle

SIDEREAL TIME PROGRAM

A program which computes the Local Mean Sidereal Time, given the date and Universal Time, is available on one of the 6 inch program cards. The method is as in the NRAO 360 routine DSIT (=NRAO 2/1 S). To use it, first key FMP GTO and load both sides of the card. If only one side is accepted key IF FLAG END CONTINUE then load the other side. Key STOP CONTINUE to stop the card reader motor.

INPUT OFFSET-SEC will be printed. The offset will be added to the calculated LMST.

The Equation of Equinoxes offset, which is tabulated in the beginning of the American Ephemeris, can be added to convert from Mean to Apparent Sidereal Time. If the automatic display freezing capabilities of the WWV clock are used. adding about 0.040 second offset compensates for the $R C$ delay after the amplifier. The delay will vary with volume and WWV GAIN settings.

The UTl time from WWV can be off up to 0.7 seconds, before they have a leap second. The method of coding UTl corrections uses a system of double seconds pulses. The first through the seventh seconds pulses, when doubled, indicate a "plus" correction, and from the ninth through the fifteenth a "minus" correction. The eighth seconds pulse is not used. The amount of correction in units of 0.1 second is determined by counting the number of seconds pulses that are doubled. For example, if the first, second, and third seconds pulses are doubled, the UTl correction is a "plus 0.3 second offset". Or if the ninth, tenth, eleventh, twelfth, thirteenth, and fourteenth seconds pulses are doubled, the UTl correction is a "minus 0.6 second offset".

Enter the sum of the above offsets, then key CONTINUE.

The month, day, year, and UFl hour and minute will be similarly requested. The 19 in the year will be assumed if omitted.

The LMST will then be output, and the program will request a new hour and minute.

To also change the date and offset, key END CONTINUE.

A new longitude may be entered in decimal hours in register 20. To save it key FMF XTO and rerecord the second half of the card.

ALT-AZ SCANNING VERSION

This version of the program is on a separate card and again uses the same constant card. When a declination of greater than 90 is entered, while the scope is tracking a source, time-increasing offsets in azimuth and elevation are added. Azimuth and elevation rates can be varied to determine the scan speed.

The additional storage registers used in the program are as follows.

Register
Description
R_{A} - Azimuth Rate program execution.
R_{a} - Azimuth Rate

Initial Time

Temporary altitude storage.
R_{E} - Elevation Rate. The values of these change during
R_{e} - Elevation Rate. These values remain constant and are to be entered by the user in degrees/sidereal hour.

The offsets are determined by maltiplying the respective rate by the time elapsed since the scan command (Updating with a declination greater than 90) has been given.

First enter the R.A. and Dec. of the source in the normal manner. The rate R_{A} and R_{E} will be set to zero, so the source will be tracked normally.

Updating with a declination greater than 90 will cause the rates to be set equal to the user stored value (i.e. $R_{A}=R_{a}$ and $R_{E}=R_{e}$ and the current time stored in 74. The Main Loop will then be reentered and the scope will scan away from the source at the prescribed rates.

Entering another command greater than 90 degrees will cause the reference time to be updated, so the command will return to the source and then once again scan away from it.

A declination less than -90 still stops the telescope and lights the Position Command Out of Limits L.E.D.

Entering a new source will reset the rates to zero. A subsequent, greater than 90 degrees, command will cause scanning away from this source.

To change a rate, enter the new rate in the x-register, then key XTO 072 for the azimuth rate or XTO 073 for the elevation rate. Negative rates can be used.

Following are the changes made in the tracking program to get this version.
changes in alt-az scanning version

$\begin{aligned} & \text { STEP } \\ & \text { NO. } \end{aligned}$	FUNCTION	\underline{x}	\underline{r}	z	REMARKS

Change 574-577 from gio lbl b CNt to 0770 for where to branch when the declination is illegal

insert the below in the first half start sequence

| | | |
| :--- | :--- | :--- | :--- |
| 507 | XTO 70×7071 | Sets $R_{A}=R_{E}=0$ |

between 506 = ClX and 513 = UP. THE ROUTINE NOW EXTENDS FROM 448-600 INSTEAD OF 454-600. this sets the rate $=0$ for when the dec. is legal.

INSERT IN THE MAIN LOOP BETWEEN $1117=1$ and $1153=$ GTO

		A2		E1	
1118	RUP XTO 75	E1	Az		
1122	XFR $91 \times$ XRR-74 UP	Δt	Δt	Az	$91=$ current time
1130	CLX X \times Y CLX 24 +	0	Δt	Az	Adds 24 if negative
1136	ON UP XFR $\times 70$ YE $\times 71$	$\mathrm{R}_{A^{\Delta t}}$	$R_{E} \Delta t$	A2	
1146	YE + 75 RUP +	Az	$A z+R_{A} \Delta t$	$E 1+R_{E} \Delta t$	
1152	XEY	$A z+R_{A} \Delta t$		$E 1+R_{E} \Delta t$	

the above performs the scanning
CHANGE 1260-3 from 1032 to 997 CLX hhere the main loop now begins. the second half start sequence now begins at got instead of g42 (lBl f).

FAST VERSION OF PROGRAM

The Fast Version of the program on a different program card outputs the position command every quarter instead of every half second. It accomplishes this by eliminating the reverse calculation of the Monitor Word to the r.a., dec., and Hour Angle. It is identical to the original program except for the changes noted in the following sections. The R.A.-Dec. to Alt. -Az . Calculation is broken up into three instead of two sections. There is still interpolation to obtain four outputs per cycle. The same constant card is used. Loading and operating procedures are identical. The R.A. and Dec. displays reflect what was last input from the digiswitches and not the actual telescope position. The Hour Angle display is not used.

```
0000-0002
0003-0011
0017-0050
0051-0084
0091-0109
0115-0142
0150-0185
0190-0206
0454-0608
0680-0756
0942-1043
1044-1203
1434-1587
1588
Go to Start Sequence
Part of Subroutine 91
Subroutine 17 - First Third R.A. -Dec. to Alt.-Az. Command
Subroutine 51 - Second Third R.A. -Dec. to Alt.-Az. Command
Subroutine 91 - Final Third R.A. -Dec. to Alt.-Az. Command
Subroutine 1l5 - Altitude to Binary
Subroutine 150 - Azimuth to Binary and Alt.-Az. Command Output
Redefining the Latitude
First Half Start Sequence
Subroutine 680 - Interpolate the Alt.-Az. Commands
Second Half Start Sequence
Main Loop
Subroutine 1434 - Pointing Corrections
End
```

The spaces between blocks are not used.

CHRNGRE IR TEE FAST VERSION

THE SECTION NOW ENDS 8 STEPS LATER.

PIN	TO	DESC.	FROM	Pin	TO	DESC.	FROM	
1				51	3-78 J1-c		Blk. Output Line	
2				52	Displays		Blk.	
3	GND			53	3-86 J1-b		Brn. Output Line	
4	+5v			54	Disp.		$\overline{\text { Brn }}$.	
5	$\begin{gathered} \text { P.C. out of } \\ \text { Limits LED } \end{gathered}$			55	3-95 J1-h		Red Output Line	
6	Restart Disp. Butt	n		56	Disp.		$\overline{\mathrm{Red}}$	
7	Freeze Disp Button			57	4-78 J1-f		Orn. Output Line	
8	2-8		Disp Strobe F.F.	58	Disp		$\overline{\text { Orn }}$.	
9	Dec Sign Strobe		RA + Dec Strobe 1	59	4-86 J1-n		Yel. Ouput Line	
10	RA Hrs Strobe		2	60	Disp		Yel.	
11	RA Min Strobe		3	61	4-95 J1-m		Grn.Output Line	
12	RA Sec Strobe		4	62	Disp		$\overline{\text { Grn. }}$	
13	Dec Deg Strobe		5	63	3-68 Jl-t		Blue Output Line	
14	Dec Min Strobe		6	64	Disp		Blue	
15	Dec Sec Strobe		7	65	J 1-s		Vio. Output Line	
16	2-16		OS 1	66	Disp		Vio.	
17	H.A. Sign Strobe		H.A. Strobe 1	67				
18	H.A. Hrs Strobe		3	68	PC Update Sw.:I.O.			
19	H.A. Min Strobe		4	69	PC Update Sw.N.C.			
20	H.A, Sec Strobe		5	70	${ }_{4-52}^{{ }_{4}^{\mu s}} \text { PC Pulse }$			
21				71				
22	10K Pot		741 Gain Pt.	72				
23	WWV Receiver Term \#l		741 Amp.	73	GND			
24	P.C. Clock $\begin{aligned} & \text { 3-96 } \\ & \\ & \text { J2-E }\end{aligned}$		Demultiplexer	74	GND			
25				75				
26	Digi Dec Sign		Digiswitch STB 1	76				
27	GND			77				
28	GND			78				
29	Digi. RA Hrs		Digiswitch STB 2	79				
30	Digi. RA Min		3	80				
31	Digi. RA Sec		4	81				
32	Digi. Dec Deg		5	82				
33	Digi. Dec Min		6	83				
34	Digi. Dec Sec		7	84				
35				85	CTL J1-k			
36				86	FLG J1-p			
37				87	2-96		LST Clock	
38	+15 J2-f			88				
39				89	Blk, Digi In 2-65		Diode	
40				90				
41	-15 J2-j			21				
42				92				
$\div 3$				93	Input Multiplexer		Input Add. B	
44				94	Input Multiplexer		Input Add. A	
45				95	3-61 J2-H		En Protect	
46	Encoder ${ }_{\text {clik }}{ }^{\text {J2-A-87 }}$,			96	I/O J1-1			
47	Update LED			97	GND			
48	LST 40 Hr 2-76		Update F.F.	98	$+5 \mathrm{~V}$			
49	GND			99				
50	GND			100				

PIN	TO	DESC.	FROM	PIN	TO	OESC.	FROM	
1				51	.1 sec NC			
2				52	.1 sec No			
3	GND			53	$+1 \mathrm{Sec} \mathrm{NC}$			
4	+5V			54	+1 sec No			
5				55	-1 Sec NO			
6				56	- 1 Sec NC			
7				57	10 Sec NC			
8	LST STB INH1-8			58	10 sec NO			
9				59	1 Min NO			
10	LST Disp		Strobe	60	1 min NC			
11				61	10 Min NC			
12				62	10 Min NO			
13				63	1 Hr NO			
14				64	1 Hr NC			
15				65	Digi Out Blk 1-89		8820 's	
16	OS1-16		LST Strobing	66	Brn			
17				67	Red			
18				68	Orn			
19	Battery Supply		vdd	69	Yel			
20				70	Grn			
21				71	Blue			
22				72	Vio			
23			20 Hr	73.	GND			
24			10 Hr	74	GND			
25			8 Hr	75	10 Hr SW NC			
26			4 Hr	26	1-48 F.F.		40 Hr .	
27	GND			77	$\begin{aligned} & \text { Monitor S/R Blk } \\ & \text { J } 2-x .3-20 \\ & \hline \end{aligned}$			
28	GND			78	$\begin{array}{cc} \text { Monitor } & 5 / \mathrm{R} \text { Br } \\ \mathrm{J} 2-y & 3-13 \\ \hline \end{array}$			
29			2 Hr	79	$\begin{array}{ll} \text { Monitor S/R Red } \\ \text { J2-2 } \\ \hline \end{array}$			
30			1 Hr	80	$\text { Monitor } \frac{1}{2}=\frac{R}{2}-26^{n}$			
31			40 Min	81	$\begin{gathered} \text { Monitor S/R Yer } \\ \text { J2-b } \\ 4-13 \\ \hline \end{gathered}$			
32			20 Min	82	$\begin{gathered} \text { Monitor } S / R-\operatorname{Rrn} \\ \mathrm{J} 2-\mathrm{C} \\ \hline \end{gathered}$			
33			10 Min	83	Monitor S7R BIue			
34	LST		8 Min	84				
35	Display		4 Min	85	10 Hr SW NO			
36			2 min	86	Input Add B 1-93		Mult Add.	
37			1 Min	87	A 1-94			
38			40 sec	88	Calc Jl-V Blk		Multiplexers	
39			20 sec	89	Inputs . Jl-X Brn			
40			10 sec	90	Jl-a Red			
41			8 Sec	91	Jl-2 Orn			
42			4 Sec	92	Jl-e Yel			
43			2 Sec	93	Jl-d Grn			
44			1 Sec	94	Jl-s Blue			
45			.8 Sec	95	J1-R Vio			
46			.4 sec	96	LST Clock 1-87			
47			. 2 sec	97	GND			
48			. 1 Sec	98	+5			
49	GND			99				
50	GND			100				

PIN	TO	DESC.	FROM	PIN	TO	DESC.	FROM
1				51			
2				52			
3	GND			53			
4	+5V			54			
5	2-79		Red Monitor Out	55			
6	Monitor Clock 4-6			56			
7	Monitor Al7			57	Calc INH		
8	Al0			58			
9	A3			59			
10	E17			60	External Monitor Load Signal		OS
11	E10			61	Encoder Protect $1-95$ T2-H		OS ${ }^{\text {J2-H }}$
12	E3			62			
13	2-78		Br Monitor Out	63	PC E7		
14	Al6			64	E14		
15	A9			65	A7		
16	A2			66	Al 4		
17	E16			67	A2 1		
18	E9			68	Blue $\overline{\text { Out J2-T 1-63 }}$		Blue Comm
19	E2			69			
20	2-77		Blk Monitor Out	70	PC El		
21	A15			71	E8		
22	A8			72	E15		
23	A1			73	GND		
24	E15			74	GND		
25	E8			75	PC Al		
26	E1			76	A8		
27	GND			77	A15		
28	GND			78	Blk Out 1-51		Blk Comm
29				79			
30				80	PC E2		
31				81	E9		
32				82	E16		
33				83	A2		
34				84	A9		
35	Monitor Ld In 4-35		Monitor Ld Out	85	Al6		
36				86	Br Out 1-53		Br . Comm
37				87	Monitor Clock 1-46		
38				88	PC E3		
39				89	El0		
40				90	E17		
41				91	A3		
42				92	Al0		
43				93	Al7		
44				24	PC Clk 4-94		
45				95	Red Out 1-55		Red Comm
46				96	PC Clock		1-24, J2-E
47				97	GND		
48				. 98	+5		
49	GND			99			
50	GND			100			

Chossle Type ANTENNA CONTROL TEST UNIT, SLOT D Cord Type BOARD 4 MONLIOR

PIN	TO	DESC.	FROM	PIN	TO	DESC.	FROM	
1				51			5 us $\overrightarrow{\mathrm{PC}} \overrightarrow{\text { Pulse }}$	
2				52	1-70 J2-e		5 us PC Pulse	
3	GND			53				
4	+5			54				
5	2-82		Gr Monitor Out	55				
6	Monitor Clock 3-6			56				
7	Monitor A20			57	Calc INH			
8	Al3			58				
9	A6			59				
10	E20			60				
11	E13			61				
12	E6			62				
13	2-81		Yel Monitor Out	63				
14	A19			64				
15	Al2			65				
16	A5			66				
17	E19			67				
18	E12			68				
19	E5			69				
20	2-80		Orn Monitor Out	70	PC E4			
21	Al8			71	Ell			
22	All			72	E18			
23	A4			73	GND			
24	E18			74	GND			
25	Ell			75	PC A4			
26	E4			76	All			
27	GND			77	A18			
28	GND			78	Orn Out 1-57		Orn Command	
29	2-83 $32-\mathrm{d}$		Blue Monitor Out	79				
30	Monitor A21			80	PC E5			
31	A14			81	E12			
32	A7		E19	82	E19			
33	E14			83	A5			
34	E7			84	A12			
35	Monitor LD Out3-35			85	A19			
36				86	Yel $\overline{\text { Out }} 1-59$		Yel Command	
37				87				
38				88	PC E6			
39				89	E13			
40				90	E20			
41				91	A6			
42				92	A13			
43				93	A20			
44				94	PC ClK 3-94			
45				95	Gr Out 1-61		Gr Command	
46				96				
47				97	GND			
48				98	$+5$			
4.9	GND			99				
50	GND			100				

CONNECTOR LIST
FOR
HP 9810A CALCULATOR TO STAND-ALONE COMPUTER CONTROL

```
Designation J-1
```

Type: HP ll202A I/O TTL Interface to Elco 56 Pins: Panel: E; Cable: \underline{P}

Pin	To		Function	Pin		To	Function
A				a	2-90		Red
B				b	1-53		Brown
C				c	1-51		Black
D	GND	GND		d	2-93	I5	Green
E	912			e	2-92		Yellow
F	907			f	1-57	03	Orange
H	906			h	1-55	02	Red
J	908			j	1-96	I/O	
K	905			k	1-85	Control	
L				1			
M				m	1-61		Green
N	GND	ECH		n	1-59	04	Yellow
P		STP		p	1-86	Flag	
R	2-95	I7	Violet	r			
S	2-94	I6	Blue	s	1-65		Violet
T				t	1-63		Blue
U	GND	GND					
V	2-88	IO	Black				
W	GND	GND					
X	2-89		Brown				
Y							
2	2-91	I 3	Orange				

Abbreviations:

```
Board Connectors: 1, 2, 3, etc.
Pin Numbers: -3, -22, etc.
```

CONNECTOR LIST FROM STAND-ALONE COMPUTER CONTROL TO NRAO VLA ANTENNA CONTROL

TEST UNIT

CONNECTOR:	Designation $\mathrm{J}-2 \quad$ Type Elco $\underline{56}$ Pins
FROM:	Panel $E \quad$ Cable $\underline{T O} \quad$ Panel \underline{P} Cable \underline{E}

PIN	FROM	TO	FUNCTION	PIN	FROM	T0	FUNCTION
A	1-46	3-87	Monitor Clock	f	1-38	$+15 \mathrm{~V}$	
B			GND	h			
C			GND	j	1-41	-15v	
D			GND	k			
E	1-24	3-96	Position Com. Clock	1			
F			GND	m			
H	1-95	3-61	Encoder Protect	n	Vcc		
J				p	Vcc		
K				r	Vcc		
L	Jl-c	3-78	Output Blk.	5	Vcc		
M	Jl-b	3-86	Lines Br .	t	Vcc		
N	Jl-h	3-95	Red	v			
P	J1-f	4-78	Orange	w			
R	Jl-n	4-86	Yellow	\mathbf{x}			
S	Jl-m	4-95	Green	Y			
T	Jl-t	3-68	Blue	2			
U				AA			
V				BB			
W			GND	CC			
X	2-77	3-20	Input Blk.	DD			
Y	2-78	3-13	Lines Br .	EE			
2	2-79	3-5	Red	FF			
a	2-80	4-20	Orange	HH			
b	2-81	4-13	Yellow	JJ			
c	2-82	4-5	Green	KK			
d	2-83	4-29	Blue	LL			
e	1-70	4-52	Give Position Com.	MM			

ABBREVIATIONS: ELCO Connectors: Jl, J2, J3, etc.

$$
\begin{aligned}
& \text { Pin \#'s }: \quad-3,-22, \text { etc. } \\
& \text { Cards }: \quad 1-, 2-, 3-, 4-
\end{aligned}
$$

EX: 2-22

J9 - mm

