VLA-GOLDSTONE ARRAY FORMAL REVIEW

JULY 1987

VLA-GOLDSTONE ARRAY AGENDA

TOPIC	PRESENTER	TIME
• INTRODUCTION	P.T. WESTMORELAND/ R.D. EKERS/ R. STEVENS	9:00
• BACKGROUND	J.W. LAYLAND	9:15
• VGTA PROJECT INTRODUCTION	D.W. BROWN	10:00
• IMPLEMENTATION PLAN	K.P. BARTOS	10:15
• SYSTEM DESIGN ISSUES	D.W. BROWN	10:45
• LUNCH		12:15
• NRAO IMPLEMENTATION	W.D. BRUNDAGE	1:00
• IMPLEMENTATION STATUS	K.P. BARTOS	2:30
• OPERATIONS PLANNING	L.E. BUTCHER	3:18
• VGTA PROJECT REMARKS	D.W. BROWN/R.A. SRAMEK	3:4
BOARD DISCUSSION	R. STEVENS	4:00

VLA-GOLDSTONE ARRAY FORMAL REVIEW

INTRODUCTION

P.T. WESTMORELAND R.D. EKERS R. STEVENS

JULY 1987

INTRODUCTION REVIEW BOARD

• P.T. WESTMORELAND	JPL, CONVENING AUTHORITY
• R. STEVENS	JPL, CHAIRMAN
• D.P. HOLMES	JPL, SECRETARY
• R.D. EKERS	NRAO, DEPUTY DIRECTOR, VLA SITE
• P.J. NAPIER	NRAO, VLB ARRAY PROJECT MANAGE
• R.P. MATHISON	JPL, DIVISION 33
• T.H. THORNTON	JPL, DIVISION 36
• J.W. LAYLAND	JPL, OFFICE 410
• G.M. RESCH	JPL, OFFICE 420
• R.J. AMOROSE	JPL, OFFICE 440
• N.R. HAYNES	VOYAGER PROJECT MANAGER

PTW-1 7-8-87

VLA-GOLDSTONE ARRAY FORMAL REVIEW

BACKGROUND

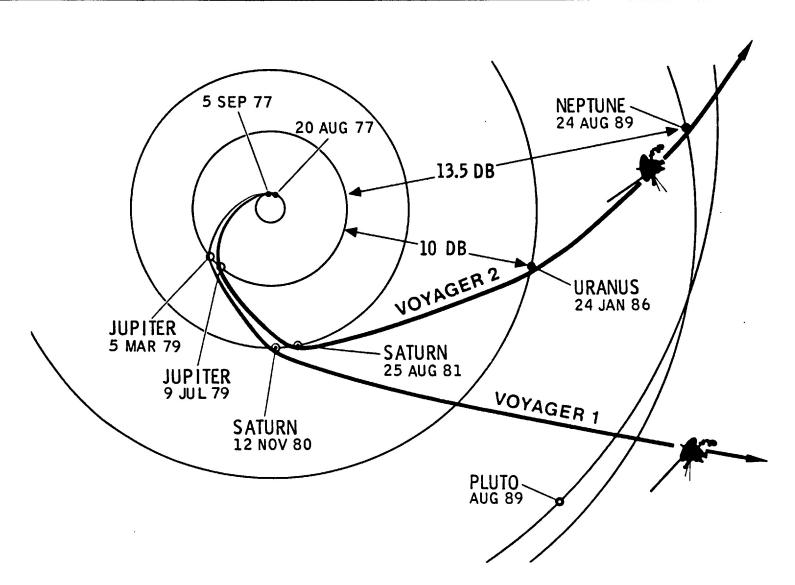
J.W. LAYLAND

JULY 1987

BACKGROUND AGENDA

- VOYAGER HELIOCENTRIC TRAJECTORY
- JPL (VOYAGER) "REQUIREMENTS"
- VOYAGER LINK PERFORMANCE AT NEPTUNE 1984 ESTIMATE
- NRAO VLA "REQUIREMENTS" / STATUS IN 1987
- SYSTEM DESIGN ISSUES (AS OF 1984)
- NOTES ON VLA PLANNING 1984
- CONCLUSION OF 1984 FORMAL REVIEW

BACKGROUND


SIGNIFICANT EVENTS IN DSN TELEMETRY ARRAYING

1972	• ARRAY DEMONSTRATION AT DSS 61/63 WITH PIONEER 8	
1974	• ARRAY DEMONSTRATION AT DSS 12/13/14 WITH MVM	
1977	• LAUNCH OF VOYAGER TO JUPITER/SATURN WITH URANUS/NEPTUNE OPTION	
1980 MAY • INITIAL LETTER TO CSIRO/PARKES		
1980/81 • ARRAY OPERATIONS 64 M/34 M FOR VOYAGER AT SATURN		
1982 FEB	• INITIAL JPL LETTER TO NRAO CONCERNING VLA	
MARCH	• REVIEW OF PARKES PHASE A STUDY	
1983 JULY	• WEAK-SIGNAL TESTS OF AUTO-PHASING AT VLA	
1984 JUNE	• FORMAL REVIEW OF VLA ARRAYING	
1984 DEC	• FIRST VLA X-BAND TESTS	
1986 JAN	• ARRAY OPERATIONS 64/34/34 + PARKES FOR VOYAGER-URANUS	
1986 JUNE	• FIRST VLA X-BAND AUTO-PHASING TESTS ON VOYAGER	
1987 APRIL	• FIRST VLA-VOYAGER TELEMETRY DETECTION AND RECORDING	

BACKGROUND VOYAGER HELIOCENTRIC TRAJECTORY

6485-3462b

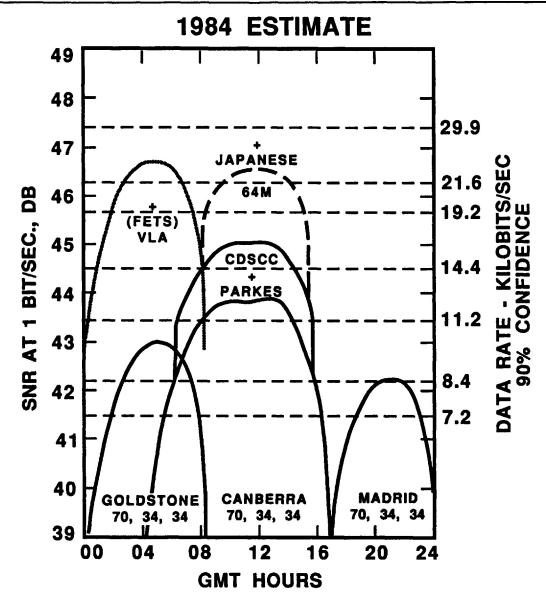
_JPL

VLA-GOLDSTONE ARRAY FORMAL REVIEW

JWL-2 JWL-3 6-22-84 7-8-87

BACKGROUND

JPL (VOYAGER) "REQUIREMENTS"


- VLA RECEPTION CAPABILITY AT 8.4 GHz EQUIVALENT TO 2.5 TIMES A DSN 64-METER
- VOYAGER-NEPTUNE IMAGING SCIENCE OBSERVATIONS INCREASED BY 35-50% OVER BASELINE (DSN + PARKES)*
 - VLA-GDSCC ARRAYED SUPPORT FOR 21.6 KBPS AT NEPTUNE ENCOUNTER
 - VLA-GDSCC ARRAYED SUPPORT FOR 40 PASSES AT NEPTUNE ENCOUNTER

*DEPENDS UPON SPACECRAFT CONDITION

BACKGROUND

VOYAGER LINK PERFORMANCE AT NEPTUNE

6485-3464b

JPL

VLA-GOLDSTONE ARRAY FORMAL REVIEW

JWL-4A 6-22-87

JWL-5 7-8-87

BACKGROUND NRAO-VLA "REQUIREMENTS"

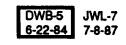
- SPECTACULAR VOYAGER PLANETARY ASTRONOMY AT NEPTUNE
- A USABLE AND USEFUL 8.0-8.8 GHz RECEPTION CAPABILITY ON ALL VLA ANTENNAS
 - RADAR ASTRONOMY WITH DSN-GOLDSTONE
 - RADIO ASTRONOMY -- ADDITIONAL SAMPLE FREQUENCY FOR SPECTRAL MONITORING

JWL-5 6-22-84

STATUS IN 1987

- FIRST 8-GHz VLBI EXPERIMENTS JULY 1986/MAY 1987
- FIRST GOLDSTONE-VLA SOLAR SYSTEM RADAR MAY 1987

BACKGROUND SYSTEM DESIGN ISSUES

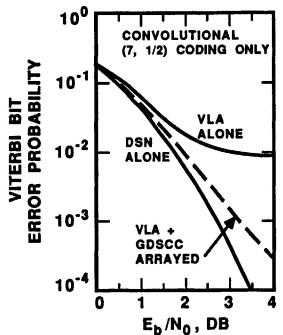


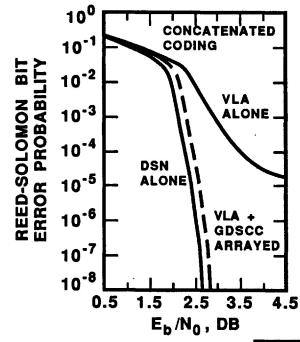
ISSUES TO BE ADDRESSED IN FY 85

- SYSTEMATIC PROBLEMS (E.G. RAO COMBINING, 1.6 MS DATA GAPS)
- POSSIBLE USE OF HEMT TECHNOLOGY vs CURRENT FET BASELINE FOR LNA
- SYMBOL STREAM COMBINING AT GDSCC VS BASEBAND BASELINE

ISSUES TO BE ADDRESSED IN FY 86

- POSSIBLE REQUIREMENT FOR ADDITIONAL POWER GENERATION CAPACITY AT VLA
- REAL-TIME VS NEAR-REAL-TIME COMBINING VS BOTH




BACKGROUND

NOTES ON VLA PLANNING - 1984

- COMBINER USES 3-LEVEL QUANTIZATION--SNR DEGRADATION APPROX 1 DB
 - ALREADY INCLUDED IN TELECOM CURVES
- VLA SIGNAL TRANSMISSION INTERRUPTED FOR 1.6 MS EACH 52 MS FOR SYSTEM **CONTROL PURPOSES**
 - EFFECT ON PHASE-LOCK AND DETECTION ASSUMED NEGLIGIBLE
 - -- NEEDS TO BE VERIFIED --
 - EFFECT ON CODED DATA IS USAGE DEPENDANT:
 - ERRORS IF VLA USED ALONE
 - DEGRADATION OF UP TO 0.3 DB IF VLA ARRAYED WITH GOLDSTONE

3-29-84

JWL-8 7-8-87

BACKGROUND

CONCLUSION OF 1984 FORMAL REVIEW

- ARRAYING OF THE VLA WITH GDSCC FOR SUPPORT OF THE VOYAGER AT NEPTUNE PROVIDES A SUBSTANTIAL INCREMENT TO THE DATA RETURNED
- OVERALL COST TO NASA IS ABOUT \$17 M
- ADEQUATE CONFIDENCE EXISTS TO PROCEED WITH ENGINEERING DEVELOPMENT OF THE VLA X-BAND CAPABILITY
- PLANNED TESTS AND ANALYSIS WILL ESTABLISH FULL NEEDED CONFIDENCE BEFORE LARGE EXPENDITURE OF IMPLEMENTATION RESOURCES

BACKGROUND 1984 FORMAL REVIEW RFA STATUS

- NINE REQUESTS FOR ACTION SUBMITTED
 - FIVE ADVISORY FOR DEVELOPMENT OF MANAGEMENT PLAN OR FOR SYSTEM ENGINEERING/DESIGN
 - FOUR SPECIFIED ACTION ITEMS
 - NO. 4: REAL-TIME REQUIREMENT FROM VOYAGER
 - NO. 5: LINK DESIGN CONTROL UNCERTAINTY
 - NO. 8: SCIENCE REQUIREMENTS
 - NO. 9: NRAO COST PROFILE
- ALL ITEMS CLOSED (WITH BOARD CONCURRENCE) BY OCTOBER 3, 1984

BACKGROUND

VLA ARRAYING FORMAL REVIEW, JUNE 22, 1984

REVIEW BOARD MEMBERSHIP

- R. STEVENS, CHAIRMAN
- R.J. AMOROSE
- M.J. CHAHINE
- R.D. EKERS
- W.E. GIBERSON (G.P. TEXTOR)
- R.K. MALLIS
- R.P. MATHISON
- P.J. NAPIER
- C.H. STEMBRIDGE
- P.T. WESTMORELAND
- R.E. McKEE, SECRETARY

JWL-BU1 7-8-87

VLA-GOLDSTONE ARRAY FORMAL REVIEW

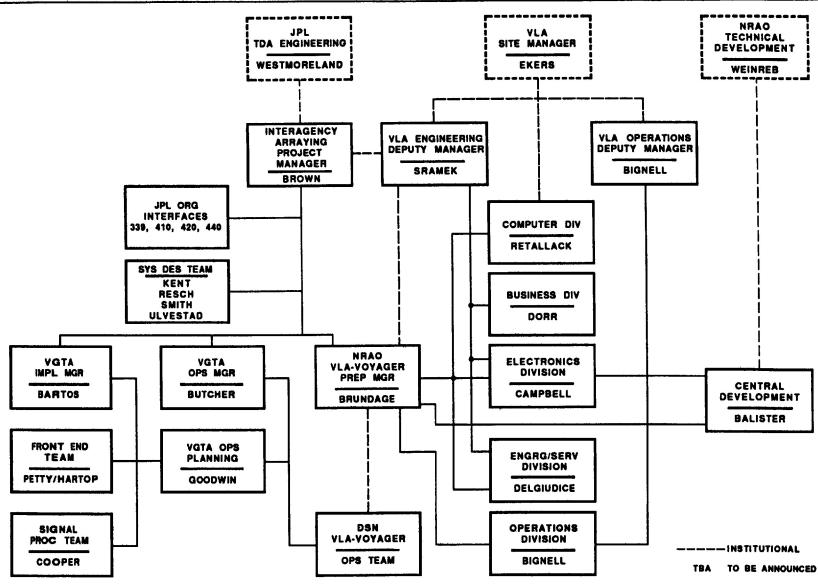
VGTA PROJECT INTRODUCTION

JPL

D.W. BROWN

JULY 1987

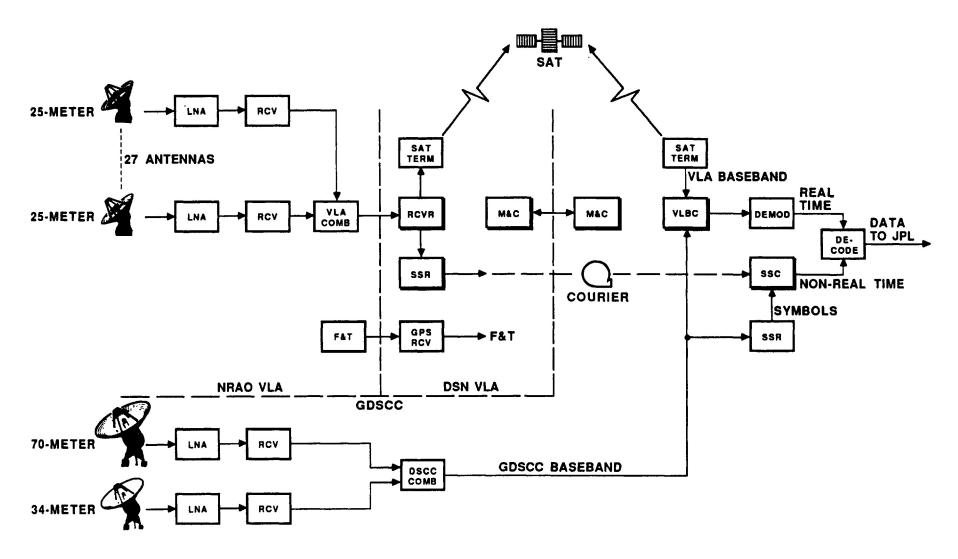
VGTA PROJECT INTRODUCTION



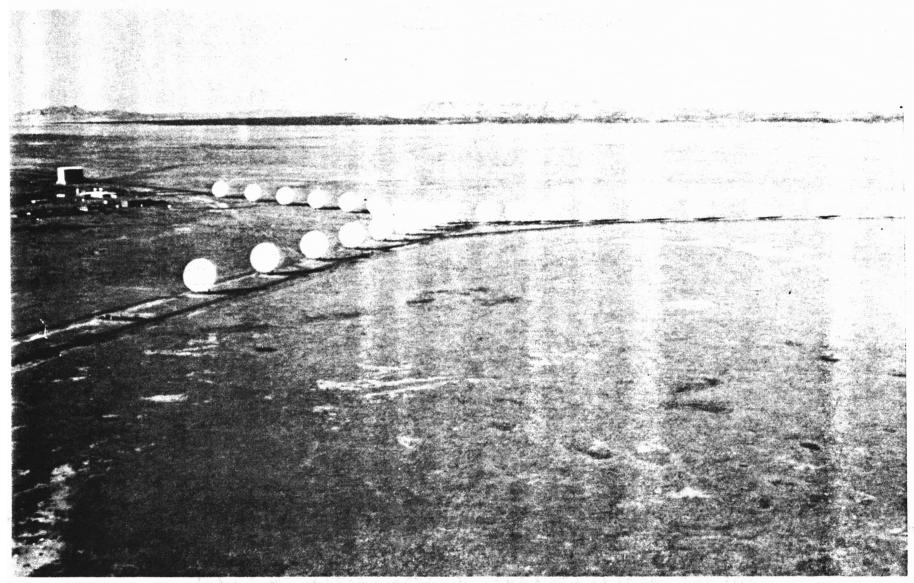
- PROJECT ORGANIZATION
- SYSTEM BLOCK DIAGRAM
- VLA SITE AERIAL VIEW

VGTA PROJECT INTRODUCTION

PROJECT ORGANIZATION



VGTA PROJECT INTRODUCTION



DWB-3 7-8-87

VGTA PROJECT INTRODUCTION VLA SITE AERIAL VIEW

VLA-GOLDSTONE ARRAY FORMAL REVIEW

IMPLEMENTATION PLAN

K.P. BARTOS

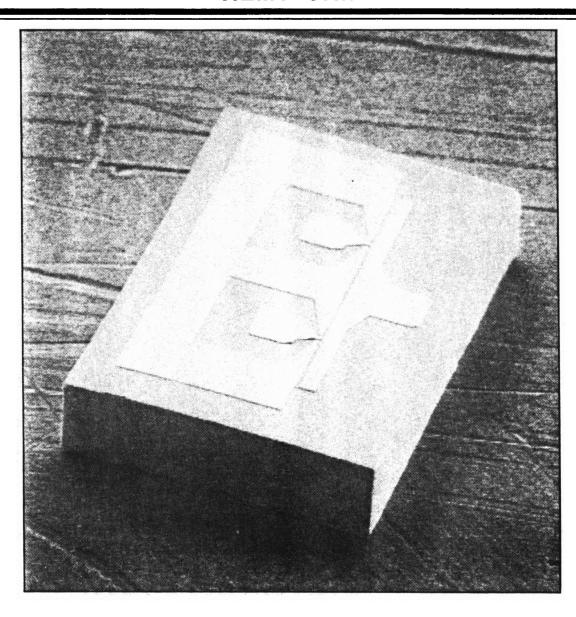
JULY 1987

IMPLEMENTATION PLAN AGENDA

- MAJOR DELIVERABLES
- PHOTOGRAPH LIST

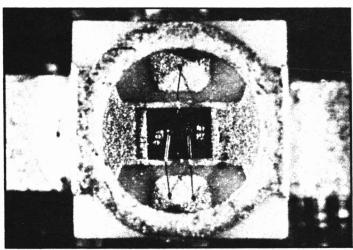
IMPLEMENTATION PLAN MAJOR DELIVERABLES

IMPLEMENTATION PLAN PHOTOGRAPH LIST

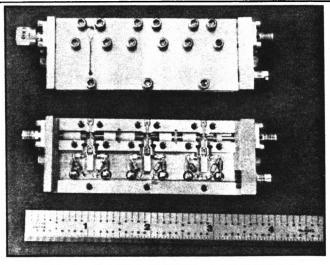

PHOTO

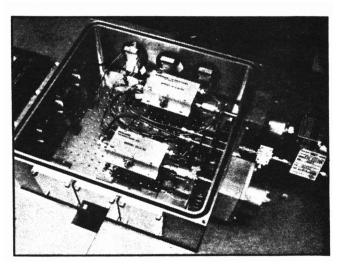
DESCRIPTION	PHOTO No.
• HEMT CHIP	JPL 3705
VLA AMPLIFIER MODULE	JPL 3617 BC; JPL 3685 B; 333 7410 AC; 333 7411 AC
• COOLED FRONT END	JPL 3753 CC; JPL 3754 AC
• HORN	333-7575-BC
ANTENNA INSTALLATION	JPL 3767 CC; JPL 3767 AC; JPL 3766 BC; JPL 3765 DC
• POWER FACILITY	JPL 3688 BC; JPL 3761 BC; JPL 3761 DC
• ANALOG SUM	JPL 3772 AC; JPL 3752 AC
• VLA RECEIVER	JPL 3700 AC
VLA VLBC	JPL 3701 BC
• RTSP	JPL 3701 AC
• SSRC	JPL 3700 BC

IMPLEMENTATION PLAN HEMT CHIP

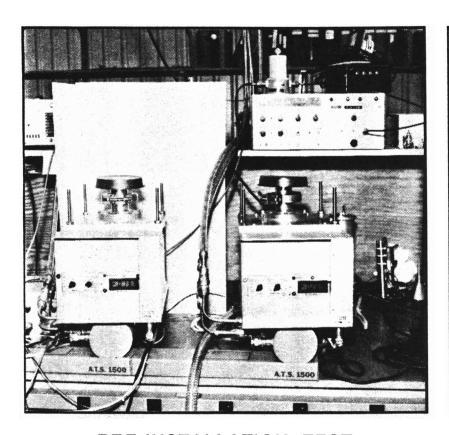


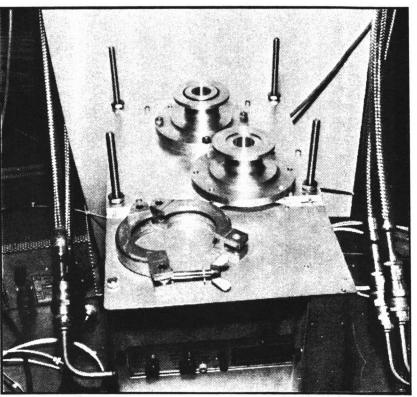
IMPLEMENTATION PLAN VLA AMPLIFIER MODULE



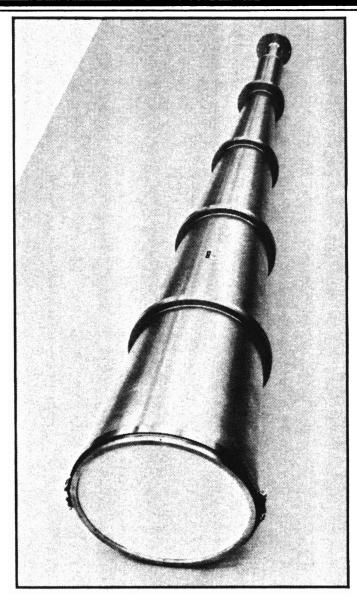

HEMT PACKAGED DEVICE

TEST CONFIGURATION


VLA AMPLIFIER MODULE

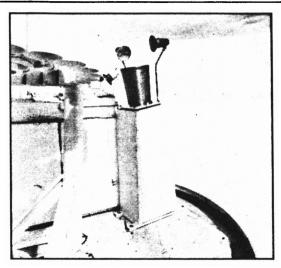

TEST FIXTURE

IMPLEMENTATION PLAN COOLED FRONT-END

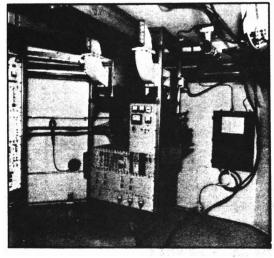


HORN QUICK DISCONNECT

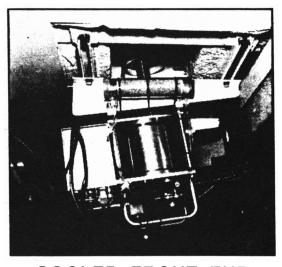
IMPLEMENTATION PLAN HORN

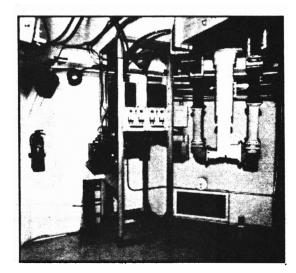


VLA-GOLDSTONE ARRAY FORMAL REVIEW


KPB-7 7-8-87

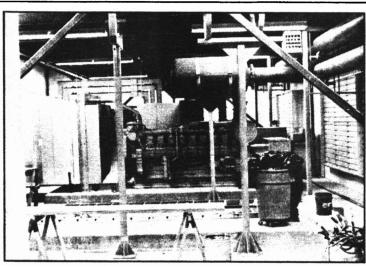
IMPLEMENTATION PLAN **ANTENNA INSTALLATION**




FEED TOWER AND HORN

UPGRADED RACK "A"

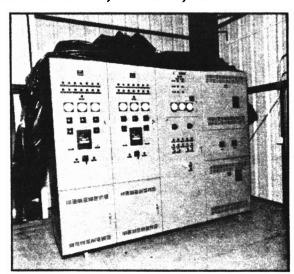
COOLED FRONT END



RACK "F"

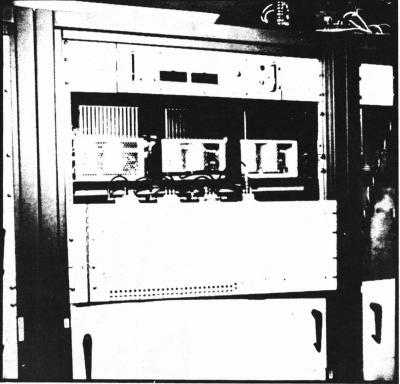
_JPL

IMPLEMENTATION PLAN POWER FACILITY



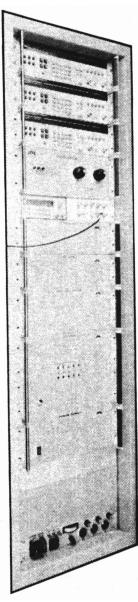
"AS PURCHASED" FROM MICRON TECHNOLOGY, BOISE, ID

BUILDING CONSTRUCTION, MAY 1987


SWITCH GEAR

_JPL

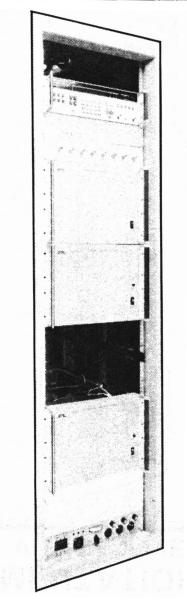
IMPLEMENTATION PLAN ANALOG SUM



CORRELATOR

DETAIL

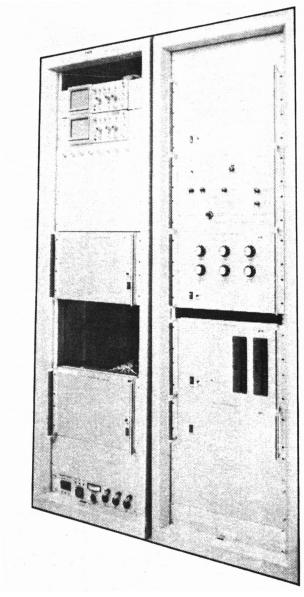
IMPLEMENTATION PLAN VLA RECEIVER


VLA-GOLDSTONE ARRAY FORMAL REVIEW

6485-3835g

KPB-11 7-8-87

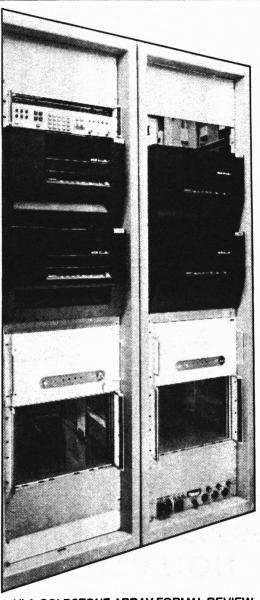
IMPLEMENTATION PLAN VERY LONG BASELINE COMBINER (VLBC)



KPB-12 7-8-87

VLA-GOLDSTONE ARRAY FORMAL REVIEW

IMPLEMENTATION PLAN REAL TIME SIGNAL PROCESSOR (RTSC)


VLA-GOLDSTONE ARRAY FORMAL REVIEW

6485-3837g VLA-GOLDSTOI

KPB-13 7-8-87

IMPLEMENTATION PLAN SYMBOL STREAM RECORDER AND COMBINER (SSRC)

VLA-GOLDSTONE ARRAY FORMAL REVIEW

KPB-14 7-8-87

VLA-GOLDSTONE ARRAY FORMAL REVIEW

SYSTEM DESIGN ISSUES

D.W. BROWN

JULY 1987

SYSTEM DESIGN ISSUES AGENDA

- VLA PROCESSOR/COMBINING
- DATA GAPS IN VLA SIGNAL
- HIGH ELECTRON MOBILITY TRANSISTORS (HEMT's)
- SYMBOL STREAM RECORDING AND COMBINING
- PRIMARY POWER GENERATION
- INTERSITE COMMUNICATIONS
- AVAILABILITY ESTIMATES
- TELECOM LINK DESIGN
- SYSTEM TEST PLAN/STATUS
- DSN OPERATING PREDICTS

SYSTEM DESIGN ISSUES VLA ON-LINE SYSTEM

- DATA COLLECTED FROM TWENTY-SEVEN ANTENNAS OVER TIME-SHARED WAVEGUIDE
- MONITOR AND CONTROL TRANSMITTED OVER TIME-SHARED WAVEGUIDE
- PROCESSOR OPERATED IN AUTOPHASING (VLBI) MODE TO ENABLE COMBINING OF ANALOG SUM
- ANALOG SUM OUTPUTS VIRTUAL SINGLE APERTURE SIGNAL TO DSN FOR TELEMETRY DEMODULATION, REAL-TIME SATELLITE TRANSMISSION, AND RECORDING
- OBSERVING FILES GENERATED ON-SITE BY JPL/DSN SETS FRONT-END BAND, OSCILLATORS, FILTERS, POINTS AND PHASES ANTENNAS

SYSTEM DESIGN ISSUES VLA PROCESSOR/COMBINING

AUTOPHASING PROCESS

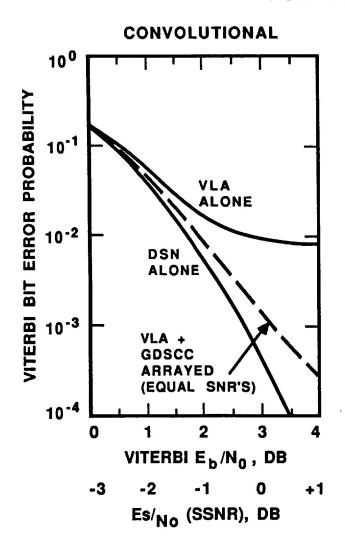
- VLA CORRELATOR DETECTS DIFFERENTIAL PHASE FOR EACH BASELINE
- ON-LINE COMPUTER SOLVES FOR INDIVIDUAL ANTENNA PHASES
 - RELATIVE TO REFERENCE ANTENNA (CURRENT CAPABILITY)
 - GLOBALLY, USING ALL BASELINES (BEFORE VOYAGER OPS)
- INDIVIDUAL PHASES ARE USED AS ERROR SIGNAL IN FEEDBACK LOOP TO SECOND LOCAL OSCILLATOR

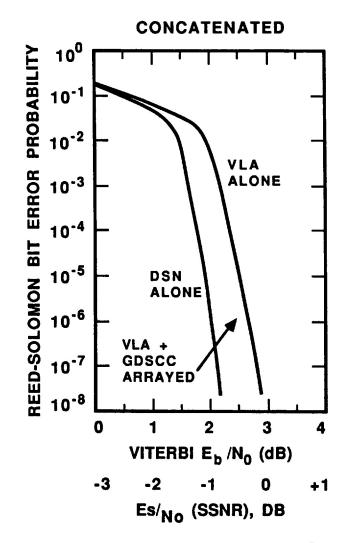
DWB-3 7-8-87

SYSTEM DESIGN ISSUES VLA PROCESSOR/COMBINING

AUTOPHASING ISSUES

- SUFFICIENT SNR ON VOYAGER TO GET GOOD PHASE SOLUTION
- MINIMAL COMBINING LOSS EXPECTED WITH GLOBAL AUTOPHASING
- BROAD BAND CONTINUUM MODE PLANNED TO EASE TUNING REQUIREMENTS
- SPECTRAL LINE MODE PLANNED FOR EMERGENCY LOW SNR
- •TROPOSPHERIC EFFECTS TEND TO DRIVE PHASE OSCILLATIONS
- COMPACT ARRAY TO MINIMIZE DIFFERENTIAL TROPOSPHERICS
- DETERMINATION OF OPTIMAL PHASE-LOOP DESIGN vs LOOP-TIME DELAY AND TROPOSPHERIC EFFECTS


ANALYSIS UPDATE FOR CONCATENATED CODING


- NOMINAL GAP LENGTH CORRESPONDS ON THE AVERAGE TO EIGHT REED-SOLOMON SYMBOLS PER CODEWORD (CODE CAN CORRECT SIXTEEN SYMBOL ERRORS PER CODEWORD)
- EFFECTIVE GAP LENGTH IS SHORTENED BY ERROR CORRECTION CAPABILITY OF THE CONVOLUTIONAL CODE
- CONVERSELY, THE EFFECTIVE LENGTH IS INCREASED DUE TO EDGE EFFECTS
- NEW "TWO-LEVEL" MODEL YIELDS ERROR-FREE PERFORMANCE FOR NOMINAL VOYAGER DATA RATES FOR ANY VLA-GOLDSTONE MIX
- RESONANCES BETWEEN GAP FREQUENCY AND (NON-VOYAGER)
 DATA RATES HAVE BEEN IDENTIFIED WHICH DEGRADE PERFORMANCE
 FOR HIGH RATIOS OF VLA-TO-GOLDSTONE MIX (EFFECT UNDER
 CONTINUING STUDY)

DWB-5 7-8-87

CODED ERROR RATES

HARDWARE SIMULATIONS

- PURPOSE: VERIFY PERFORMANCE WITH 1.6 MSEC GAPS
- CONFIGURATION: MCCC SIM/CTA 21/VOYAGER DACS/MIPL
- DEMONSTRATED COMPATIBILITY WITH DSN EQUIPMENT
- DEMONSTRATED COMPATIBILITY WITH FRAME SYNCHRONIZATION
- VERIFIED REED-SOLOMON PERFORMANCE
 - WITH NOMINALLY EQUAL VLA AND GDSCC SIGNALS
 - WITH VLA AND DSS 14 ONLY AND WITH VLA STAND-ALONE
- VERIFIED CONVOLUTIONAL PERFORMANCE
 - AS PREDICTED AT JUNE 1984 REVIEW
 - ERROR RATES UP TO 1 PERCENT FOR VLA STAND-ALONE CASE

GAPPED BER SIGNAL*

• REED-SOLOMON CODED PERFORMANCE

CONDITION	ARRAY SSNR	R-S BER
• VLA SNR << GDSCC SNR	0.0 DB	<<1 x 10 ⁻⁵
VLA SNR ≥ GDSCC SNR	+0.5 DB	< 1 x 10 ⁻⁵
• CONVOLUTIONAL CODED PERFOR	RMANCE	
CONDITION	ARRAY SSNR	MCD BER
W 4 4 WD 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0.0.00	- 40-3

• VLA SNR << GDSCC SNR	0.0 D + 1.5 D	OB<	5 x 10 ⁻³ 5 x 10 ⁻⁵
• VLA SNR = GDSCC SNR	+ 0.5 D + 3.0 D	OB<	5 x 10 ⁻³ 5 x 10 ⁻⁵
• VLA SNR >> GDSCC SNR	> 0 E	OB<	2.5% OF GDSCC
• VLA STAND-ALONE	> 0 D	OB<	1.5 x 10 ⁻²

^{*} INCLUDES THE EFFECT OF THE 1.6 MSEC/52 MSEC GAP IN THE VLA DATA STREAM AS WELL AS LOSSES IN THE VERY LONG BASELINE COMBINER

SYSTEM DESIGN ISSUES HIGH ELECTRON MOBILITY TRANSISTORS

BACKGROUND AND STATUS

- JOINT JPL/NRAO EFFORT PLACED INITIAL CONTRACT WITH GENERAL ELECTRIC IN 1984
- EARLY APPLICATION TO CRYOGENIC X-BAND SERVICE SHOWED GREAT PROMISE IN 1984-85
- SUCCESSFUL APPLICATION TO INITIAL X-BAND INSTALLATIONS AT THE VLA LED TO IMPLEMENTATION DECISION IN 1986
- TO DATE, NINETEEN HEMT FRONT-END RECEIVERS PRODUCED AT CHARLOTTESVILLE WITH EIGHT INSTALLED AT THE VLA
- LATEST HEMT PRODUCTION BATCH SHOWING EVEN LOWER NOISE AND HIGHER YIELD THAN PREVIOUS PRODUCTION

DWB-9 7-8-87

JPL

SYSTEM DESIGN ISSUES HIGH ELECTRON MOBILITY TRANSISTORS

RELIABILITY

- ACCELERATED LIFE TESTING BY GE, SONY AND TRW REPORT RESULTS SIMILAR TO STANDARD GAS FETS
- NO HEMT DEVICE FAILURE IN AN ASSEMBLED CCR PACKAGE TO DATE
- SURVIVED DIRECT LIGHTNING HIT TO DSS 13 ANTENNA
- DIRECT INTERCHANGEABILITY OF HEMTS WITH STANDARD FETS PERMITS FALL-BACK IN WORST CASE SCENARIO OF UNFORESEEN FUTURE OF HEMT APPLICATION

SYSTEM DESIGN ISSUES HIGH ELECTRON MOBILITY TRANSISTORS

BENEFITS TO NRAO, DSN, AND VOYAGER

- VLA X-BAND SYSTEM NOISE TEMPERATURE AT ZENITH PROVIDES SENSITIVE ASTRONOMY BAND AND MARGIN FOR VLA-VOYAGER SYSTEM DESIGN
 - STANDARD FET 40 45 KELVIN
 - 1986 HEMT's _____ 25 32 KELVIN
 - PREDICTED 1987 HEMT's _____ 24 28 KELVIN
- DIRECT APPLICATION OF HEMT/CCR DESIGN TO THE VERY LONG BASELINE ARRAY PROJECT
- DSN S-BAND TRAVELING WAVE MASER PERFORMANCE CAN NOW BE EQUALLED WITH A HEMT/CCR DESIGN

DWB-11 7-8-87

6485-3546a

SYSTEM DESIGN ISSUES SYMBOL STREAM RECORDING AND COMBINING

BACKGROUND

- PROVIDES REDUNDANCY TO THE REAL-TIME SYSTEM BY RECORDING TELEMETRY SIGNAL AT BOTH SITES FOR POST-PASS PLAYBACK AND COMBINING AS REQUIRED
- BASEBAND RECORDING UTILIZED FOR THE PARKES-CANBERRA ARRAY FOR VOYAGER URANUS ENCOUNTER
- SYMBOL STREAM RECORDING ADVANTAGES
 - REDUCED BANDWITH AND STORAGE REQUIREMENTS
 - REDUCED COMPLEXITY AND IMPROVED RELIABILITY THROUGH DEDICATED EQUIPMENT DESIGN
- ADVANCED SYSTEM TECHNOLOGY DEMONSTRATION AT URANUS ENCOUNTER ESTABLISHED FEASIBILITY

SYSTEM DESIGN ISSUES SYMBOL STREAM RECORDING AND COMBINING

SYSTEM LEVEL FUNCTIONAL REQUIREMENTS FOR NEPTUNE

- PROVIDE REAL-TIME RECORDING AT EACH SITE AND POST-PASS PLAYBACK AND COMBINING AT GOLDSTONE
- INITIATE PLAYBACK WITHIN NINE HOURS OF END OF PASS
- REAL-TIME MONITORING TO ASSURE VALID RECORDINGS
- OUTPUT COMBINED SIGNAL THROUGH GOLDSTONE DECODER
- OUTPUT DECODED ERROR RATE WITHIN 0.2 DB OF IDEAL
- MAXIMUM BIT RATE OF 25.2 KBPS (50.4 KSPS)

DWB-13 7-8-87

SYSTEM DESIGN ISSUES SYMBOL STREAM RECORDING AND COMBINING

KEY CHARACTERISTICS

- DEDICATED DSN STANDARD TELEMETRY DEMODULATORS AND TAPE TRANSPORTS
- ONE HOUR PER TAPE (8-BIT RECORDING) AT MAXIMUM DATA RATE
- CPU AND CONTROLLER FOR RECORD, PLAYBACK AND COMBINING FUNCTIONS
- REAL-TIME RECORDING MONITOR FUNCTIONS
 - TELEMETRY DEMODULATOR PROVIDES PRECISION SIGNAL-TO-NOISE RATIO ESTIMATES
 - CPU COMPUTES SIGNAL-TO-NOISE RATIO TO VALIDATE DATA BEING RECORDED
- OPERABLE FROM DEDICATED PC TERMINAL OR FROM VGTA REAL-TIME MONITOR AND CONTROL TERMINAL
- FULL REDUNDANCY TO MINIMIZE MEAN TIME TO RECOVERY

SYSTEM DESIGN ISSUES PRIMARY POWER GENERATION

- PRELIMINARY STUDY IDENTIFIED QUALITY AND RELIABILITY DEFICIENCIES IN EXISTING POWER SYSTEM
- TWO-YEAR POWER LINE MONITORING CONFIRMED DEFICIENCIES
- •PLAN DEVELOPED FOR ON-SITE DIESEL ELECTRIC PLANT TO SUPPORT ALL VOYAGER PASSES AND CRITICAL TESTS
- EXISTING INDUSTRIAL FACILITY (NEAR NEW) PURCHASED FOR PERMANENT RELOCATION TO THE VLA
- INSTALLATION NOW UNDERWAY AND SCHEDULED FOR MID 1988 READINESS

SYSTEM DESIGN ISSUES INTERSITE COMMUNICATIONS

SERVICES

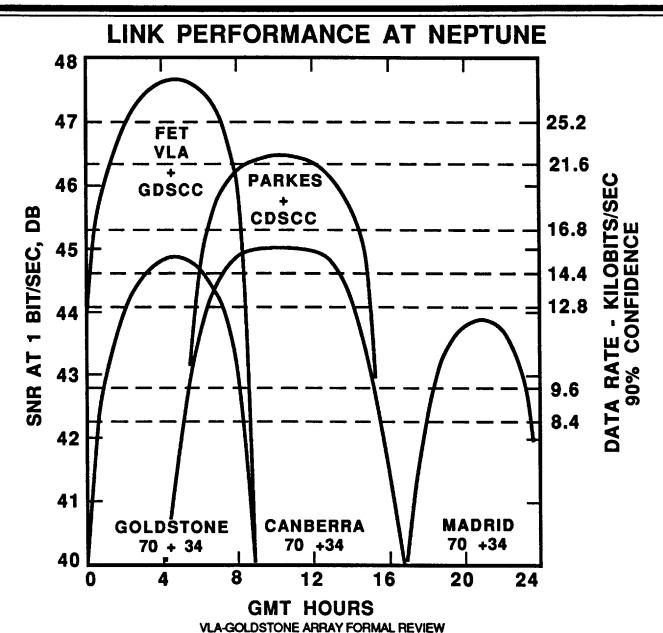
- VLA GOLDSTONE INTERFACE VIA EARTH SATELITE
 - FIVE-MEGAHERTZ VIDEO GRADE CHANNEL FOR BASEBAND DATA RETURN (ONE-WAY)
 - THREE VOICE CIRCUITS (INTERCOM)
 - TWO DATA CIRCUITS (DSN EQUIPMENT CONTROLLERS AND SLOW SCAN TV)
- DEDICATED TELEPHONE CIRCUITS
 - JPL VLA ONE-WAY TELETYPE (PREDICTS)
 - TWO DIAL PHONES (ADMIN AND EMERGENCY OPERATIONS)

SYSTEM DESIGN ISSUES INTERSITE COMMUNICATIONS

IMPLEMENTATION

- NASCOM HAS ACCEPTED THE IMPLEMENTATION OF THE SATELLITE SERVICES BY EARLY 1988
- TECHNICAL REQUIREMENTS DOCUMENT RELEASED
 - SIMILAR TO PARKES-TIDBINBILLA SPECIFICATION
- RECENT GOLDSTONE-SATELLITE-GOLDSTONE TELEMETRY TEST ON SIMILAR LINK HAS PROVEN EXPECTED TRANSPARENCY
- PLANS INCLUDE REAL-TIME DATA RETURN FROM THE VLA FOR THE MID 1988 VOYAGER DUAL PROCESSOR TEST

SYSTEM DESIGN ISSUES AVAILABILITY ESTIMATES


ELEMENT	COMMENT	REAL TIME	
● VGTA M&C (MAN/MACHINE)	BOTH SITES	0.99	0.98
• INTERSITE LINK		0.99	
• REAL-TIME COMBINING	100 % SPARES	0.99	
• VLA AND GDSCC RECORDING	HOT SPARES		0.98
• TAPE LOSS/DAMAGE	COURIER SERVICE		0.98
• NRT PLAYBACK AND COMBINING			
• SPC 10 DTM, LMC, GCF		0.99	1.00
BASEBAND CHANNEL VGTA RECEIVER			
• VGTA BACK END	RT/NRT		0.99
• VLA COMMON SYSTEM	REDUNDANCY/SPAR	ES	0.98
• VLA FRONT ENDS			-
• VLA SUMMER WEATHER			
• GDSCC SUB-ARRAY	DSS 14+15+SPC 10/I	RTC	0.97
• VGTA OVERALL		•	<0.92

DWB-18 7-8-87

SYSTEM DESIGN ISSUES

JPL

SYSTEM DESIGN ISSUES TELECOM LINK DESIGN

CONTROL TABLE

	FET VLA (COMMITTED)	GDSCC	HEMT VLA (PLANNED)	EST UNCERT
VOYAGER 2 SIGNAL	***************************************	5 x 10 ⁻²¹ (W/M SQ)		± 0.6
ANTENNA GAIN		74.0 DB (70 M) 67.6 (34 M)	64.6 DB	
• LOCAL SUMMED GAIN	78.6 DB	74.9 DB (GDSCC)	78.6 DB	± 0.5
• POINT/QUANT/COMB LOSS.	-1.2 DB	- 0.2 DB	- 1.2 DB	+ 0, -0.2
• SYSTEM TEMP (30 DEG)	50 K	25 K	35 K	± 0.5
• MOD AND SYSTEM LOSS				•
• SSNR @ 21.6 KBPS	-1.0 DB	- 0.7 DB	+ 0.5 DB	
• ARRAY GAIN (VGTA/GDSCC	2.8	DB 3.6 DE	3	MIDPASS
• SSNR @ 21.6 KBPS	2. 1 !	DB 2.9 DE	}	DRY

SYSTEM DESIGN ISSUES VGTA SYSTEM TEST PLAN/STATUS

		Т						Т	_			-	19	87					T.		19	88				1989																	
	MILESTONES	J	F	M	AM	IJ	J	A	S	0	N	<u>.</u>	JF	M	IA	M	J	3	A	S	0 1	V D	J	F	M A	\ M	J	J	A	S	<u>ा</u>	4 D	J	F	M	A	M.	ij	Α	S	οli	10	1
1	VLA			Ш														Ц								L					$oldsymbol{\perp}$		L	Ш								I	
2	• X-BAND FRONT-ENDS				3		┕	4		8		17		8	1	10		12	_			5		Ш		<u> </u>	20		Ц		!5	28	Ł										
3	ARRAY CONFIGURATION		D		1	1		В							D		*		A		*	ŀ	*	3	Ġ		*		D		*	A	L	*		В		*	C			ها	1
4	VLA ON-LINE SYSTEM				l	l								L		L		Δ			_	<u> </u>	L	Ц		\perp				Δ	\perp	<u>L</u>	Ŷ	\coprod		\Box	$oldsymbol{\mathbb{I}}$				Т	Т	7
5	• VLA-DSN INTERFACE				l	1			A																Ц,		يا	<u> </u>						\prod			$oxed{oxed}$	brack	Γ	Π	Т	Т	7
6	• JPL TRIAL INSTALLATIONS				J	I																									\prod			\prod		\prod	T	Τ	Γ	П		T	7
7	• SUBSYSTEM ACCEPTANCE	Π		H/V	N	I	Ι		3/W						\$/\ 	W L						ÀC	Ϋ́R	/RT	SP/	PW	R/S	ŚR	Ċ				I	П		П	\top	T	Γ	П		T	7
8	JPL (CTA 21)			\prod		I																									\prod		L			\Box		Τ	Τ	П	П	T	1
9	DATA GAP SIMULATION				Ц	$oldsymbol{J}$											L	Δ																		\prod	\prod	T	Τ			T	
10	• REAL-TIME EQUIPMENT				\prod													Δ	Δ													floor						m I	\mathbb{I}	\prod		Ι	
11	• RECORDING EQUIPMENT	L																		Δ	\blacksquare																$oxed{I}$					Т	
12	GDSCC (GOLDSTONE)	I			\prod	$oxed{oxed}$																											L						\prod		\prod	\top	
13	• EXISTING SATELLITE LINK	L			\prod										N								L								\coprod		$oldsymbol{\mathbb{L}}$						\mathbf{I}				
14	• COMBINING DEMO	L			П											L	L	L	Δ												Ц		L									T	
15	SUBSYSTEM ACCEPTANCE																									Ŗ.	TŠF	P/S	SRO	3			$oldsymbol{\mathbb{L}}$							\prod	П	T	
16	INTERSITE COMMUNICATIONS	\mathbb{L}																																			\prod		m I		П	T	7
17	• NASCOM ACCEPTANCE	\mathbf{I}			\prod	\perp																			A							floor						$oxed{oxed}$	m I	\prod	\prod	T	
18	• JPL ACCEPTANCE	floor				oxed												L			Ш		L	L	Ц				L					\perp							\prod		
19	VGTA SYSTEM										\square	·								L					Ц				L		\prod								$oxed{L}$				
20	VOYAGER NDPP TEST																	L		L					Ц		_	Δ	L		Ш		\prod										
21	• EPT, SPT, S/C DEMO																			L				L								Δ	1						\prod				
22	OVT's AND TRAINING					\int																			\coprod						\Box		F	$\underline{\underline{\Gamma}}$				ENC	30 L	NT	ER		
23	• VOYAGER SUPPORT																								\prod						\coprod	\prod	\perp					<u></u>	__				

* = ARRAY HYBRID CONFIGURATIONS

V= RESCHEDULED

DWB-21 7-8-87

SYSTEM DESIGN ISSUES DSN OPERATING PREDICTS

- NETWORK SUPPORT SUBSYSTEM TO GENERATE AND TRANSMIT THE FOLLOWING VOYAGER 2 PREDICTS TO THE VLA
- ANTENNA POINTING RIGHT ASCENSION AND DECLINATION (APPARENT TRUE OF DATE)
- X-BAND RECEIVED FREQUENCY (FOR BOTH VLA ON-LINE SYSTEM AND THE DSN RECEIVER)
- SEQUENCE OF EVENTS (SUBSET OF SPC 10)
- TELEMETRY PREDICTS (SUBSET OF SPC 10)

VLA-GOLDSTONE ARRAY FORMAL REVIEW

NRAO IMPLEMENTATION

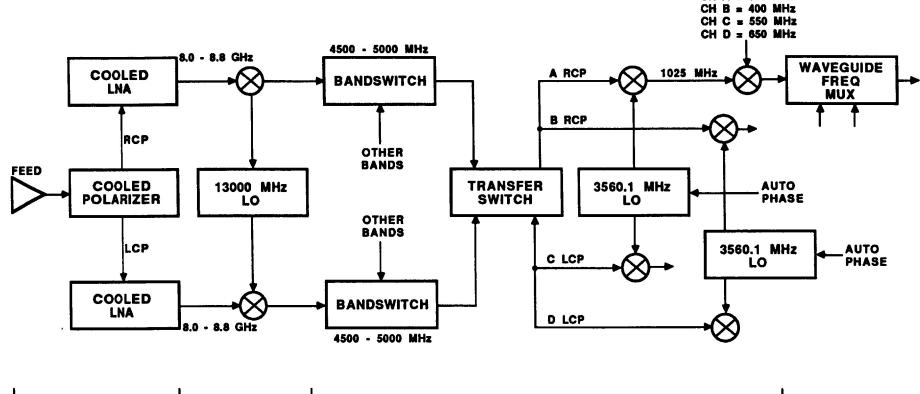
JPL

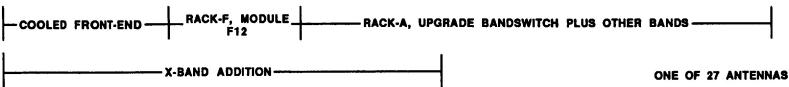
W.D. BRUNDAGE

JULY 1987

NRAO IMPLEMENTATION AGENDA

- FRONT-END SYSTEM
- BACK-END SYSTEM
- ANALOG SUM
- ON-LINE SYSTEM
- PERFORMANCE TESTS
- RELIABILITY
- SCHEDULE


NRAO IMPLEMENTATION



CH A = 300 MHz

BLOCK DIAGRAM

NRAO IMPLEMENTATION

FRONT-END SYSTEM

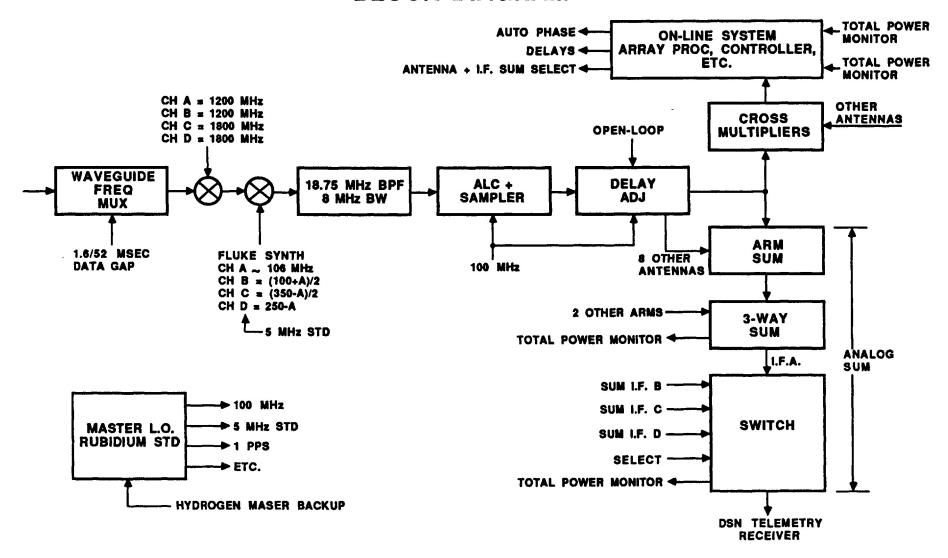
FEED AND COOLED FRONT-END

- 28 JPL FEED HORNS TO VLA
 - INSTALLED DURING ANTENNA OVERHAUL
 - FINISH DECEMBER 1988
- 30 COOLED FRONT-ENDS MADE BY NRAO CENTRAL DEVELOPMENT LAB
- ALL HAVE HEMT AMPLIFIERS
 - TYPICAL NOISE TEMP ~ 14 KELVIN
 - NOISE TEMP WITH NEW GE HEMT'S 8 TO 11 KELVIN
- TYPICAL T_{cfe} AT FEED FLANGE
 - •~19 KELVIN
 - •~15 KELVIN WITH NEW HEMT's
- ●19 COOLED FRONT-ENDS AT VLA, BALANCE OF 11 AT VLA BY **DECEMBER 1987**
- INSTALLED ON ANTENNAS DURING OVERHAUL
 - FINISH DECEMBER 1988

NRAO IMPLEMENTATION

FRONT-END SYSTEM

RACK-F AND RACK-A


- RACK-F ON ANTENNA CONTAINS
 - CONTROL AND MONITOR INTERFACES FOR COOLED FRONT-END (CFE) AND FREQUENCY CONVERTER
 - FREQUENCY CONVERTER MODULE-F12
 - RF IN: 6.8 10.7 GHz
 - I.F. OUT: 4.5 5.0 GHz
 - L.O.: 11.8 15.2 GHz = N*0.60 + -0.20 GHz, N = 20, 21, ..., 25
- RACK-F INSTALLED DURING ANTENNA OVERHAUL. 30 MODULE SETS WILL BE BUILT
- RACK-A ON ANTENNA CONTAINS VLA FRONT-ENDS AND BANDSWITCH TO RACK-F AND X-BAND
- RACK-A SPLITS EACH POLARIZATION INTO 2 I.F. CHANNELS AND PHASE SHIFTS L.O.'s
- RACK-A UPGRADE REQUIRED FOR BANDSWITCH. INSTALLED DURING OR BEFORE OVERHAUL

NRAO IMPLEMENTATION

BACK-END SYSTEM

BLOCK DIAGRAM

WDB-5 7-8-87

NRAO IMPLEMENTATION BACK-END SYSTEM

BASEBAND FILTERS AND MASTER L.O.

- BASEBAND FILTERS PROVIDED BY JPL FOR ALL FOUR I.F.'s OF EACH ANTENNA
 - 18.75 MHz CENTER, 8 MHz BANDWIDTH
 - SELECTED IN BASEBAND MODULE-T4 AUX POSITION BY ON-LINE SYSTEM
 - LOCATED IN RACK-D WITH BASEBAND FREQUENCY CONVERTERS AND FILTER SYSTEM
- MASTER L.O. SYSTEM
 - RUBIDIUM FREQUENCY STANDARD HP 5065B, HYDROGEN MASER BACKUP
 - PROVIDES 5 MHz STANDARD AND 1 PULSE PER SECOND TO DSN EQUIPMENT
 - FLUKE SYNTHESIZERS SET BASEBAND FREQUENCY CONVERTERS

NRAO IMPLEMENTATION BACK-END SYSTEM

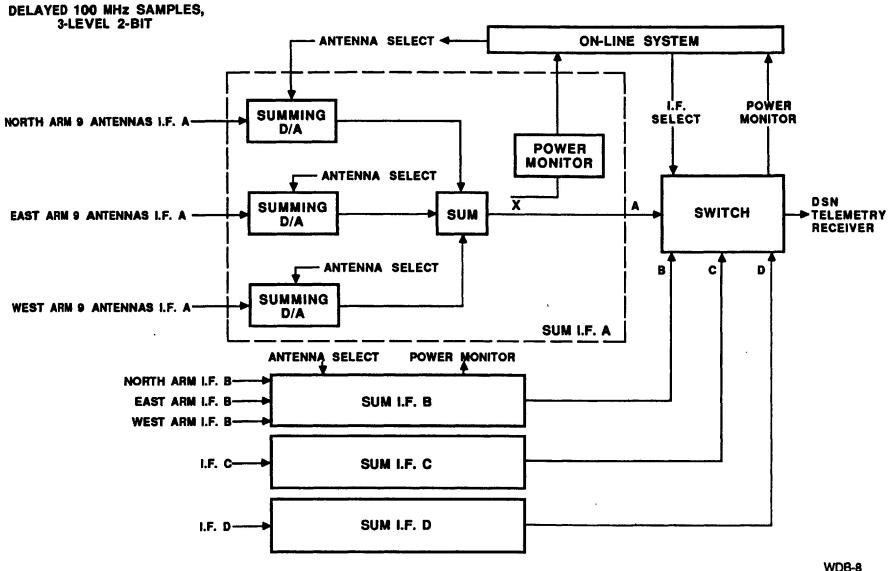
CORRELATOR AND AUTOPHASE

• CORRELATOR

- EACH I.F. COMPLEX-SAMPLED (3-LEVEL, 2-BIT) AT 100 MHz FOR ALL BANDWIDTHS
- SAMPLED DATA AT 100 MHz DELAYED TO REMOVE ANTENNA SPATIAL PHASE
- DELAYED SAMPLED DATA AT 100 MHz SENT TO ANALOG SUM AND MULTIPLIERS
- MULTIPLIERS CROSS-MULTIPLY 351 COMBINATIONS OF ANTENNAS IN EACH I.F.
- COMPLEX CROSS-PRODUCTS GO TO ARRAY PROCESSOR TO BE INTEGRATED FOR 10 SECONDS

AUTOPHASE

• ON-LINE SYSTEM USES ARRAY PROCESSOR OUTPUT TO CALCULATE GLOBAL PHASE AND SET FRONT-END L.O. PHASE SHIFTERS


NRAO IMPLEMENTATION

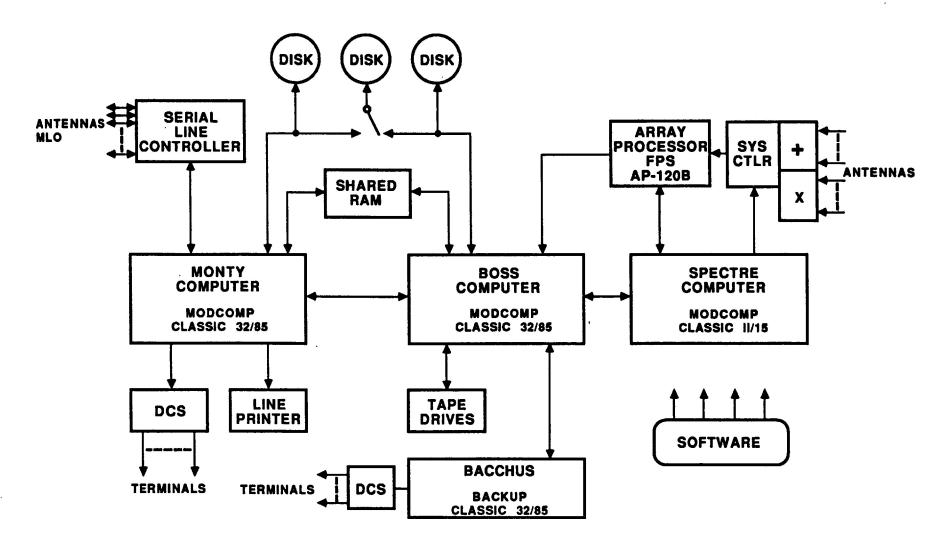
ANALOG SUM

BLOCK DIAGRAM

WDB-8 7-8-87

NRAO IMPLEMENTATION ANALOG SUM

SUM AND SWITCH SPECIFICATIONS


- SUM SPECIFICATIONS
 - ONE UNIT FOR EACH OF 4 I.F. CHANNELS PLUS 5th SPARE
 - INPUT SAMPLED DATA AT 100 MHz FROM EACH ANTENNA
 - OUTPUT ANALOG SUM VOLTAGE TO 50 MHz FOR ANTENNAS SELECTED BY ON-LINE SYSTEM
 - TOTAL POWER OUTPUT MONITOR TO ON-LINE SYSTEM
 - SPURIOUS SIGNALS < -94 DBM WHEN DELIVERING -16 DBM
- SWITCH SPECIFICATIONS
 - CONNECT ONE OF 4 ANALOG SUMS TO DSN RECEIVER AS SELECTED BY ON-LINE SYSTEM
 - LOSS < 4 DB
 - TOTAL POWER OUTPUT MONITOR TO ON-LINE SYSTEM

NRAO IMPLEMENTATION

BLOCK DIAGRAM

JPL

NRAO IMPLEMENTATION

ON-LINE SYSTEM

CONTROL AND MONITOR SPECIFICATIONS

- GLOBAL AUTOPHASING ON VOYAGER SIGNAL IN BOTH I.F.'s OF EITHER POLARIZATION IN CONTINUUM OR SPECTRAL LINE MODE
 - RMS RESIDUAL PHASE < 12 DEGREES IN 10 SECOND INTEGRATION WITHOUT DISCONTINUITIES
 - ACQUISITION TIME < 5 MINUTES
- ALL STANDARD VLA CONTROL FUNCTIONS PLUS JPL SPECIALS
 - EFFECT OBSERVING FILE CHANGES < 10 MINUTES
 - FILES SET FREQUENCY, SELECT IF CHANNEL AUTOPHASE AND SUM, DELETE ANTENNAS, ETC.
- MONITOR AND DISPLAY FOR DSN-VLA OPERATIONS AND EQUIPMENT SUPERVISORS
 - CHECKER, DIAGNOSTICS, ANTENNA PHASE AND NOISE TEMPS, DELETED ANTENNAS, ETC.

WDB-11 7-8-87

NRAO IMPLEMENTATION PERFORMANCE TESTS

APERTURE EFFICIENCIES AND NOISE TEMPERATURE

• APERTURE EFFICIENCY ~ 0.62 ± 0.03
• RCP AND LCP EFFICIENCIES CONSISTENT
• T _{sys} (FET, ZENITH) ~ 49 ± 3 KELVIN
• T _{sys} (HEMT, ZENITH) ~ 32 ± 3 KELVIN
• T _{sys} (HEMT, 30 DEG ELEV) ~ 35 ± 3 KELVIN
• T _{cfe} (HEMT) AT FEED FLANGE ~ 17 ± 2 KELVIN
• T _{ant} (ZENITH) ~ 15 KELVIN
T _{ant} = T _{sys} - T _{cfe}
• T _{ant} (30 DEG ELEV)~ 18 KELVIN

NRAO IMPLEMENTATION PERFORMANCE TESTS

G/T RATIO

● VLA 25-METER ANTENNA G/T 4.859 x 10 ⁶ x EFF/T _{sys}
• G/T (HEMT, ZENITH) \sim 9.40 +/- 0.60 x 10 ⁴ K ⁻¹ = 49.7 DB/K
• G/T (HEMT, 30 DEG ELEV)
● G/T (27 HEMT, 30 DEG ELEV)~ ~ 63.7 DB/K
-1.0 DB QUANTIZATION
-0.3 DB AUTOPHASING
62.4 DB/K

- \bullet FOR A 64-METER ANTENNA WITH 50% EFFICIENCY, 25 K T_{sys}, G/T = 58.0 DB/K
- PREDICT PHASED VLA HAS 4.4 DB GAIN OVER A 64-METER ANTENNA

NRAO IMPLEMENTATION RELIABILITY

GOALS

- GOALS SET BY JPL
- VOYAGER SIGNAL AVAILABILITY = 98%
- MEAN TIME TO RECOVER = 4 HOURS (HARDWARE)
- AT LEAST 25 ANTENNAS OPERATIONAL
- MAX 4 ON-LINE SYSTEM CRASHES OF MAX 10 MINUTES EACH DURING ENTIRE RUN OF 40 VGTA TELEMETRY PASSES
- NO OBSERVABLE PHASE DISCONTINUITIES OR DATA GAPS OTHER THAN THE CONTROL CYCLE GAP OF 1.6 MS

NRAO IMPLEMENTATION RELIABILITY

JPL

STATISTICS

- VLA STATISTICS
 - SIMPLE DOWNTIME AS % OF SCHEDULED ANTENNA TIME; FROM MAINTENANCE DATA
 - SUMMARIES MONTHLY, QUARTERLY, YEARLY
- 1986 STATISTICS

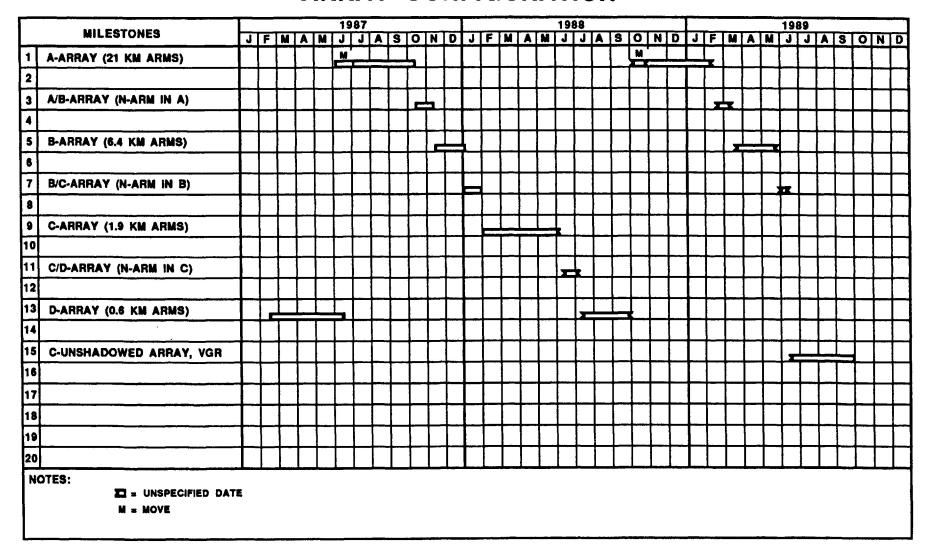
	<u>ANTENNA</u>	+ (COMM	ON	=	TOT	<u> </u>
• HARDWARE	1.95 %*	***************************************	1.76 '	%	10-00-07-0 7-00-00-00-00-00-00-00-00-0	3.71	%
• SOFTWARE	***************************************	100000110111111111111111111111111111111	0.73	%	41,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.73	%
• WEATHER	·······	***************************************	0. 69 '	%	99949499939901999849849849	0.69	%
• HUMAN ERROR	***************************************	*************************	0.61	% **	******************************	0.61	%
• POWER	?	***************************************	0.37	% <u>**</u>) 99902132929 444224442	0.37	%
• TOTAL	 1.95%		4.16 ⁴	%		6.11	%

^{*}INCLUDES ALL VLA FREQUENCY BANDS

**SHOULD BE NEGLIGIBLE FOR VGTA OPERATIONS

WDB-15 7-8-87

NRAO IMPLEMENTATION RELIABILITY


CONCERNS

- ON-LINE SYSTEM COMPUTER BACKUP IN PLACE
 - TO BE TESTED
- ARRAY PROCESSOR AND CORRELATOR CONTROLLER
 - LIMITED BOARD BACKUP
- HALF-CORRELATOR REDUNDANCY
 - TO BE TESTED
- ELECTRICAL POWER
 - GENERATION SYSTEM BEING INSTALLED
- BURIED POWER CABLES FAILING AT EXPONENTIAL RATE
 - REPLACEMENT PLAN
- CLOCK
 - H-MASER ONLY BACKUP FOR HP RUBIDIUM
- CRYO-REFRIGERATOR
 - 3000 HR MTBF
 - IMPROVEMENT PLAN
- ANTENNA REDUNDANCY THRU 4 I.F. CHANNELS

NRAO IMPLEMENTATION SCHEDULE

ARRAY CONFIGURATION

WDB-17 7-8-87

NRAO IMPLEMENTATION SCHEDULE

OPERATIONAL ANTENNAS

	MILEST	ONES						_	1	98	7						Г					1	98	8										_		19	B 9	_				
	SYS No.	ANT No.	7	F	M		A	M	J	Ŀ	IJ	Ā	S	0	N	D	J	F	M	A	IN	Ţ.	Д	J	A	8	0	N	٥	7	F	N	1/	\Box	M	-	7	A	3	0	N	D
1	DEV 1 + 2	20,21			•	\pm				1							L				L	\perp					L		L			L	1									
2	1 - 6	24,3,25,11,26,10			•												L	L	L	L									L		L	L										
3	7	28			7	_										L	L	L										L,	L	L	L	\perp					L					
4	8	6		L			•									<u> </u>		L		L	L								L													
5	9	1						•	1_																																	
6	10	9								Ľ	0																															
7	11	20 UPGRADE							11	֖֡֝֞֝֟֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֡֓֡֓֓֓֡֓֡֓֡֡֡֡֡֡	IPG	RA	DE	X-E	IAN	c	FE .	 + F	EED	L								L														
8	12	8									-	12					L	L	L																							
9	13	2												13							L																					
10	14	21 UPGRADE		Ι.		Ι								14	UP	GR.	ADE	X-	BAN	D C	FE	+1	FEE	:D																		
11	15	12												L	15	_						┙						L			L											
12	16	. 14															16	_																								\Box
13	17	16		L														12																								
14	18	17																L	L	<u> </u>	4																				Γ	
15	19	18																			1	9																				\Box
16	20	19																				2	<u>:0</u>								L										Γ	
17	21	7																							21																	П
18	22	13			I														\perp							22													Π		Γ	П
19	23	15																									23	NC	A	 ITE	NN/	, l	VE	RH.	AUL							\prod
20	24	23								Ι																	24	•	t			-1										
21	25	4				J				I																	25	INC	01	l ÆR	HAU											
22	26	27																										26	LNC	10	 VEF	L L	UL				\prod					
23	27	22			\prod	Ī				I	\int							\prod			\int							27	' 1 NC	l _o	VEF	L RHA	ωL	\rfloor								
24	28	5			Τ	7				Τ	1						Π	Γ	Τ		T	T					Γ	28	1 NC	1	J VEF	I RHA	UL	٦				Г	T		Τ	