NATIONAL RADIO ASTRONOMY OBSERVATORY SOCORRO, NEW MEXICO VERY LARGE ARRAY PROGRAM

VLA ELECTRONICS MEMORANDUM NO. 168

PHASE STABILITY OF SOME COMPONENTS AND SUB-SYSTEMS IN VLA ELECTRONICS

D. Bagri

March 1978

1.0 INTRODUCTION

Phase stability of many components and sub-systems was measured during 1976-1977 while trying to understand phase stability of the VLA system. In most cases stress was to determine phase-stability with temperature variation ($\Delta\phi/\Delta T$) around room temperature. For many components phase variations with other parameters like power level, gain, etc. were also determined. The results are given in this report.

	COMPONENT/SIGNAL DESCRIPTION	PHASE VARIATION WITH	CONDITION OF MEASUREMENT AND/OR TEST SET-UP	RESULTS - NOTES
1.	Band-Pass Filters	Temperature	Figure 1	k = 30 to 70 X 10 ⁻⁶ (see Note 1)
	a) 'z" tubular coaxial BPF by K&L Microwave, Inc. Filters in frequency range of 100 to 2000 MHz			
	 b) IF band-pass filters in 1 to 2GHz range for Front End IF filters (F7) and 1F off-set (F8) modules. Designed by RLC Electronics. 	Temperature	Figure l	A 4-section 1325/60 MHz BPF has $\Delta \phi / \Delta T \sim 0.05^{\circ} / ^{\circ}$ C. This gives k ~ 6 X 10 ⁵⁰ (see Note 1)
	<pre>c) 10.1 MHz crystal BPF in Fringe Generator (L7) module having 3 dB bandwidth = 30 kHz.</pre>	Temperature	Figure l	$\Delta \phi / \Delta T$ at 10.1 MHz = 0.2°/°C
2.	1 to 2 GHz Amplifiers			
	a) Avantek ASD8199M Gain ~ 27 dB, P at 1 dB Compression = +7dBm out	Temperature	Figure 2A, @ 1800 MHz and P = +10 dBm out	Δφ/ΔΤ ~0.2 [°] / [°] C
		Power Supply Voltage	Variation by \pm 500 mV @ + 15 V and P = 0 to 10 dBm at 1200 MAz.	$\Delta \phi \leq 0.3^{\circ}$ for ± 500 mV
		Output Power	At P = +7 dBm for both 1200 and 1800 MHz	$\Delta \phi / \Delta P_{in} \leq 0.15^{\circ} / dB$
			At P = 0 dBm for both 1200 and 1800 MHz	$\Delta \phi / \Delta P_{in} \leq 0.05^{\circ} / dB$
	b) Variable gain amplifier consisting of following stages:	Temperature at different P _{out} , and gain	Test set up Figure 2B	For results see Figure 2C
IN		values for input at both 1200 and 1800		
Type: G1 UTO- UTO- A37 2002 2003		neously		
Mfi	r: WJ AVANTEK WJ			
			1	ļ

N

			PHASE		
		COMPONENT/SIGNAL DESCRIPTION	VARIATION WITH	CONDITION OF MEASUREMENT AND/OR TEST SET-UP	RESULTS - NOTES
2.	b) c)	<pre>(Cont'd) Maximum Gaîn - 25 dB P @ 1 dB Compression = +15 dBm at 1200 and 1800 MHz LOCUS Amplifier RF668 used in Transmit side of MODEM</pre>	Temperature	Figure 2B; P (Total) = +17 dBm (+14 at each 1200	Δφ/ΔT ~ 0.35 ⁰ / ⁰ C @ 1800 MHz
		<pre>(Tl) modules. Gain = 28 ± 1 dB Pout at 1 dB compression = +17 dBm (Min)</pre>		and 1800 MHz)	
3.	Ba	lanced Mixers			
	a)	Watkins-Johnson Mixer MlA used as phase detector at 50 MHz	Temperature at different L'.O. Power	Figure 3A, RF port power ~ -3 dBm	$\Delta \phi / \Delta T (@ P_{LO}^{=+17dBm}) = 0.13^{\circ} / {^{\circ}C}$ $(@ P_{LO}^{=+10dBm}) = 0.2^{\circ} / {^{\circ}C}$ $(@ P_{LO}^{=0dBm}) = 0.8^{\circ} / {^{\circ}C}$
	b)	Watkins-Johnson Mixer MlJ used as Modulator	Temperature, L.O. Power, Modulation	Figure 4A	Figure 4B
4.	PI Mi DA	N Diode Attenuator, Vectronics crowave Corporation type 0125-40	Attenuation	Figure 5	ATT.(dB) 0 5 10 15 20 25 30 PHASE() 0 5 7 8 7.5 5.5 4 ATT 35 40 PHASE 2 0
5.	50 st	MHz COMB GENERATOR using ep recovery diode HP 5082-0112	Temperature	Figure 6, @ 1800 MHz	Δφ/ΔT=0.6 [°] / [°] C; Δφ/ΔP _{in} ^{~2} 2 [°] /dB Phase stability using SRD type HP 5082-0820 is similar. For 50 MHz Harmonic Generator (L2C) module comb generator employing HP 0820 diode is used

ω

		PHASE		
		VARIATION	CONDITION OF MEASUREMENT	
	COMPONENT/SIGNAL DESCRIPTION	WITH	AND/OR TEST SET-UP	RESULTS - NOTES
6.	Ll: 5 to 50 MHz VCXO	Temperature	Figure 7	
	a) 5 MHz			Δφ ₅ /ΔT ≤ 0.1 [°] / [°] C
	b) 50 MHz			$\Delta \phi_{50} / \Delta T \simeq 2^{\circ} / ^{\circ} C$
	2, 20 1			The phase variation of the phase shifter in 5 MHz (5ϕ) is $\lesssim 0.05^{\circ}/_{C}^{\circ}$
7.	L2A: 50 to 600 MHz Multiplier	Temperature	Similar to Figure 8	
	a) 100 MHz			Δφ ₁₀₀ /Δτ ~ 0.38 ⁰ / ⁰ C
	b) 600 MHz			$\Delta \phi_{600} / \Delta T \sim 1.7^{\circ} / ^{\circ} C$
8.	L2C: 50 MHz Harmonic Generator	Temperature	Figure 8	
	a) 600 MHz line in 50 MHz Comb			$\Delta \phi_{600} / \Delta T = 0.2^{\circ} / {^{\circ}C}$
	b) 1200 MHz Output			$\Delta \phi_{1,200} / \Delta T = 0.3^{\circ} / {^{\circ}C}$
	a) 1900 MHz Output			$\Delta \phi_{1000} / \Delta T = 0.5^{\circ} / {^{\circ}C}$
	e) 1800 MHz Output			1800
9.	L2C (50 MHz Harmonic Generator) and L3C (Antenna L.O. Transmitter) Together	Temperature	Figure 9	
	a) 600 MHz @ L3J10			$\Delta \phi_{600} / \Delta T \sim 0.2^{\circ} / ^{\circ} C$
	b) 1200 MHz @ L3J8			$\Delta \phi_{1200} / \Delta T \sim 0.4^{\circ} / {^{\circ}C}$
	c) 1800 MHz @ L3J8			Δφ ₁₈₀₀ /Δτ ~ 0.6 ⁰ / ⁰ C
10.	L2C, L3C and L6 (2-4 GHz	Temperature	Figure 10	
	Synchesizer			$\Delta \phi_{\rm eq} / \Delta T \sim 0.2^{\circ} / {^{\circ}C}$
	a) 600 MHZ IFOM 50 MHZ COMD & L2512			⁶⁰⁰ Δφ /ΔΨ ~ 0.35 [°] / [°] C
	b) 1200 MHz @ L3J8			1200^{-12}
	c) 2990 MHz @ L6J12			2990/21 2 1 / 0
		· · · · · · · · · · · · · · · · · · ·		

	PHASE				
		VARIATION	CONDITION OF MEASUREMENT		
	COMPONENT/SIGNAL DESCRIPTION	WITH	AND/OR TEST SET-UP	RESULTS - NOTES	
11.	L7: Fringe Generator 10.1 MHz	Temperature	Figure 11, fringe rate set to zero.	^{Δφ} 10.1 ^{/ΔT} ~ 0.65 [°] / [°] C	
12.	T2: IF Combiner XMIT 1200 MHz XMIT 1800 MHz RCV 1200 MHz RCV 1800 MHz	Temperature and Power Level	Figure 12	XMIT @ 1200 Δφ/ΔT=.05 [°] / [°] C XMIT @ 1800 Δφ/ΔT=0.1 [°] / [°] C RCV [°] @ 1200 Δφ/ΔT=0.1 [°] / [°] C RCV @ 1800 Δφ/ΔT=0.15 [°] / [°] C	
13.	F4: Frequency Converter (Proposed Design)	Temperature, Power Level	Figure 13A, B	$\Delta \phi / \Delta T$ @ 1010 MHz = 0.1°/°C $\Delta \phi / \Delta P_{in} \leq 0.2° / dB$ for fixed output around nominal value of VCA attenuation	
14.	Vertex Room Front End Electronics at L-Band (Antenna 3) a) From upconverter up to F4 output	Temperature	Figure 14	$\frac{\Delta\phi}{\Delta T}$ (up to F4) ~ 3 to 4°/°C	
	b) From upconverter up to T2 XMIT IF monitor on front panel	A-Rack Power Supply	Figure 14 Each power supply voltage varied separately by 100 mV	$\frac{\Delta \phi}{\Delta T} (up to T2) ~ 3^{\circ}/^{\circ}C$ $100 mV @ +15 V gives \Delta \phi \leq 1^{\circ}$ $100 mV @ -15 V gives \Delta \phi \leq 1^{\circ}$ $100 mV @ +5 V gives \Delta \phi \leq 1^{\circ}$	

 $\frac{\Delta\phi}{\Delta T}$ (in degrees) = mX90° x $\frac{f_o}{BW}$ · k Note 1 - Phase variation at center frequency of pass-band is expressed: where, m = number of sections f_{o} = center frequency BW = 3 dB bandwidth k

G

is

FIGURE 1: SET UP FOR MEASURING BPF PHASE VARIATIONS WITH TEMPERATURE

FIGURE 2A: SET UP FOR MEASURING 1-2 GHZ AMPLIFIER PHASE STABILITY

FIGURE 2B: SET UP TO MEASURE PHASE STABILITY OF VARIABLE GAIN 1-2 GHz AMPLIFIER

461510

HAND IN X 10 TO THE CENTIMETER 18 X 25 CM.

FIGURE 3: SET UP FOR MEASURING PHASE STABILITY OF BALANCED MIXER MIA USED AS PHASE DETECTOR AT 50 MHz

1) Modulation is adjusted to give ± 5 MHz sidebands to carrier ratio = -10 dBc 2) Modulator driver bias adjusted to give modulator carrier output = -18 dBm

FIGURE 4A: SET UP FOR MEASURING PHASE STABILITY OF A MODULATOR

^P L.O.	dBm	+2	+5	+9	+13
Δφ/ΔΡ in(L.O.)	(°/dB)	2 ⁰	3 ⁰	1.5°	ı°
∆¢∕∆₽ mod	(*)	<0.1 [°]	<0.1 ⁰	<0.1 ⁰	<0.1 ⁰
Δφ/Δτ	(°/°c)	0•23	0.22	0.20	0•20

*when 5 MHz modulation/carrier ratio reduced from
-10 to -20 dBc

FIGURE 4B: RESULTS OF MODULATOR PHASE STABILITY

FIGURE 6: SET UP FOR MEASURING PHASE STABILITY OF 50 MHz COMB-GENERATOR

FIGURE 8: SET UP FOR MEASURING PHASE VARIATION WITH TEMPERATURE OF L2C MODULE

FIGURE 9: SET UP FOR MEASURING PHASE VARIATIONS WITH TEMPERATURE OF L2C AND L3C TOGETHER

*50 MHz Comb Generator inside L6A12 bypassed, temperature probe on L6A12 center plate.

FIGURE 10: SET UP TO MEASURE PHASE VARIATION WITH TEMPERATURE FOR MODULES L2C, L3C and L6

FIGURE 11: SET UP TO MEASURE PHASE VARIATION WITH TEMPERATURE FOR L7 MODULE

FIGURE 12: SET UP TO MEASURE PHASE STABILITY OF T2 MODULE

*Unit under test, has ALC loop open - VCA control voltage adjusted to provide 15 dB attenuation (nominal value). Block diagram of proposed freq. converter (F4) is shown below.

FIGURE 13A: SET UP TO MEASURE PHASE STABILITY OF F4 MODULE

FIGURE 13B: BLOCK DIAGRAM OF PROPOSED F4, USED FOR TESTING PHASE STABILITY

FIGURE 14: SET UP TO MEASURE FRONT-END ELECTRONICS PHASE STABILITY