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I. In troduction .

A polarization calibration scheme for the analog sum is needed not only to calibrate 
observations, but also to analyze the performance of new detection equipment, specifically, 
the High Time Resolution Processor (HTRP). Since a phased array emulates a single 
dish telescope, the procedure I present for the polarization calibration of a point source 
observation is similar to that presented by Stinebring (1982) for the Arecibo telescope. 
The major differences in the methods are the summing of signals from separate antennas 
and the inclusion of the instrumental polarization phase for absolute polarization angle 
calculations. My analysis also differs from traditional calibration schemes (Stinebring, 
1982 and Conway and Kronberg, 1969) by the introduction of a complex gain to account 
for the non-ideality of the detectors. The procedure I propose may be of use to other 
phased array observations (e.g. VLBI) and single dish observations as well as the HTRP.

II . R eview  o f  Stokes P a ram e ters .

To define the terminology used in this memorandum, I shall briefly review the defi­
nitions and properties of Stokes parameters. Consider a monochromatic, electromagnetic 
wave which can be decomposed into orthogonal right (RCP) and left (LCP) circularly po­
larized components. Although the actual signals measured are broad band as opposed to 
monochromatic, the results of the single frequency component analysis may be extended 
to the broad band case because the individual frequency components may be considered 
independent of each other. The polarization components are defined by the equations

Er  =  £ r exp(z(u>* -  9)) (1)

E l =  Ei exp(iu>*) (2)

where 6 is the difference in phase between the two polarized components. The bold face 
characters (e.g. E r) denote complex quantities, and script characters generally represent 
real quantities.

From Figures 1 and 2, one sees that the position angle (#) changes with source position. 
The position angle is the angle between the source linear polarization vector, P, and the 
vertical axis of an altitude-azimuth mounted telescope. At transit, the position angle is 
equal to the true polarization angle, <f>. The sign convention for <f> is positive as measured 
from north through east. The parallactic angle, /?, is the angle between the source “axis” 
and the telescope axis. The parallactic angle is negative at negative hour angles (HA) 
and positive at positive hour angles. Thus the left side of Figure 1 corresponds to east 
(negative HA and negative (3) and the right side corresponds to west (positive HA and 
positive /?). As seen in Figure 2, the,apparent polarization, |P| cos#, varies as a cosine in
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Figure 1: Rotation of Source Polarization Vector
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Figure 2: Polarization Dependence upon Parallactic Angle
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parallaqtic angle with a phase offset equal to the source polarization angle. From Conway 
and Kronberg, 1969, (or Kraus, 1966) “if the position angle of the source varies with 
respect to the instrument by an angle z/», the phase of the true polarization alters by 2xp” . 
Therefore, 0 shall be defined as 0 =  2(/? — because this definition gives positive <f> when 
measured from north through east (see Figures 1 and 2).

The Stokes parameters for the electromagnetic wave are (Jackson, 1975)

/  =  E l E I +  E r E r  =  E f +  E l  (3)

Q =  2E tE r cose =  E JE r  +  E l E*r (4)

U =  2E lEr sin 0 =  *(E£Er  -  E l EJ^) (5)

V =  El E J -  E RE*R =  E ] -  E 2r (6)

Recall that the quantities in equations 3 through 6 are time averages. One may also write 
E rE ^ , E lE £ , E £E r, and ElEJ^ in terms of I, Q, U, and V.

ELE*L =  (I  +  V )/2 (7)

E r E r  =  ( I -  V )/2 (8)

ELE r  =  (Q +  iU ) /2 (9)

E ^E r =  (Q -  iU)/2. (10)

I I I . P aralle l and C ro ss P ro d u c ts  o f  the A nalog Su m  I F ’s.

The signal received by an antenna feed of circular polarization cannot be accurately 
represented by equations 1 and 2. The actual signal received in a single IF of an antenna 
is corrupted by cross-talk from the IF of opposite polarization (Conway and Kronberg, 
1969). Correcting equations 1 and 2 for cross-talk at the jth antenna gives

F , _  E r  +  E L€jR 

jR (1 +  t 2j n ) ' /2 ( }

, E l +  E R€jL 

jL ( H - ejz.)1/2

The terms CjL =  £y ie '^ ‘  and cjr =  e>n iut’,K are complex leakage factors, and the denomi- 
n ator serves as a  norm alization  factor. T h e  o u tp u t voltages o f the jth  an ten n a in the array
are proportional to E^ and E;L by the complex gains GjR and GjL, respectively.
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VjR =  GjRE'R (13)

VjL =  Gjl El (14)

The data path of an antenna signal is as follows for the HTRP system. The analog 
sum of the VLA adds the individual antenna signals for a single IF. The broad band 
summed signal is subdivided into narrower subbands by the videoconverters in the Mk 
III filter bank. Selected videoconverter outputs are multiplied by an appropriate complex 
conjugate to generate the parallel products, RR and LL, and the cross products, RL and 
LR. The parallel and cross products are ultimately used to calculate the source Stokes 
parameters.

The multiplying polarimeter creates the parallel and cross products as shown in Figure 
3 for an ideal case. In the particular case of the HTRP, the RCP polarization component 
is shifted by +90 degrees to generate the RL cross product. The addition of a 90 degree 
phase shift is equivalent to multiplying by e,7r/2 =  i =  y /- [ .  One can show in the algebra 
that RL and LR do not depend upon which polarization component is phase shifted or 
complex conjugated; however, the sign of RL does depend upon the sign of the phase shift.

The detected output of the analog sum in RCP for N  antennas in the array is

RR  =  B r r (A r  ^ 2  VjR)(AR v kR)* =  BrrA ^j E W r V J r ) .  (15)
j = 1 k= 1 j k

A r is the complex gain of the videoconverter, and B r r  =  is the complex
gain of the RR detector. Different summation indices (j, k) may be used in equation 15 
because once the antenna voltages are summed, all individual antenna information is lost. 
Justification for the detector gain term will be given in Section VI. Similarly, the remaining 
complex conjugated products are

N  N
LL =  B u . A l £ E ( V j LV JL) (16)

j  k
N  N

LR =  BLr Ar Al £  £ ( V J LVjR) (17)
j  k
N  N

RL =  iB r lAr AJ X ^ VkLy jiO- (18)
j k

Carrying out the multiplication and substituting equations 7 through 10, one finds

LL J - B LLA l £  £  I  G'l<^ l  [/(1 +  ejLf. L) 
2 i k y /(1 + c J i K 1 + 4 l )
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Figure 3: Multiplying Polarimeter



+  ^ (1  — ejLe£L) +  (Q — iJj )ejL +  (Q +  iU)e^L] j (19)

RR = 1 b r r  A \  £  £  {  -T  - Gf ^ R 2 . ['(1 +  ejRekR.)
j k { y j(1 +  e>ft)(l +  ekR)

— V(1 — €jReJR) +  (Q +  iU)cjR +  (Q — i77)eJR] |  (20)

RL = i ARA iB RL £  £  { -  G; L^ R [0(1 +  e;LejR)
j  k  ̂yj( 1 +  tkL)(l +  tjR )

— iU( 1 — e£L6jR) +  -̂ (CkL +  ejR.) +  ^ ( ejR — ^kL)] |  (21)

LR = i ARALBLR Y ,  E  {  / „  Gf ^ L , , [<?(1 +

— iU( 1 — e j a e j L )  +  ^ ( ejR  +  ek l ,)  +  ^ ( ejR  -  « J l ) ]  1 (22)

Equations 19 through 22 may be greatly simplified by assuming the magnitudes of the 
complex leakage factors are much less than one (e < <  1); therefore, terms which are second 
order in e are negligible. If the source linear polarization is defined as P =  Pe*e =  Q +  z£7, 
equation 20 simplifies to

-  N  N  N  N
RR = - A 2RBRR[(/ -  V) E  E ( g J * g Jr )  +  p E  E ( GjRG^ £jR)

j  k j k

N  N
+ P* 5Z (2̂ )

3 k

Looking at the summations of the gain terms, one notices the summations are proportioned 
to the averages of their arguments.

N  N
E  E < g j* g *r > =  jV2<GjR)(G ;R> (24)
j *



N  N
£  E ( Gi l G« £jR) =  ^,2(^ R ){G jR e jR ) (25)

J k
If the leakage terms are independent of the gains, the covariance of Ge is Cov(GjRCjR) =  
(GjRCjR) — (Gjr ) ( r ) =  0. Simply stated, the zero covariance stipulates that a change in 
antenna gain does not produce a change in the antenna IF leakage. The zero covariance 
allows one to factor out the average gain in equation 23. The expression for RR reduces 
to

RR  =  i ^ B RR;V2|(GjR)|2[/ -  V +  P(ejR) +  P*<eJR>] (26)

If we define (Gja) =  GRt"^R and (ekR .) =  and recall that the sum of the complex
conjugates is the complex conjugate of the sum (i.e. (e£R) =  (ekR>*), RR simplifies to

RR =  - B RRA^G^iV2 [(I - V )  +  2P tR cos(e -  <£/*)] (27)

because for any complex number z =  zeie,z +  z* =  2zcos0. Since the signals actually 
recorded are real signals, the signal recorded for RR is

RR  =  i?e[RR] =  - A 2r G2rN 2B rr  cos xI>r r [(I -  V) +  2PtR cos(0 — </)r )\ (28) 

Similarly for LL one finds

LL  =  Re[LL] =  - A 2l G2l N 2B l l  c o s ^ l l [ ( I  +  V) +  2P e i cos(9 — <f>L)] (29)

where (cjl) =  €lc*^l ,(G jl )  =  G ie t(̂ L and B l l  =  Using the assumptions of
e < <  1 and Cov(Ge) =  0 for RL, one finds

RL =  ^ B RLARA£iV2(GjR>(Gi:L)[P* +  I « e jR) +  (eJL»  +  V((eiR) -  (eJL» ]  (30) 

Next, define sum and difference vectors as

s =  ae '*+  =  («jR) +  («kL) (31)

d =  6e**~ =  (€jR> -  («kL) (32)

and let A rA l =  A rA l,61̂ a such that A rA l(G jr)(G £ l ) =  A r A l G r G . The angle 
^  is the fundamental, instrumental contribution to the polarization 

angle. For those familiar with interferometric polarization calibration at the VLA, ij> is 
an alogous to , bu t not the sam e  a s , the ph ase  correction applied  in the p ro gram  POLCAL.
RL becomes
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RL — 2 R̂-A-lG rG lB etx̂ \P* + Is + Kd]

The recorded signal is the real part of RL.

(33)

R L — i?e[RL] — -^Ar Al G r G l B rl.N 2[P s\'i\ (9 — xf> — U'r l )

-  I a  sin(^+ +  0  +  *I>r l ) ~  V 8s\n{^- +  xj; +  xI>r l )\ (34)

Likewise, the recorded signal for LR becomes

L R  =  72e[LR] = - A r Al,G r G l B l,r N 2[P cos{6 — tjj — x̂ i r )

+  I a  cos(V>+ +  0  +  rj>LR) +  VS cos(^- +  </> +  V>l/0] (35)

The implications of the expressions for R R , LL , i£L, and L i? are as follows:

1. A plot of LL  or RR versus parallactic angle should produce a sinusoid with a 
constant offset. The offset will be proportional to I ±  V, and the amplitude of the sinusoid 
will be proportional to the linear polarization. For sources of small linear polarization and 
for instruments of very good design (e «  0), the L L  and R R  output will be constant with 
parallactic angle.

2. A plot of L R  or RL versus parallactic angle should produce a sinusoid with a 
constant offset. The offset depends upon the source Stokes I and V, and the amplitude of 
the sinusoid will be proportional to the linear polarization. For instruments of very good 
design (a, 6 «  0), there will be very little offset.

3. If the detectors are ideally designed (B LR =  B RL -  1 and tpRL -  %l>LR =  0), the 
gain products of R L should equal that of L R y and the sinusoid of R L should be exactly 
90 degrees out of phase with that of LR. L R  and R L should be offset from true cosines 
and sines, respectively, by the same phase.

4. The sign of the constant offset in R L and L R  depends upon the sign of the 
instrumental phases (^+ ,ip -,tpRL ^ L R i and ip) and the sense of circular polarization.

5. The sign of the constant offset in RR and LL  is always non-negative.

6. When performing observations for polarization calibration, it is imperative that 
the number of antennas in the array remains constant (N 2 =  constant).

A good  check on the preceding analysis is to  verify th at it agrees with th at o f S tin eb rin g
for a single dish telescope. The simplest case is one in which the detectors are ideal.
A dditionally , if one is not in terested  in abso lu te  polarization  angle calibration , one m ay  
arb itrarily  set the in strum en tal polarization , to  zero. W hen xp is set to zero, one can  only
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make quantitative statements about the changes in source polarization angle for different 
observations provided the gains remain constant between observations. This special case is 
also applicable to observations in which one is only interested in the magnitudes of / ,  V , and 
P . By observing a calibrator of little or no polarization (V «  P  «  0), one may determine 
the gain products in the expressions for RR  and LL  (equations 28 and 29, respectively). 
The gain products may be applied to the signals from a source of unknown polarization 
provided the instrumentation is linear in its reponse. Assuming linearity and after dividing 
by the appropriate gain products, the gain calibrated parallel products become

RRc =  / - V  +  P<ejR)+ P * (e j ;R) (36)

LLC =  /  +  !/  +  P(ekL*) +  P*(ejL) (37)

The measured Stokes I and V are

/°  =  +  L L c) =  - (2  J  +  Ps +  P V )  =  I  +  P<jcos(0 +  ip+) (38)

Vc =  “  R R c) =  V — PS cos(6 +  ^ ) (39)

The gain products calculated for the parallel products may be applied to the cross products. 
The gain calibrated cross products become

R L =  P s in  6 — l a  sin rp+ — V tfsin  (40)

L R  =  P  cos 6 +  l a  cos +  V8 cos ip-. (41)

The first term in equation 40 is Stokes U , and the first term in equation 41 is Stokes Q. 
Interpreting equations 40 and 41 as expressions for measured Stokes U and Q gives

Uc =  U — l a  simj;+ — VS sim p- (42)

Qc =  Q  +  l a  cos xj>+ +  VS cos xp- (43)

Equations 38, 39, 42, and 43 agree exactly with the Stinebring expressions for the mea­
sured Stokes parameters provided one accounts for the differences in definitions of sum 
and difference vectors. As Stinebring shows, it is computationally convenient to express 
the measured and actual Stokes parameters as four-element vectors. The vectors are pro­
portional to one another by a four-by-four matrix. The matrix elements are determined 
by equations 38, 39, 42, and 43. I refer the reader to Stinebring for details of the matrix 
as I prefer to work with the parallel and cross products.

IV. Recipe for Polarization Calibration.
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A. Observe blank sky to determine the instrumental system noise. The magnitudes 
of the blank sky RR  and LL  signals will be considerable, and the magnitudes of RL and 
LR will be small. L R  will typically be larger than RL because correlated signals (e.g. 
waveguide cycle at the VLA) exist in the IFs of opposite polarization.

B. Observe a calibrator of known flux. Ideally the calibrator should be unpolarized, 
but as will be shown in Section V, the instrumental contribution to R R  and L L  is small 
enough to ignore. This allows steps B and D to be combined.

C. Subtract the signals in A from the corresponding signals in B to calculate the gains 
for the parallel products. Applying the gains to other source observations normalizes the 
source flux to that of the flux calibrator.

D. Observe a calibrator of known polarized flux and polarization angle at different 
times near transit of the calibrator. The observations near transit provide a large variation 
in parallactic angle. An appropriate sinusoid fit to the blank sky corrected RL and L R  
data allows one to calculate the cross product gains and the instrumental polarization 
phase.

E. Apply the gain terms and instrumental polarization phase to the blank sky corrected 
data of a source of unknown polarization properties. Multiply the gain corrected data by 
the calibrator flux to calculate the source flux.

V . R esu lts .

The recipe in Section IV was applied to HTRP observations conducted on February 
14, 1990. IF ’s A and D of the VLA were phased at center frequencies of 8515MHz and 
bandwidths of 50MHz. Noise tube switching was turned off. The high frequency was 
used to avoid Faraday rotation due to the earth’s ionosphere. The VLA was in its largest 
configuration (A). Since weather conditions were less than ideal, large telescope baselines 
and high observing frequency contributed to atmospheric phase stability problems. The 
upper sidebands of two Mk III video converters were configured for 1MHz bandwidths and 
local oscillator (LO) frequencies of 160MHz. The LO setting corresponds to a sky frequency 
of 8529.5MHz. Over the course of the observation, the number of antennas in the array 
remained constant. 3C286 was used as both a flux calibrator and a polarization calibrator.

Figures 4a and 4b are plots of equations 28 and 29, respectively, versus parallactic an­
gle for 3C286. The parallactic angle was calculated based upon the latitude and longitude 
of the center of the array. The data have been corrected for gain, and are normalized to the 
flux of 3C286. Each data point is the average of 6000 samples, and corresponds to about 
15 minutes of time. If any sinusoidal variation is present, its amplitude is below the two 
percent level. The scatter in the data is largely due to the atmosphere phase instability. 
Similar plots of X-band data collected in the D array configuration show much less scatter. 
The plots verify implications # 1  and # 5  in Section III, and indicate eR and ei are very 
small.

Figures 4c and 4d are plots of equations 34 and 35, respectively, versus parallactic angle 
for 3C 286. T h e  d a ta  h as been corrected  for the gain s o f the parallel p ro d u cts , bu t not the 
gain s o f the cross product detectors. T h e  equations in the upper right hand  corners o f the
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Figure 4a: Right Circular Polarization (RR) of 3C286
CM

Parallactic Angle (degrees)

Figure 4b: Left Circular Polarization (LL) of 3C286
CM

Parallactic Angle (degrees)



Figure 4c: Im aginary Part o f Cross Products (RL) fo r  3C286

Figure 4d: Real Part o f Cross Products (LR) fo r  3C286

c\ j

Parallactic Angle (degrees)



plots are the non-linear least squares best fits to the data. The circles in the data represent 
the actual data points, and the solid lines are the fits. As one can see from the equations, the 
amplitudes and phase offsets of the two sinusoids are nearly the same. The sinusoids are out 
of phase by almost 90 degrees. The constant offsets in both equations are very small. These 
conditions verify implication # 2  and suggest il>RL =  xpLR which is a condition of implication 
#3 . Since 3C286 has no circular polarization (V =  0) and is 11% linearly polarized, one 
can calculate B RL =  0.1375/0.11 =  1.25 and B LR =  0.1304/0.11 =  1.19. These values of 
B rl and B lr  give crsin(0+ +  0 +  0 k l)  =  0.0064 and a  cos(t/>+ +  if> +  x!>l r ) =  0.0058. So, 
only sources of large flux (I) will contribute significantly to the constant offset in R L  and 
LR. The R L instrumental phase angle, xf> +  xI>Rl , may be calculated using the definition 
of 6 from Section II and knowing the polarization angle of 3C286 at X-band (2(f> =  65°). 
From the equation for R L  in Figure 4c and equation 34, 20  +165.6 =  2/3 — (65 +  
which gives xp +  R L =  -230.6. Since sin 6 =  sin(0 +  27r), xp +  xpRL =  360 -  230.6 =  129.4. 
Similarly for LR,tfi +  xI>lr  =  128.5.

Figures 5a and 5b are plots of equations 38 and 39, respectively, versus parallactic 
angle for 3C286. The data have been corrected for gain and are normalized to the flux of 
3c286. Recall the expressions for I c and Vc assume the detectors are ideal. The figures 
show that I c is essentially one and Vc is zero as they should be. A slight hint of sinusoidal 
variation is present in the plots with amplitudes of about one percent. This suggests an 
upper limit on 6 and a  of about 10% since P  =  0.11. S and a  are probably much less than 
0.10 because the data scatter in the figures is dominated by atmospheric phase instability.

Now that the amplitudes and phases of the complex gains and leakage factors are 
known, one may measure the polarization properties of other sources. Four VLA calibra­
tors were observed during the February 14 run in addition to 3C286. With the exception 
of 3C286, each calibrator was observed for about 15 minutes. The flux (/) , linear polar­
ization (P ), and polarization angle (2<j>) calculated for each source are tabulated in Table 
A along with their associated one sigma errors. The source name is specified with J2000 
terminology. The alias in Table A is an alternate source name. Sources which do not have 
3C catalog numbers are denoted by their J1950 names.

T able A . A nalog Su m  P olarization  C alib ration .

Source(J2000) Alias J(Jy ) P (Jy ) 2<£(deg)

1331+305 3C286 5.20 +  0.04 0.57 +  0.01 64.8 +  0.9
1221+282 1219+285 1.07 +  0.01 0.03 +  0.01 -115.0 +  11.2
1256-057 3C279 9.98 +  0.09 0.14 +  0.01 -114.2 +  2.6
1229+020 3C273 25.20 ±  0.23 1.15 +  0.02 -55.0  +  0.8
1613+342 1611+343 3.01 ±  0.02 0.08 +  0.01 12.2 +  3.0

The results of the analog sum polarization calibration method were compared to those of 
s tan d a rd  in terferom eter po larization  calibration . T h e  in terferom eter resu lts  are  tab u la ted
in Table B.
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Figure 5a: Measured Stokes I

Parallactic Angle (degrees)

Figure 5b: Measured Stokes V

Parallactic Angle (degrees)



Table B .  In terferom eter Polarization Calibration .

Source(J2000) Alias J(Jy ) ^ (Jy ) 20(deg)

1331+305 3C286 5.04 +  0.11 0.58 +  0.03 65.0 +  0.1
1221+282 1219+285 1.02 +  0.01 0.02 +  0.01 -151.0 +  3.6
1256-057 3C279 9.83 +  0.12 0.12 +  0.04 -160.6 +  3.7
1229+020 3C273 25.90 +  0.42 0.93 +  0.19 -47.0  +  0.5
1613+342 1611+343 2.90 +  0.02 0.07 +  0.02 - 6 .7 +  0.8

The total and polarized fluxes in the two tables generally agree very well. Only the 
polarization angle of 3C286 is in good agreement between the two polarization calibration 
methods. Possible origins of the discrepancy in the polarization angle are atmospheric 
phase instability, discrepancies in the polarization calibration methods, and non-linear 
phase response of the HTRP to changing input power levels. Testing of the prototype 
HTRP detector set shows that the measured phase remains constant at intermediate input 
power levels (1990, McKinnon). Therefore, non-linear phase response cannot account for 
the discrepancy. The polarization calibration tests were performed under the worst of 
conditions for atmospheric phase stability: X-band in A array in wet weather. Testing of 
this polarization calibration method should be repeated under the more ideal observing 
conditions of lower frequency (L-band), smaller array configuration (C or D), and dry 
weather.

At some point, the two polarization calibration methods will not agree. When inter­
ferometer data is calibrated, one has the luxury of reviewing data from antenna pairs. If 
antenna data is corrupted, it may be removed from the data set. In the case of the analog 
sum, antenna data is summed in hardware regardless of the data quality. Therefore, the 
signal-to-noise ratio of the calibrated analog sum data will generally be worse than that of 
the calibrated interferometer data.

V I. H T R P  In stru m en ta l R esp o n se .

No instrument is perfect, and it is obviously important to understand the sources of 
error in the instrumentation. One channel of the HTRP phase shift/detector/integrator 
network was tested over its 4MHz design bandwidth to evaluate its performance. The 
following paragraph discusses the testing procedure.

The output of a frequency synthesizer was split by a power divider into the two HTRP 
inputs (R and L). The R R , L L , R L , and LR  outputs of the HTRP were recorded for input 
frequencies of 0.2 to 4MHz at 0.2MHz intervals. The power out of the synthesizer was 
measured with a power meter to insure constant input power over the frequency range of 
the test. Occasionally the amplitude of the synthesizer waveform had to be adjusted to 
maintain con stan t sign al power to the H T R P . T he power w as m ain tain ed  at a level such
that the power level into each HTRP input was -lOdBm. The HTRP was designed to
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Fig. 6a: RR Frequency Response

Frequency (MHz)

Fig. 6b: LL Frequency Response

Frequency (MHz)

Fig. 6c: Cross Product Phase Error Fig. 6d: Integrated Phase Error

Frequency (MHz) Bandwidth (MHz)



produce a one volt output for a -lOdBm input. The power divider did not introduce a 
phase error in the cross products because it was made of resistors.

Ideally this test should produce one volt outputs at R R  and LL . In terms of decibels 
(dB =  101og10(Vr/Vro)), the RR and LL outputs should be zero over the 4MHz frequency 
range. Since the R and L inputs were exactly in phase (0 — 0), the LR  output should 
have been one volt and the RL output should have been zero volts. The phase error over 
the frequency range would then be zero because 6 — arctan(7?L/L72) =  0. The actual 
results are shown in Figures 6a through 6d. The responses of the RR  and LL  detectors 
decline by about 0.6dB over 4MHz in Figures 6a and 6b. The phase error between R L 
and LR  at a particular frequency is shown in Figure 6c. The phase of R L  generally lags 
that of L R  over the entire 4MHz range, and the phase error is as much as -9.4 degrees at 
3.4MHz. Figure 6c is the phase error at a particular frequency component, but what is 
the phase error due to a broad band noise source? An estimate of the broadband phase 
error is the average of the function in Figure 6c over the corresponding frequency range. 
For a continuous function, the average is

W / =  7  Jo e^ dv (44)
which shall be approximated in this case by

1 i = f
W / =  7 £ « . ' A /  (45)

J  i=0
The incremental frequency, A / ,  in the summation is 0.2MHz. Figure 6d plots the average 
phase error at each bandwidth, / .  The effect of averaging over the band smooths the 
original function of Figure 6c. The largest phase error, -5.9 degrees, is expected to occur 
for an observation using a 4MHz bandwidth. For the observations discussed in Section 
V, the phase error at 1MHz is expected to be -1.6 degrees. From the equations for R L  
and L R  in Figures 4c and 4d, the actual phase error is 165.6 — 166.5 =  —0.9 degrees. 
The agreement between the predicted and measured phase error is good considering the 
coarseness of the calculation in equation 45.

The non-ideal behavior of the detectors shown in Figure 6a through 6d justifies the 
need for the detector complex gains introduced in Section III. At larger bandwidths, the 
detector complex gain amplitude decreases and the phase error increases. Test observations 
at 4MHz support this hypothesis. The phase error at larger bandwidths causes polarization 
calibration to be more computationally intensive. Instead of calculating a phase from R L 
and L R  and subtracting a single instrumental phase angle, one must individually correct 
R L  and L R  for their separate instrumental phase angles, and then compute the source 
polarization single.

V II . C onclusions.
The polarization calibration scheme I have presented is applicable to observations of 

point sources at wavelengths where good polarization calibrators exist. Good polarization 
calibrators have constant polarization angle and polarized flux, and can be used to deter­
mine the absolute polarization angle of an arbitrary source. There are no good P-band
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polarization calibrators for the VLA. One may still conduct P-band polarization observa­
tions to determine I, P, V, and relative polarization angle, but absolute polarization angle 
cannot be measured. I have not discussed Faraday rotation, and one must remember to ac­
count for Faraday depolarization by correcting the polarization angle. The results I have 
presented are encouraging, but they should be regarded as preliminary until additional 
testing of the HTRP is conducted at low frequency in a small array configuration.
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