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THE USB OF SPACE-FREQUENCY EQUIVALENCE IN LONG-BASELTNE INTERFEROMETERS

ABSTRACT

Space-frequency equivalence theory is applied to long-baseline inter

ferometers used for aperture synthesis in radio astronomy. A double sideband 

correlation interferometer, with isotropic elements, rectangular bandwidth 

B(Hz), intermediate frequency w^, radio frequency wo , and a baseline zq , is 

identical in performance to a monochromatic interferometer (bandwidth approach

ing Eero) whose baseline is z and whose "elements" are as follows:
o

a) A uniformly weighted linear aperture of length 2L » 2 —  z ,
o

"'l
b) A simple two-element interferometer, element separation 29. «* 2^- z^.

o

At sufficiently long baselines the interferometer’s spatial frequency 

passband, proportional to the product of the baseline and temporal frequency 

bandwidth, extends over many sampling points used in conventional aperture 

synthesis* With the baseline held fixed, the spatial frequency spectrum at 

these points can be deduced from a series of measured outputs obtained by in

cremental time delays (At « *^) in the IF of the cross-correlator.

Because the spatial frequency passband is directly proportional to 

the baseline, one can exponentially Increase the baseline intervals without 

loss of spatial frequency information and significantly reduce the total 

number of the baselines needed for aperture synthesis.
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I. INTRODUCTION

It has been known for at least a decade that there is an equivalence 

relation between antenna systems operating with different bandwidths and 

spatial geometries. According to Koch and Stone [1], a simple two-element 

interferometer, which operates over a wide band of frequencies, is equiva

lent in performance to a multi-element array operating over a very narrow 

frequency band.

In radio astronomy two-element interferometers have been used for 

many years [2,3]. In particular this has resulted in the method of aperture 

synthesis due to Ryle (4], whereby very large arrays have been simulated by 

a series of measurements with a two-element interferometer, measurements 

taken at uniform intervals in a very large, but otherwise empty, aperture.

Interferometer methods have also been proposed for the Very Large 

Array (VLA) of the National Radio Astronomy Observatory [5]. The 36 para

bolic antennas of the array are located on the arms of an equiangular wye 

configuration, each arm being 21 kilometers in length. The output from each 

array element, with a circular aperture of 25 meters, is cross-correlated 

with the outputs from all the others, forming 1/2 (36) (35) » 630 correla

tions. In effect there are 630 distinct two-element interferometers in the 

system.

Now the proposed bandwidth of the VLA is 50 MHz at an operating fre

quency of 2695 MHz— a fractional bandwidth of 1.85 percent. For most ap

plications this is sufficiently narrow that in the system pattern analysis 

one could assume single—frequency operation* However, as will be shown,
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this bandwidth, when used with very long baseline interferometers, causes 

signal dispersion, and in the absence of additional processing by the cross

correlator a loss of information will occur.

In this paper the effect of bandwidth on the operation of a simple 

two-element interferometer is analyzed from the space-frequency viewpoint 

to obtain an equivalent long-baseline interferometer of more complicated 

geometry but operating at a single frequency. At long baselines the spatial 

frequency response of a double sideband interferometer [6] broadens into two 

passbands on either side of the nominal frequency determined by the baseline. 

The passbands may be many of the original sampling intervals in width. It 

will be shown that one can increase the baseline intervals for large sepa

ration between elements without loss of spatial frequency information. With 

the baseline held fixed, the interferometer output is varied by uniform dis

crete increments of the time-delay in the cross-correlator; from these out

puts one can deduce the spatial frequency response at the sampling intervals 

within the interferometer passbands.

With a broadband interferometer there is a reduction in the number of 

baselines at which measurements need be made, but at each of the longer base

lines more measurements are needed. With interferometers such as those of 

the VLA, whose 25 meter dishes are not easily moved, it should be far easier 

to vary the correlator time delays than to vary the interferometer baselines, 

and a saving in time as well as money should result.

However, the most compelling reason for increasing the sampling in

terval at long baselines is that it prevents the overlap of the broadening



passbands of the interferometers and consequently prevents serious dis

tortion of the spatial frequency spectrum which is measured.

Let us consider a simple interferometer with identical isotropic 

elements located z meters apart on the z-axis (the interferometer base

line) of the coordinate system shown in Figure 1. We assume that a plane 

wave is incident from the direction 0. The outputs from the two elements 

are identical (in the absence of noise) except for a time delay t due to 

the different arrival time of the wave at the two elements. The correla

tion of these two signals is described in Appendix A. If the IF filter 

characteristics are rectangular, with a center frequency and bandwidth 

B(Hz), and if the RF frequency is u>o (as shown in Figure 2), then the 

interferometer output becomes

Now the factor in the curly brackets in Equation (1), the instrument

factor, varies much more slowly with t  than does the true interferometer

factor, cos w t. It acts as an envelope of the latter, and for the im- 
9 o

II. THE DOUBLE-SIDEBAND CORRELATION INTERFEROMETER

o

C O S  0) T
o

(1)

where t - —  — - z , and c is the velocity of light.
c o

portant case when ■ ttB the instrument factor simplifies to
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where u * —  cos 0 . 
c

The variations of this "bandwidth pattern" as a function of u is illus

trated in Figure 3. Clearly there is a suppression of the response to

7T
sources away from the direction u ■ 0 or 0 ■ j  • This suppression is pro

portional to the product of the bandwidth B and the baseline zq of the

interferometer. Roughly speaking, only sources falling within the main lobe
0)

of the pattern (for which |u| 2b1T~  ̂ be observed by the interfer-
o

ometer.

III. SPATIAL FREQUENCY ANALYSIS

If we let u be the pattern variable and z be the spatial frequency 

variable (the product uz Is in radians), then the pattern of the double- 

sideband interferometer is

sin

P(u) •<

jttJB

(A)

z u/ 
o I

ttB
—  z u 
(i) o 
o

cos "l—  z u
to o 
o

cos (z u). 
o

(3)

The spatial frequency spectrum is the Fourier transform of P(u)

f 00
p(z) ■ I P(u)e *̂UZ du m S  (P(u)} « 

' »00

By the convolution theorem

8in V  C  (*>

P<z> | " jtB°z  „ ' j  ^ I  1 “o *0/} ^ ^ ( C ° B  (Z0u))  W



Figure 3: Bandwidth pattern
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where indicates convolution. The transforms of

, cos
O

1

b) o 
o

are shown in Figure 4(a) and the spatial frequency spectrum p(z) is shown 

in Figure 4(b).

1 1
1 z I - 1 + —  z 

“* 0) o 
0 1

« 0 , otherwise.

Now as is well known, the interferometer output R(u) is the convolution 

of P(u) and the brightness temperature T(u). Thus, the spatial frequency 

spectrum of the output is

r(z) - p(z)t(z), (6)

where

is the spatial frequency spectrum of T(u). In the case of a point source

at u » u , we get 
o



Figure «: frequ.ncy spectra of (a) Interferometer factor patterns
of (h) interferometer product pnttern.
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* x , V ju0z
t (z ) • p(z) eJ °

8 ttB z

ju z
° re , for

1 1
' 0)1

ttB
z - 1 +  — z < —1 1 “ 0) o “ 0)

o o
V (7 )

, otherwise.

Consequently, except for the constant factor
8 ttB z

, the output spectrum is

equal to the spatial frequency spectrum of the brightness temperature dis

tribution, over the passband of the interferometer. This, of course, is the 

principal solution spectrum of Bracewell and Roberts [6].

The effect of the bandwidth B and of the intermediate frequency w i 18 

clearly shown in Figure 4(b). With a double-sideband interferometer one

obtains two sidebands of width
2ttB

0) zq , symmetrically located on either side

of the original baseline position z q ; the separation between sidebands is 
0)1 0)1

2 —  z . Note that if —  > 1, as is the case in Figure A, then there is no 
0 ) 0  ttB * & >
o

spatial frequency response of the system at the nominal baseline distance zq .

IV. AN EQUIVALENT CORRELATION INTERFEROMETER 
OPERATING AT A SINGLE FREQUENCY

We now seek a monochromatic interferometer operating at the original

center frequency u)Q which has the same performance characteristics as the

double sideband system. Specifically the new system's pattern should also

be given by

8 in

P(u) - <

7TB
—  z u0) o 
o

ttB
—  z u0) o

V. O

C O S

0)!
—  z u(I) o 
o

C 08 Z U.
o

(8)
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Inspection of the first factor in the curly bracket reveals that 

its variation with u is identical to the pattern variation of a uniformly 

illuminated linear aperture of length 2L:

A(u) . ainis. . (9)
Lu

Similarly the second factor is identical to the pattern of a simple inter

ferometer with element spacing 111

B(u) * cos fcu . (10)

If these antennas are used as the elements of a correlation inter

ferometer, as shown in Figure 5, then the pattern,when the element separa

tion is z , becomes 
o*

P (u) - Re |A(u)B*(u)e 0 cos C08 Z0U »

where "Re indicates ’’The real part of and B* is the complex 
conjugate of B.

Comparing (8) and (11) we see that the two patterns will be identified 

if we set

ttR Wl
L - —  z , 4 - —  z • (1 2)

u>0 o (Do 0

It is Important to note that both L and I are directly proportional 

to the Interferometer baseline For very short baselines the two distances



Figure 5: Equivalent monochromatic interfpromoter.
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are much less than a wavelength and the system reduces to a simple two- 

element Interferometer with essentially isotropic elements. This case is 

illustrated in Figure 6 (a) where the spatial frequency response is shown. 

Figures 6 (b) and 6 (c) indicate the equivalent spatial frequency responses 

for intermediate and long baselines, respectively. Figure 6 also illus

trates the fact that as the spatial frequency response broadens with in

creasing baselines, its intensity, at any point in the pnssbnnds, decreases 

in such a fashion that the area of each passband remains constant at 1/4.

The total area, including the passbands at negative frequencies, is unity.

V. MODIFICATION OF INTERFEROMETER SAMPLING INTERVALS
DUE TO BANDWIDTH

As is well-known, measurements with radio interferometers are made 

at discrete intervals along the baseline passing through the two elements.

If the elements are isotropic, it is necessary to measure the field co

herence at baseline intervals of one-half wavelength. However, for suf-

2̂ t B
ficiently long baselines the spatial frequency passbands of width ~ —  z

o
will themselves extend over many RF wavelengths and in effect make many simul

taneous samplings of the field coherence. Our task is to devise a sampling 

method which takes advantage of this broadening of the spatial frequency 

passband as the baseline increases.

To simplify the analysis let us consider the important case when 

a>l *• irB and the two spatial frequency sidebands have no intervening gap.

Then the spatial frequency response of the interferometer, for a series of
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measurements at half wavelength Intervals, is shown In Figure 7(a). The

2 t t  Bratio of bandwidth to operating frequency, which we define as a =
U)
o

is 0.10. Note that the broadening of the spatial frequency passbands as 

z increases eventually results in an overlap (shown hatched) between the 

responses at z = |  Aq and z ** 3 Aq . This overlapping of responses becomes 

progressively greater at longer baselines. In order to prevent such re

dundancy, one could increase the last interferometer baseline from 3 A
o

to 3.06 Aq ; then the two passbands would just touch (at z » 2.75 A ) with 

no redundancy and no intervening gap.

It would also be necessary to increase the baselines of all measure

ments of the higher spatial frequencies to prevent overlap. This results 

in the staircase characteristic shown in Figure 7(b). It is not difficult

to show that the longer interferometer spacings are related to the last
A

unshifted spacing of n — j by the formula

2 ' ■ n jl - a
11 + a N*‘ ‘4/ - Ao , 2ttB

(n - n) A
n —  , where a « , (13)

“o

and that

n -
1 - a 

2a (14)

where [xj is the first integer greater than x.

In the case illustrated in Figure 7, n - 5, and for n ■ 6,7,8 we

have z, ■ 3.06 A , z_ * 3.74 A , zQ « 4.57 A . These locations are shown 
6 o 7 o* 8 o
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in Figure 7(b). Note that in the interval of five wavelengths, which for 

single frequency operation requires ten interferometer baselines, there are 

only eight baselines for the broadband system.

More generally, if the double sideband interferometer has a relative

2 IT R
bandwidth of a ■ , and an intermediate frequency of oj1 - ttB, then for

0) J-
o

N interferometer baselines the total spatial frequency coverage ZN is given 

by

N
The number of half-wavelength intervals in is M a 2 —  and is plotted

o
as a function of N, with a as a parameter, in Figure 8 . The straight solid 

line is the monochromatic limit for which a ■ 0. The curves for a > 0 show 

that as the bandwidth increases the number of half wavelength intervals M 

rapidly becomes much larger than the number of the individual baselines N. 

This results in a much larger maximum baseline ZN «

The values of N for a given a, for which the baseline ZN is doubled, 

tripled and increased five times, are given by the intersections with the 

three dashed lines on the graph. For example, with a fractional bandwidth 

of a ■ .0 2, the spatial frequency coverage is tripled if 80 baselines are 

used, and if N - 100 the maximim spatial frequency is five times greater than 

for the monochromatic case.



NUMBER OF \ 0/2 SAMPLING INTERVALS
O

Figure 8i Number of sampling intervals as a function of the number of 

baselines with the fractional bandwidth or as a parameter.
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VI. MODIFICATION OF THE CORRELATION SYSTEM DUE TO THE BANDWIDTH

Let us consider a typical long baseline measurement by the two-element 

double-sideband interferometer, Again we assume that « ttB. The spatial 

frequency passband is centered at

1 + « > < » -  S> - X0
* ■ h ----- n —  ,n 11 - a j 2

and its width is 2az .
n

For the particular case of a - .02 and n » 65, z = 61.9 Xq and the

bandwidth is 2.48 Xq . Within this passband are five spatial frequency

measurement points, viz., 61 X , 61.5 X , 62 X , 62.5 X , and 63 X . The 
r * * o o o o o

problem is to determine the spatial frequency spectrum at these points.

We begin by again considering the "bandwidth pattern" shown in Figure

3. Here the problem is to observe the sources outside the main lobe,
0)

sources for which |u| > ~2Bz'~ • This can be easily done by scanning the
o

bandwidth pattern by means of a time delay in the IF section of the corre

lator. Furthermore, since the bandwidth is B and the IF is * ttB, the

JL_
2B

sampling theorem dictates that incremental delays of At - ~ r  will be suf

ficient to observe the entire source distribution.

In practice it is possible to have only a finite number of time delays

The appropriate number of delays can be easily deduced by considering the

effect in the pattern domain where a delay At corresponds to a shift of

the beam of the equivalent monochromatic antenna by Au » . The number
n
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of shifts must be sufficient to scan the beam over the entire visible

range, for which 0 0 tt and juj Letting QAu 2l 2 , we can ob

tain the number Q which will give a total scan slightly in excess of the 

full visible range,

cAu

r z
;4a t 
I  x

( 16)

where (x ] is the first integer greater than x. For the case of a ■ .02 and 

n * 65,Q - [A.95] * 5; however, it will prove convenient to always let Q 

be an even number, and so in this case we let Q » 6. In general Q will 

be slightly larger than twice the spatial frequency passband, measured in 

wavelengths; this is a direct consequence of the sampling theorem.

Let us suppose that a point source is in the direction 0q and we wish 

to measure its spatial frequency spectrum over the passband of the long- 

baseline interferometer. The output for a delay in the IF of qAx (accom

panied by an RF phase delay of <lznAu) is

_. sin [az (u-. - qAu) ] f ,
R ■ n o___ 2___ ! cos (z (u * ^Au) ] .
qn afc (uQ - qAu) 

n w
n o (17)

If we include the zero delay, we can obtain Q + 1 real outputs correspond

ing to a scan of the "bandwidth pattern" across the entire visible range
co
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However, our task is to determine approximately Q complex spatial 

frequency components falling within the passband of the system. Clearly, we 

are missing half the information necessary to do this. The missing data can 

be easily obtained by the well-known technique of combining the element out

puts in phase-quadrature. In the case of the point source at u > u . this
o

gives the following outputs

sin [oz (u - qAu)]
R" ■ --- ;— 7“---- -- v----- sin [z (u - qAu) ], - ~  < q < ,
qn az^ (uq - qAu) 1 n ' o M /J# 2 —  M —  2 (18)

Then we define the complex output

R - R' + j R" 
qn qn J qn

sin [azn (uq - qAu)] j zr (uq - qAu) 0 0

az^ (uq - qAu) 6 * " 2 —  q —  2 *

Now, as is well-known, a shift in the pattern by qAu corresponds to

a multiplication of the spatial frequency spectrum by e *^^U Z (the shifting,

theorem of Fourier analysis). Thus the spatial frequency spectrum correspond*

ing to R is 
qn

t (z) - R _ for
qn '•* •az - qn 

n M
z - z (20)
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Letting R - — R , we can expand the spatial frequency distribution 
qn otẑ  qn

as the following Fourier series:

*.< *> - i
CI 
2

t (z) 
qn

. 1 R e-jqAuZ, for 
qn

z I - z < az 
—  n (21)

0 , otherwise.

It can be shown that as Q increases without limit, t (z) approaches

the true distribution t(z) in the mean square sense over the interval

< az , one 
—  nzl- z <_ az^. Now by setting z - m —  in (21), with 

obtains expressions for the spatial frequency distribution at the required 

half-wavelength intervals within the passband of the interferometer.

AuA

■»-e - Iam

-jqm-

- . a
R e 
qn . 1

-

(n)
i e 
qn qm

(22)

1
AuAQ qm

e  ̂ 2 can be thought of as the qm**1 element of a rec

tangular matrix E^.

Defining the column vectors Tn and Rn with elements and re

spectively, we can write the matrix equation
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T - E R . (23)
n n n

In practice R will have Q + 1 elements and T will have Q or Q -1 elements. 
r n n

Consequently, En will not be a square matrix. Equations (23) defines the

way in which the complex interferometer output vector R^ is transformed into

the required complex spatial frequency vector Tr . This operation should be

very easy to perform with a digital computer.

For the case of a » .02, n “ 65 and a point source at 0^ “ 45°, the

elements of the vectors IL- and T,c are given in Table 1, for several values
dj bj

of Q. For comparison, the exact value of T̂ ,. is also given. The validity of 

truncating the time delays to a finite number, in this case to Q ■ 6 , is il

lustrated in Figure 9 where the exact and approximate values of t^ ^  are plotted.

In general we can use (16) to deduce a relation between Q, a, and N ^ ,  

t h
where the n * baseline is the last for which only Q time delays are

required when the bandwidth is a. These numbers for a variety of a*s and Q*s

are given in Table 2. For example, if a * .02, the first 25 baselines are

at the usual increments of \> . The next 17 baselines, up to the 43rd, will
2

be shifted according to equation (13) and the two time delays will be neces

sary for each baseline (as well as the usual zero delay). From the 44th to 

the 60th baseline, four time delays will be necessary; from the 61st to the 

70th, six delays must be used, and so on.

VII. TWO DIMENSIONAL INTERFEROMETRY —  THE U-V PLANE 

We now consider the important practical case of interferometry in 

two dimensions where the baselines are located in a plane— the u-v plane.



Table 1. Data and solution vectors for the case of o = .02, n = 65, and 
unit point source at 9^ = tt/4.



NaO

\Q 
a \

0 2 4 6 8 10

. 1 0 i 5 9 12 14 16 17

mo

10 17 24 28 31 33

. 0 2 25 43 60 70 78 83

.01 50 85 120 140 155 167

THE Na 0 th INTERFEROMETER BASELINE IS THE 
LAST BASELINE FOR WHICH Q TIME DELAYS 
ARE REQUIRED WITH A RELAT IVE  BANDWIDTH 
OF a .

Table 2l Relation between the beeelln#* tht bandwidth a, und th<* required

number of time delay* Q«



Figure 9: Spatial frequency spectra for the case of a potnt source at 9 * ~
0 4

and an Interferometer baseline of 61.9Xn , fractional bandwidth 
a =■ 0 .0 2. u
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The effect of bandwidth on the spatial frequency response of a broadband

Interferometer whose baseline of length is oriented at the angle

to the east-west direction (the u-axis) is shown In Figure 10. The spatial

frequency passband (when ■* flB,with double-sideband operation) is of

length 2 ap along the radial baseline, with the mid-point of the pass- 
o

band located at the position (p ,o ). The spatial frequency "smearing"
o o

due to bandwidth is in the radial direction; there is no tangential dis

persion .

Now as in the one-dimensional case, for long baselines the radial pass* 

band may extend over many half wavelengths, thus permitting an increase 

in the spacing of the long baselines. Indeed the formula relating the 

radial baselines in the u-v plane is identical to that for the linear one

dimensional case.

The circles in the u-v plane on which baselines should be located 

are centered at the origin and are of radius

n

°n '

where n

o
2 •

for n jc n t (24)

1 + a'
n - n

n
X
■jp , for n > n , (25)

1 - a

1 - a
2a p

In the above, we assume double sideband operation with • i»B and

2nB
(d



u

Figure 10: Spatial frequency passband In the u - v plane for a broadband 
interferometer with baseline of length p^.
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In the circumferential direction there must be a density of two baselines

t h
per wave length. Consequently, on the n baseline circle the angular separ-

A
ation between baselines is Aan - , and if we consider only a half circle

n
in the u-v plane (the spatial frequency spectrum is symmetric) the number of 

baselines on the half circle is

b »
n

7T
Ao

-
'to
O

c pn
m

m n « J o '
(26)

In Figure 11 are shown the baselines in the first quadrant of the u-v plane 

for the case when a * 0.1.

Finally, it can be shown that for N circles, the total number of base

lines is

« _  , n + 1 . 1 + a
2~~ + S T

1 + a 
1 - a

N - n
- 1 (27)

and that the number of sample points spaced apart, four points per square 

wavelength, which lie within the passbands of the N circles, is

w _ r / 1 • \ “ i 2  f 1  +  Cl
M " I  i<i + °> »i r r - j

2 (N - n)
(28)

The graph of M vs. N, for various values of a, is shown in Figure 12. This 

is analogous to the one-dimensional interferometer graph given in Figure 8.



Figure 111 Spatial frequency distribution in u - v plane showing sampling 
locations and dispersion of long-baseilne passbands.



NU
M

BE
R 

OF
 

SA
M

PL
IN

G
 

CE
LL

S 
OF

 
A

R
EA

I 0 5

SI O

I0 4

IO ;

I0 ‘

a = .10 .05 j

/ / A
/  r /  /  / <  -> / /

/  jy  /  /

.02 01 0 /  

V / ' / '  
/ / /

///// / /

T / /  /? // /  / / // / /'//Ay/// fy /Z7/ / // /  / /  r/ / /
.

7 /
/ 1 ! 1 ! ! 1 I !

j
\j

.... _ J_. J__' _.L_t. L1J

N -— ►
! ! 1 ! L  L  L  L

40

20

1 0

1 0 ' 1 0 10

NUMBER OF INDIVIDUAL BASEL INES
1 0'

V
Figure 12: Number of — sampling cells as a function of the number of base

lines In the u - v plane with the fractional bandwidth or as a para
meter .

M
AXIM

UM
 

BA
SELIN

E 
IN 

W
A

V
ELEN

G
T

H
S



19

VIII. SIGNAL PROCESSING fN TMK TWO-DIMENSIONAL CASE

At long baselines Q + I outputs arp obtained from the Interferometer,

I Pn
where for double-sideband operation, with in. » ttB, Q - [4 a -r0 . The

1 | A
I O

outputs are obtained by incrementally changing the correlator time delay

by qAT seconds, with - ^  - q - ^  , and At • —  .

For a point source in the direction* (xQ *yo  ̂ anc* ^or 8 baseline with

coordinates (u ,v ) • (p ,o ) the output for the q**1 delay Is 
nm nm n nm

sin a[u x + v y )- q* J [u * + v y - -^1 
R m _____ I I nm o nnro/ ^ J eJ L ran o nnro aj
qnm a | u x + v y | - q i r
M I nm o nnroj M

t H
The position angle q indicates the angle of the ra baseline (1 - m - b^) 

on the n*"*1 circle of radius p^* Equation (29) is the two-dimensional 

analog of (19). In Appendix B it is shown that the analog of (20), in the 

two-dimensional spatial frequency plane, is

t „m<u *v) * t (P.o) qnm qnm

6(o - o ) -jqTT

" Rnnm <2n>2 ‘T n n ' " ^  e ” * f°r lP " * a°nqnm 2 ap^p n n

• 0 , otherwise.

* If 0 is the angle measured from the normal to the u-*v plane and $ the 

azimuth angle measured from the u-axia, then for an operating frequency
Wq 0> o

rii we have x • —  61n 0 cos y “ —  sin 0 sin +; if u and v are
O C C

measured in meters, then ux 4 vy Is In radians*
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The series expansion for the spectrum 10

9
2

t- _ (P*^) " )  t (p,o) nm »— » qnm
n »  - -*■

(31)

from which the spatial frequency coefficients at Intervals of ^  in the 

radial direction nay be obtained. The analog of (22) is

t •
nmr

. (2tt) l

raA p 
o n

9
2
\ * 

L
q 1 o R •Q qnm qmr ’

2
for a • 0 (32)

nm

where

(n)» ' m
qmr

qr
, and (1 - a) p <. r :r—  £ ( 1 + 0)0

The complex number t is the spatial frequency component at the

u .v in the u-v plane* The brightness tempera- 
nmr nmr Ipoint ,r j -  ,onm

ture map is finally synthesl*ed by using the H components in the following 

Fourier series.

N

T(*.y) • Y. X. t •
n * 1 in - 1 r ■ 1

-J(u x + v y) 
J nmr nmr* ( 33)

where, as in the one-dimensional case, Q ■ [ - & •
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IX. ON THE USE OF I.ARCJE DISHES AS ELEMENTS

In practice, the elements of long bnneline interferometers are usually 

highly directive large parabolic dishes, aa is the case in the VLA Proposal (5). 

Then the system output, for one-dimensional patterns, becomes

where Pg(u) is the power pattern of the elements which are assumed to be 

Identical.

In the spatial frequency domain, the actual spectrum is the convolution 

of the Isotropic spectrum as given by (5) and Figure 4, with the spectrum of 

the elements, Pe <z). For example, if the elements are uniformly illuminated 

over the aperture D, then the element spectrun is triangular in shape as is 

shown in Figure 13(a)* In Figures 13(b) and 13(c) are shown the spatial fre

quency spectra of the interferometer (in double sideband operation with - wB) 

for short and long baselines, respectively. Clearly the interferometer base

line intervals, which for short baselines must be equal to 2D, can be expo

nentially increased as the baseline lengthens. With regard to the triangular 

taper towards the edges of the elements' spatial frequency passband, it is 

possible with a correlation system to illuminate the apertures of the elements 

with an inverse taper and obtain a rectangular element spectrum (8 ).

The effect of element size and bandwidth on the pattern is illustrated

in Figure 14. At short baselines the element pattern limits the field of

2.78
view to 2Aug • 2 <— ) between half-power points. At long baselines th«

P(u) - P (u - u) 
e o



(b) SHORT BASELINE  
SPECTRUM

p(z)

-AREA = 1/2

/  . \ /  . l \
-z0 0 Zo z

— 2D * 2 a  z0—

figure 13! S p a t ia l  frequency spectra for an interferometer l if t in g  e lem en te  of 
diameter D.



Figure L4t Relation of element and bandwidth patterns for short and long 
banelines«
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limitation is primarily due to the bandwidth pattern whose field of view

1.89
between half-power points is 2Au_,f » 2(— !— ).

* v BW az
n

X. SOME REMARKS ON NOISE

Witnessing the reduction in magnitude of the spatial frequency spectrum

with increasing baselines (see the staircase characteristic of Figure 7),

one might expect a corresponding decrease in the signal-to-noise ratio of

the interferometer outputs, r . However, unlike the short baseline interfer-
r * mn

ometers for which it is sufficient to make a single measurement, with an in

tegration time of say T seconds, in the long baseline case there are Q + 1 

measurements, each of duration T seconds*. From these Q + 1 measurements 

R^^, one can use the matrix equation (23) to determine the Q spatial frequency 

components t • Consequently the integration time per spatial frequency 

component is approximately the same for all components. There should be no 

degradation in the accuracy with which the long baseline components are measured.

XI. CONCLUSIONS

As a result of the non-zero bandwidth of any practical radio inter

ferometer, a "bandwidth pattern” arises as a factor in the interferometer 

output, a pattern whose directivity is proportional to the product of the 

bandwidth and the length of the baseline. The narrowing of the field of view 

due to the ’’bandwidth pattern" can be overcome by scanning the pattern with 

time delays in the IF of the interferometer receiver.

In the spatial frequency domain the effect is to produce passbands 

centered at the nominal baseline of the interferometer and of width propor

tional to the baseline-bandwidth product. For long baselines the spatial

* Altemntively, by power dividing the signals into Q + 1 parts one can use 

Q + 1 correlators, each with a different time delay, and each with an averag

time of (Q + 1) T seconds to obtain simultaneously the Q + l measurements.
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frequency passbands extend over many sample points used in conventional 

aperture synthesis. The receiver time delays produce a series of independent 

outputs from the fixed-baseline interferometer and by a simple Fourier matrix 

transformation of this data, one can deduce the required spatial frequency 

components lying within the interferometer's passband. Consequently, a com

plete aperture synthesis can be achieved by using a reduced number of indi

vidual baselines. Indeed, the sampling interval may be increased exponentially 

as the baseline lengthens yielding, for large aperture synthesis, an expo

nential reduction in the number of baselines.

It is interesting to note that the interferometer spacings, as proposed 

here, are logarithmically periodic, and hence the geometry coincides with that 

of the broadband log-periodic structures developed at the University of Illinois. 

However, the present system uses a single broadband signal centered at a 

specific frequency, whereas log-periodic structures use a number of independent 

narrow-band signals discretely spaced over a broadband of frequencies. Thus 

the structural similarity is purely coincidental.

Finally, the recent Canadian success with the very long baseline inter

ferometer between Penticton, British Columbia, and Algonquin Park, Ontario, 

a baseline of several million wavelengths, leads one to estimate the saving 

in baseline positions for, say, a synthesized aperture of one million wave

lengths with interferometer dishes with diameters of 250 wavelengths. For 

complete aperture synthesis 2,000 sample points are required. However, with 

a double-sideband interferometer with a one percent bandwidth only 270 

individual baselines are needed, and for a five percent bandwidth 70 baselines 

are sufficient. The resolution of the synthesized pattern (Rayleigh criterion) 

would be 1/10 of a second of arc*
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APPENDIX A

Analysis of the Output of a Double Sideband Correlation Interferometer

With reference to Figure 1, the output is the cross correlation of 

two complex signals W^(t) and V^Ct).

R(t ) - <Wx(t) W* (t-T)>

- <(Re {V (t)} f(t)) (Re {V(t + Tq - t ) e^Y P(f* (t - t))>

where * indicates the complex conjugate, Re (...) indicates "the real part 

of . and f(t) is the impulse response of the IF filters. V(t) is the 

modulation envelope of the signal, a complex gaussian random process.

Written out in terms of integrals, we have

T « 00

f(tj) dtx Be (V (to -t + t - t2)e3V}

f * (t2) dt2 dt.

Interchanging the order of integration, we obtain

Re (V(to -t + t - t2) ejY) dt d ^  dt2

It is easy to show that the Integral on t becomes



where R ^ ( t) is the autocorrelation function of V(t). Then if we define t^

- t1 - t2 , we get

f(tx) f*(tx - t3) Re {Ryv (t- to - t3) dt3

•00 rnmOO

f(tx) f* (tx
*3> dtl

T0 -t3) e ' ^ d t j

* 2  I *ff ^3^ Re ” To t3^ e  ̂ <*t3

R(t) - j  Rff (x - to ) %  Re {Ryv (t - to) e"-*7 }

Now by the convolution and shifting theorems, we have the following 

power spectra relation
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If we aaflune that both r^^(w) and r^(w) are white noise spectra with

rff(w) - 1 , jw-u)!! <. ttB

■ 0 , otherwise

and rvv(w) - S, for |u| < u2 >> “1

then we can write

r(w) ■ 1/2 S cos Ye^wT°f for |u>—a>j | <, "B

• 0 f otherwise.

Taking the inverse transform of r(w), we get

0)1 +  ttB

eJ 0 dw
u>l - ttB

sin [nB ( t q - t ) , . _ t)

- S.B C 08 Y ----  ° *

Taking the real part, we obtain

C sin [ttB (t0—t) ]

R'(t) - Si>B < --- wfl (t--.-t~)----  c°8 f“l (V T)1) COe ["o V #1

Except for the constant factor 8*B, thia 1* equal to R'(t) as given by Equation 

(1), with »Q ■ 0 *od ♦ * "0T•
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Ap p e n d i x b

Spatial Frequency Spectrum In the U-V Plane of the Broadband Interferometer

Since the spectrum Is dispersed in the radial direction it is 

convenient to use polar coordinates. We let u • p cos 0 , v • p sin c and 

consider the distribution

2 d (o - Oq)
p (u»v) • p (p*o) - (2n) ----------- , for |p - p | < a p q

2ap p
o

■ 0 , otherwise,

where 6(c) is the Dirac delta. The distribution is shown graphically in 

Figure 10. The Fourier transform is

p(x,y) - S  fp(u,v)} - —

Converting to polar coordinates we obtain

p(u,v)e‘J<UX + ^ d u d v .

po (1f+a) 2*r «(o - 0 )0

p (1-a)
o

2“Pop
-J(ux + uy) , , 

e J 7 pdpdo

Now if we regard (x,y) and (u,v) as the vectors Z and p respectively, with 

x - Z cos c, y - Z sin 5 , u ■ p cos 0 , v ■ p sin o, then it is easy to show

_* _%■
that ux + vy ■ Z • p ■ Zp cos(C - 0).

Then the Fourier transform can be written as

p (1-K») 2* v
' ' ” i -  ,-JZPco. (C - o)dpdo

0_(14a)
o

200,



30

2ap

P (1+a)

P 0 (l-a)

-jZcos (c - O )p 
e o dp

ein[ap Zcos(£-a )J
o o

ap Z c o s (c - cj )
o o

-Jp Zcos(c-o ) 
e o o

sin [a(u x + v y)) . *
1 o_____ oJ -J (u x + v y)

a(u x + v y)
o o

which is the interferometer output for double sideband operation with

•  ttB.

Now if we change the spectrum to

„ 5(o-o ) . 
p (p,o) - (2w)2 t---- a- «Jqir

2ap p
o

ap0 , for |p-po | * apo#

, otherwise,

the Fourier transform becomes

P(x»y) 2ap

P o (l+a)

P0 (l-a)

e-j[Zcos(C-Co)
qft

sin [a(u x + v y) - air] 
____  o o

a (u0* + v0y) - q*
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AFPF.NDIX C 

The Single,Sideband Interferometer

For the single sideband interferometer the system output corresponding 

to (3) is

sin

P(u)

tt n 
to
o

z u 
o

tiB
—  z u
W o 
o

cos
W1

1 + --I * u
—  U) I o 

O J

where the *f and - signs in the cosine correspond to the lower and upper side* 

band cases, respectively. The spatial frequency distributions are

hi
r<*) -

iu s 
J o

AnBz
, for

W1 

o

ttB

u>

• 0 , otherwise.

I W1 1
The lower sideband spectrum is of width 2 and is centered at z - (1 - —  j z©#

o o
while the upper sideband spectrum of the same width is centered at

»- l1 + - l  vI to) I O 
O

The equivalent monochromatic interferometer consists of an isotropic

2 fj b
element and a uniform linear aperture of length — jj- zq . Hie baselines are 

, w, I | w i \ °
1 - — 1 z and 1 + —  z for the lower and upper sidebands, respectively.
I 01 • o ' It) I o

o o
As in the double sideband system, the broadening of the spatial frequency 

passband with lengthening baselines permits one to reduce the number of 

sampling intervals* ' The formulas corresponding to (13) and (14) are given 

below i



The negative sign indicates the lower sideband case* If N baselines are 

used the number of half wavelength Intervals is


