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1.0 INTRODUCTION
A digital correlator is a device for measuring the correlation 

function of a signal or signals which are sampled and quantized.
For gaussian noise signals, the quantization can be very coarse 
with little loss of information; the literature includes 
extensive analyses of correlators using two-level (one bit)
[Weinreb, 1961], and three or four level (two bit) [Cooper, 1970] 
quantizations. In addition, the effect of varying the sampling 
rate has been studied [Hagen and Farley, 1973], showing that 
significant improvements in signal-to-noise ratio can be obtained 
for ideal low-pass signals of bandwidth B by sampling at rates 
greater than 2B. This is because the quantization causes the signal 
to be no longer bandlimited, so not all information is extracted 
by sampling at only 2B.

The published results, however, consider only the accuracy 
with which a single correlation measurement can be made for signals 
having ideal low-pass spectra. In this report, I analyze the correlator 
performance for non-ideal signal spectra, such as might be imposed 
by practical filters at the correlator inputs. Furthermore, I 
consider that the correlation function will be measured at a large 
but finite number of equally-spaced lags, or delays, and that the



discrete Fourier transform of this sequence of measurements will be 
computed. The signal-to-noise ratio (SNR) in each element, or channel, 
of the transform is then of interest. This quantity is computed 
in Section II. The computation is restricted to cross-correlators, 
and to the case where the cross-correlation coefficient is small at 
all lags.

In Section III, the results are evaluated for some practical 
input filters, with the objective of determining the filter shapes 
and cutoff frequencies which will maximize the number of high-SNR 
channels.
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Figure 1 - Correlator Block Diagram
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II. CALCULATIONS
Consider the correlator of Figure 1. Suppose that we use it to

compute R. (t) for t = -Kd/f ,-K(d-l)/f ,...,0,d/f , 2d/f ,...(K-l)d/f ;a£> s s s s s
that is, we compute

i N
Ra b (kd/fs> = IS E ai - k d V  k = ~K .... 0 .....K-X U>i=l

where $N is the count obtained for fully correlated signals (if Q 
is a three-level quantizer with optimum thresholds, then $ = 0.54), 
and d is the delay step in multiples of the sampling interval.
Next, suppose that we compute the length-2K discrete Fourier transform 
(DFT) of this sequence, obtaining

K_ i
S . ( t . ) = Z R . (kd/f ) e ~ ) 2 v k i / 2K £ = o.... K-i. (2) 

k=-K 3)3.....S

We are interested in the SNR at each discrete frequency I  (= f K d / f ); 
that is, in

<Sa b a)>SNR (£) = ----- 22------ (3)
[var (s (»))]'ab

and in particular we would like to know the effect of the input filters 
on this SNR.

Assume that sa (t) and are white Gaussian noise processes
with autocorrelation functions 5 (t ) and cross-correlation function 
Po6 (t ) with p q << 1. Then the corresponding functions after filtering
are

w

pa a (T) = HH_(f)|2 ej2lTfTdf (4a)

09

- H
Pbb <T) = I I C f > |2 ej2lIfTdf (4b)

09

p^ (T) = P o K < f ) v < f,e ]2" Tdf
(4c)
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Without loss of generality, we can assume that the filter gains are 
normalized so that Ha,b(f)|2df = 1; then eaa' °bb' and eab
are also correlation coefficients.

For all commonly-considered quantizations Q (one-bit, two-bit, 
three-level, etc.), <R (t)> is simply proportional to p ' , (t ) 
provided that the latter is small (as is the case here since we have 
assumed pq<<1). Let a be the proportionality constant, so

<Ra b (T)> = ap^(T) (5)

(for the optimum three-level quantizer, a = 0.81); then from (2) and 
(4c)

<S (£)> = a Z p '  (dk/f )e“ 3 2^k£/2Kab , . ab sk=-k

= ap I 
°k=-K

Ha (f)Hb * (f)e ^ 2 l T k U / 2 K  fd/fs)df. (6)

We next calculate the variance of directly from its definition:

(7)

In view of the assumption that p q <<1, we neglect the second term in 
(7); this can be regarded as a calculation of the noise under no-signal 
conditions. Substituting directly from (1) and (2) into (7) gives

var S (£) = <||- Z Z a.b. e 32uk«./2K12>
^  6N k=-K i=l 1 r d k  1

K-l N K-l N -j2ltkll/2K
= ~ 2 ~ 2  Z Z 1 - <aibi-dkai'b i'-dk'>e 3 N k=-K i=l k'=-K i =1

= E E Z £ Ra a (i-i")Rb b (i-dk-i"+dk")e“j2ir(k_k ) i / 2 K  (8)
N k i k'i '
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where we have used, in the last step,

R (i-i') = -r <a. a . aa 3 i i

Rb b (j-j') - ?  " V j ' "

Note that the normalization ensures that Ra a ^  = (0) = 1. 
Making a change of variables in (8) by letting m = i-i' and 
m = k-k^ gives

K—1 N k+K 
var S U) = -  Z Z Z

N k=-K i=l n=k-K+l

l
Z R (m)R_, (m-dn) . „ aa ob m=i-N

- j27fnJl/2K

Now, if the N samples take many reciprocal bandwidths to accumulate, 
then N>> (width of R or '' then, for almost all values of

i, the bracketed sum extends over all significant values of its 
argument. We may therefore extend the limits of that sum to infinity 
with little error. This also allows evaluating the sum over i as 
a multiplication by N, giving

k-1 k+K _ 00
var S u U) E Z e 3 7 Z R (m)R.. (m-dn)ab N , „ aa obk=-K n=k-K+l m=-°°

Next, since k appears only in the limits of the sum over n, the 
outer two sums can be combined. We note that n takes on the values 
-2K+l,-2K+2,...,0,1,...2K-1, and that the value n=i occurs 2K-|i| 
times. Thus,

2 K-1 oo
Var Sab(t) - I ,Z , , E R W R ^ C - d i ) .i=-2K+l m=-°°

(9a)

(9b)

(10)

(11)

(12)
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We now relate this to the filter transfer functions H , H by notinqa b
that ^ a ' ^ b  are fixe<3* monotonic functions of Paa'pbb' resPectively> 
where the function depends only on the kind of quantization used (for
2-bit quantization and its special cases, the functions are tabulated 
by Cooper, 1970). Let the function be C^(*), so that

Raa(m) = CQ K a (m/fs)) <13a)

Rb b (n) = CQ(Pbb (n/fs >)- <13b)

Substituting this in (12) gives

2 k - i
var S (4) = i  Z (2K- [ i |) e“3 * - / 2K

315 N i=-2K+l

* z cQ (° ;a (m/fs )) c Q(ob b (m- d i / f s )) (14)m=-°o
and using (14) and (6) in (3) gives the desired expression for SNR:

V - / w c   ̂ - j2 * k l /2 KE P ^(k/f ) e
[ W  k=-KSNR(H) = 2K—1 i i 00

I Z C (p;a (n,/fs))c (p'^m-di/^))
i=-2K+l m=-°>

(15)

Note that anc  ̂ (15) are given in (4) and are
simply inverse Fourier integrals involving the filter transfer functions. 
We have thus established the relationship between the filters and the 
SNR.

Equation (15) apparently cannot be further simplified without making 
approximations. However, the following approximation can usually be 
justified: Let Ra & ( m ) ( m )  = 0 for |m|>Kd. If the filters 
approximate ideal low-pass functions, then ^ a ' 1̂  approximate sine 
functions, which are small for large values of their arguments. If
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we also take d=l, then (12) may be reduced by interchanging the 
summations and substituting n=m-i:

00 m-2K+l . „ . . ./nx 1  ̂ ^ , , „ , 1  1 . „ , . -t2tt (n-m) £/2Kvar S . (£) = —  Z R (m) E (2K- n-m )R_,(n)eab N aa . _T, , 1 1  Dbm=-°» n=m+2K-l

1 r 1 r, / x j2"m£/2K *?-1 1 . -j27tnV2K= —  Z R a (m)eJ Z (2K-|n-m| jR^tnJe J ' (16)
m=-K m=-k

Making the further arrpoximation of dropping the |n-m| term (since it 
multiplies only terms whose magnitude is relatively small), this may 
be written

var S . (*) = ~  S U)S.. W )  (17)ab N aa bb

where S is the DFT of R , etc. aa aa
The simplified expression for SNR thus becomes

—  DFT{p' (k/f )}
SNR(fc) = a j ^ ------------------ ------- 5--------------- r

DFT*{CQ (p;a <k/fs)) }DFT{CQ(pb b (k/fs)) } ' (18)

Finally, with identical input filters H_̂  (f) (f), we see from (4)
that p '  = p ' = p ' , / p  = P ' ,  so in that case aa bb ab o

SNR(£) = ap lN_ PFT{P'(k/£S )} „_0 ,
°'/2K DFT{C ( p M k / f M } '  ....

III. APPLICATION
Expression (19) has been evaluated numerically for filter designs 

of the Chebychev family having various parameters, as listed in Table 1.
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Table 1: Filters Evaluated

Ripple Number of 
Type Parameter Elements

Bandwidth
Range

Butterworth 6 0.3f to 0.5 fs sButterworth 
Chebychev 0.1 dB 
Chebychev 0.1 dB

6
8

8

I f

ft

19

tabulated function [Cooper, 1970] for 3-level quantization and 3-level 
products, as used in the VLA correlator. The DFT length was K = 128.

Figure 2 is a plot of SNR(2,) for each of the four filter types, 
with the bandwidth choosen in each case for 20 dB rejection at

the fraction of channels for which the SNR exceeds 0.8 of its "ideal" 
value of ap /N/2K, as a function of filter bandwidth.

IV. DISCUSSION
Near the highest channel, which corresponds to frequency f = fg/2 ' 

the SNR is degraded by two effects: the quantization non-linearity 
causes noise to be scattered from the lower frequencies upward, and 
the sampling causes noise to be aliased from the higher frequencies 
(including both noise passed by the finite filter rejection and the 
scattered noise just mentioned) downward. Nevertheless, Figure 3 
shows that it is easily possible to have all channels with less than
1 dB SNR "loss" from these effects. But other effects may prevent 
this: the filter must have sufficient rejection for f > fg/2 to avoid 
aliasing of correlated signals into the output channels; we have not 
regarded such undesired signals as "noise" in this calculation.
Further discussion of this and other compromises required in selecting 
practical filters will be given in a later report.

f = 0.55 f (10% above Nyquist bandwidth). Figure 3 is a plot of

o
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Figure 2 - Signal-to-noise ratio vs. channel number for 
four different input filters. The filters are assumed 
identical for both signals. The ordinate is in units 
of the "ideal" SNR, ap /n /2K. All filters cut off to 
-20 dB at 10% above the maximum channel frequency, so 
that aliased signals are below 1% over 90% of the channels.
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Figure 3 - Fraction of channels for which 
SNR > 0.8 ap /n /2K as a function of filter 
bandwidth, for each of four filters.
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