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I . Introduc t ion

VLA maps are normally produced by Fourier transformation only after the 

observed data samples have been smoothed and then resampled on a regular, 

rectangular grid. This process causes noise, sidelobes, and real source 

emission which lie outside the field of view of the map to be reflected 

("aliased") into the map. Because it is difficult to produce, at the full 

VLA resolution, maps which cover the full single-dish field of view, errors 

caused by the aliasing of interfering sources are likely to be a significant 

consideration. However, the effect of aliasing can be reduced by a proper 

choice of the smoothing function. Several of these functions have been 

investigated recently in Charlottesville.

This memorandum extends the results of a series of memoranda on the effects 

of convolution in the u-v plane. In Memorandum No. 123 (1976), Greisen 

developed the basic mathematics and offered some graphical displays which 

showed the effects of convolution on the apparent brightness temperatures and 

noise. Clark (Memorandum No. 124, 1976) pointed out the serious effect that 

the aliasing of the noise has on the signal-to-noise ratios of maps produced 

by the Fast Fourier transform. In Memorandum No. 129, Schwab presented a 

number of convolving functions and tabulated their Fourier transforms. In
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this memorandum, I will list the convolving functions currently available in 

the Charlottesville mapping programs, derive the formula for noise mentioned 

by Clark, and discuss graphs of the properties of a variety of the functions.

II. The Functions and Their Implementation

We will use a one-dimensional analysis throughout since we assume that 

the convolving function is real, symmetric, and separable, i.e.,

C(u,v,w) = Cu(u) Cv(v) Cw(w). The actual convolving function used in a mapping 

program is not a simple, smooth function (e.g., a gaussian) for two practical 

reasons. First, in order to keep CPU time finite, the actual convolving 

function must have non-zero value only within a box of small dimension. This 

is equivalent to multiplying a smooth convolving function, C, by a pill box 

function, B, of finite radius, CSIZE. Second, since the cost of evaluating 

the convolving function a significant number of times is also prohibitive, 

any function evaluation must be done by table lookup. This process is carried 

out by computing, in advance, the values of C at points separated by f along 

the axis. For any given data sample, the value of C is taken to be that at 

the nearest of these pre-computed points.

To express these concepts mathematically, we may write the actual 

convolving function, Ca, as

Ca = P * (II • B • C)

where * represents convolution, C is any convolving function, and

B(u) = 1 / (2 • CSIZE) 

B(u) = 0

|u| < CSIZE 

|u| > CSIZE

II = E 6(u-mf) 
m
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P(u) = 1 / f 

P(u) = 0

|u| < f/2 

|u| > f/2 .

(For convenience, we express the axis coordinate, u, and all parameters in 

units of cells. In these units, the inverse coordinate, x, has value 0.5 at 

the edge of the map.)

The map produced by the Fourier transform of the smoothed observations 

is the product of the "desired" map and the Fourier transform of Ca. The 

latter is given by

Thus, the effect of the table lookup is to cause Ca to repeat at intervals of 

1/f weighted down slightly by P. If f is reasonably small (e.g., 0.01) and 

B * C has negligible value for large |x| (e.g., |x| > l/2f), then the fact that 

table lookup was required may be ignored. It is worth noting that Ca may be 

computed exactly in a reasonable amount of CPU time using the formula

j=-CSIZE
f

Thus, it is not necessary to select functions C which have analytic expressions 

for C * B.

The particular functions, C, available at present in the Charlottesville

Ca = P • (II * B * C)

where the bar represents the Fourier transform and

P(x) = sin(irfx)/(irfx)

TT(x) = £ 6(x-m/f) m

CSIZE/f
Z C(jf) cos(2iTxjf)
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|uI < CPAR1 

| u| = CPARl 

I uI > CPARl

mapping programs are as follows:

(0) Pill box:

C(u) = 1.0 

C(u) = 0.5 

C(u) = 0.0 

defaults: CSIZE = 0.50 

CPARl = CSIZE

(1) Exponent ial:

C(u) = exp(-(|u|/CPARl) ** CPAR2) 

defaults: CSIZE = 3.0 

CPARl = 1.0 

CPAR2 = 2 . 0

(2) Sine:

C(u) = sin(iru/CPARl) / (ttu/CPARI) 

defaults: CSIZE = 3.0 

CPARl = 1 . 0

(3) Exponential times sine:

C(u) = sin (ttu/CPARI) / (ttu/CPARI) • exp(-( |u |/CPAR2) ** CPAR3) 

defaults: CSIZE = 3 . 0  

CPARl = 1 . 0  

CPAR2 = 2 . 0  

CPAR3 = 3 . 0

(4,5) Kaiser-Bessel:

C(u) = A + B cos (ttu/CPARI) +  C c o s (2ttu/CPARl) 

where, if, xl = it • CPAR2

x2 = tt • SQRT(CPAR2 • CPAR2 -1) 

x3 = tr • SQRT(CPAR2 • CPAR2 -4)
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then, for "half Kaiser-Bessel"

A = sinh (xl)

B = 2 • sinh (x2)

C = 2 • sinh (x3)

and. for "full Kaiser-Bessel"

A  = sinh (xl) / xl

B = 2 sinh (x2) / x2

C = 2 sinh (x3) / x3

defaults: CSIZE = 2.0

CPARl = CSIZE

CPAR2 = 2.5 for half Kaiser-Bessel

CPAR2 = 2.2 for full Kaiser-Bessel

These functions were provided by Ron Harten of the WSRT and are

used extensively by the Dutch. Harten has also tested the prolate

spheroidal functions. His results suggest these functions are no

better than the Kaiser-Bessel function and, hence, are not worth

the extra trouble required to evaluate them.

(6,7) Exponential times Kaiser-Bessel:

C(u) = (A +  B c o s ( W C P A R l )  +  C cos(2iru/CPARl)) * exp(-( |u |/CPAR3) ** CPAR4)

where A, B, C and the defaults are the same as the Kaiser-Bessel

functions and extra defaults: CPAR3 = 1 . 0

CPAR4 = 2 . 0

III. Noise

We will attempt to derive an approximate formula for the relative noise 

on maps produced via the FFT. To reduce the number of integral signs, we will 

write the equations in only one dimension. The convolution, resampling, and
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Fourier transform operation may be written as 

T « I du e ̂du e*"2Triux £ 6(u-m) ;  d u f C(uf-u) Z 6 (u' -u^.) W_.

where the j summation is over the discrete set of observations. Using 

we obtain

a2 E E E ( ( du dv e"27r:LX(u -v ) «s(u_m ) 6(v-n) < IAV. |2 > W . 2 
m  n j )j 3 3

* d u 1 d v f 6(u*-uj) 6(v,-Uj) C ( u ?-u) C ( v f-v) ,

where we have assumed that < V.V * > = 0 where j ^ k. This assumption is valid
J k

only when long term calibration errors do not occur and when the noise in the 

real and imaginary parts of V is uncorrelated. Performing the integrals on 

u 1 and v f and substituting z = v-u, we obtain

a2 « ( dz e2irizx E E E f du <5(u-m) 6(u+z-rn)
/ *  “ j /

< |AV.|2 > W  2 C(u.-u) C(u.-u-z).J J J J

Substituting k = n-m and performing the u integral, we obtain

a2 « ̂  dz e27rizx j 6(z-k) E R(m, z)

where

C 2 2 2
R(m,z) = j  du < |AV(u) | > P (u) W (u) C(u-m) C(u-m-z),

with the sum over j replaced by an integral with a probability function P(u ) .

Let us now assume that the weight function is

W  2 = (AV0)2 / ( < IAVJ12 > <P2 (U)>. )

which compensates in the usual way for any variation in noise (e.g., integration 

time, system temperature) and "averaged” local density of data points. The sum
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over m  may be evaluated by noting, first, that C(u) has value only over a 

restricted range of u and that all |u_. | are less than some Umax. Thus, 

R(m,z) = 0 for |m| > Umax +  CSIZE. If we assume that the data samples are 

uniformly distributed within the remaining u-space, i.e., that

<P2 (u)>u = P 2 (u)

then R(m, z) is independent of m  and the sum becomes simply a measure of the 

size of the sampled u-space.

Therefore,

2 f 2irizx
a « E f dz e S(z-k)S du C(u) C(u-z).

or, in words, the variance in the map plane is the Fourier transform of the 

sampled autocorrelation of the convolving function. Please note that this 

applies before any correction for the Fourier transform of the convolving 

function. This is, of course, the result stated by Clark in Memorandum No. 124, 

but I feel that the derivation is useful in revealing the nature of the 

assumptions. With the actual convolving functions listed in the previous 

section, the autocorrelation is easily computed at grid points if 1/f is an 

integer.

IV. The Plots

In order to evaluate the performance of the many convolving functions, we 

need to examine two functions both of which are shown in each of the accompanying 

plots. For x between 0 and 1 map radius, the relative signal-to-noise ratio 

given by

is plotted on a linear scale. For x between 1.01 and 10 map radii, a logarithmic

Ca(x) / [E ^du e 
k ‘

-2niux r
Ca(z-u)] 2
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scale is used to show the relative amplitude of the aliasing given by

|Ca(x) / CaCx1(x))|

where x'(x) is the position to which brightness at x is aliased. These are 

the two functions which are of interest when the maps have been corrected 

for the Fourier transform of the convolving function.

V. Discussion

The pill-box function has two strong virtues. It requires only one row 

of the u-v plane to be in core at a time and it uses the least CPU time in 

the convolution. However, Figure 1 reveals that the user pays a heavy price 

for this computational convenience. Sidelobes within 0.8 map radii of the 

edge of the map are aliased into the map with weights greater than 10%. 

Interfering sources are aliased with weights > 3% even at distances exceeding 

10 map radii. Because of the large degree of aliasing, the relative signal- 

to-noise ratio departs significantly from 1.0 even fairly close to the map 

center. The reader is reminded that, for two-dimensional maps, the actual 

signal-to-noise ratio is the product of the function in x and the function 

in y. Thus, the relative signal-to-noise drops to 0.4 at the corners of the 

map.

The default exponential function, plotted in Figure 2a, requires 7 rows 

of the u-v plane to be in core at a time and does 36-49 table lookups per 

point. However, aliasing is less than 1% for all points more than 0.45 map 

radii outside the map and the signal-to-noise ratio is 1.0 out to 0.75 map 

radii. Figures 2b-2d illustrate the effects of different parameters.

Reducing the support size alone (2b) causes ringing from the sharp edge
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introduced in Ca. Keeping the ratio of CSIZE and CPARl fixed, while varying 

CSIZE, causes the aliasing region to broaden (2c) or to become so narrow (2d) 

that unfortunate effects appear within the principal map area. Figure 2d 

illustrates the fact that seemingly reasonable sets of parameters can produce 

unhappy consequences. For this reason, I am making a modified version of this 

plotting program available within the Charlottesville program package.

The ideal convolving function would be the sine function for which C 

is the pill box just encompassing the map. However, this function is obtained 

only as CSIZE and CPU time become infinite. The plots for finite CSIZE 

(Figures 3) show a comparatively sharp initial cutoff at the edge of the map, 

but high "sidelobes" whose amplitude decreases only slowly with distance. 

Multiplying the sine by an exponential (Figures 4) causes the initial cutoff 

to become wider but can reduce the sidelobes substantially.

The functions provided by Ron Harten, called here the half and full 

Kaiser-Bessel functions, are designed to be used with CSIZE = 2 . 0 .  As 

illustrated in Figures 5b and 5c, the consequences of altering the default 

parameters are not necessarily desirable. These functions do have the 

remarkable, for such a small CSIZE, property of dropping abruptly outside the 

map and maintaining fairly low sidelobe levels thereafter. In particular, 

the half Kaiser-Bessel (Figure 5a) has very low sidelobes within the first 

radius outside the map. Multiplying the Kaiser-Bessel functions by a gaussian 

widens the inner cutoff which hurts the signal-to-noise ratio but eliminates 

the sidelobes altogether.

VI. Conclusions

The pill box function provides the fastest execution in the least core.
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However, it should not be used when sidelobes of the source are large nor 

when significant emission outside the map area is probable. Thus, the pill­

box funtion should not be used with most sensitive 6-cm and all 2-cm 

observations. When the full VLA is used with some tapering, sidelobes should 

not be a problem. In this case, the default gaussian with CSIZE = 3.0 is 

very effective in suppressing the aliasing of distant confusing sources. If 

36-49 table lookups per point are too expensive, then the gaussian times the 

full Kaiser-Bessel is a good compromise and requires only 16-25 lookups per 

point. For suppression of nearby confusing sources and sidelobes, the half 

Kaiser-Bessel function is quite good. This function should be considered for 

mapping in the snapshot mode with partial arrays, for mapping with high- 

resolution (inverse taper), and for mosaicing of large sources which extend 

outside the map area.

Thus, the proper choice of convolving function can greatly reduce the 

effects of the aliasing of noise, sidelobes, and interfering sources. The 

reader is reminded, however, that no convolving function can eliminate 

interfering sources completely. Sidelobes of the interfering source which 

fall within the map area are not affected by the choice of convolving function.
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FIGURE 1

FUNCTION=PILL BOX CSIZE= 0.50 CPARS= 0.50 0.00 0.00 0.00
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FIGURE 2a

FUNCTION=EXP CSIZE= 3-00 0PARS= 1.00 2.00 0.00 0.00
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FIGURE 2b

FUNCTION=EXP CSIZE= 2.00 CPARS= 1.00 2.00 0.00 0.00
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FIGURE 2c
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FIGURE 2d
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FIGURE 3a

FUNCTION=SINC CSIZE= 2.00 CPARS= 1.00 0.00 0.00 0.00



RE
L.
 

S
/
N

FIGURE 3b

FUNCTION=SINC CSIZE= 3-00 CPARS= 1.00 0-00 0.00 0.00
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FIGURE 3c
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FIGURE 4a

FUNCTION=EXP*SINC CSIZE= 3.00 CPARS= 1.00 2.00 3.00 0.00
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FIGURE 4b

FUNCTION=EXP*SINC CSIZE= 2.00 CPARS= 1.00 2.12 2.00 0.00
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FIGURE 4c
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FIGURE 4d
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FIGURE 5a

FUNCTION=HALF K-B CSIZE= 2-00 CPARS= 2.00 2.50 0-00 0.00
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FIGURE 5b
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FIGURE 5c

FUNCTION=HALF K-B CSIZE= 6.00 CPARS= 2.00 2.50 0.00 0.00
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FIGURE 6

FUNCTION=FULL K-B CSIZE= 2.00 CPARS= 2.00 2-20 0.00 0.00
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FIGURE 7

FUNCTION=EXP«HKB CSIZE= 2.00 CPARS= 2.00 2.50 1.00 2.00
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FIGURE 8

FUNCTION=EXP*FKB CSIZE= 2.00 CPARS= 2.00 2-20 1.00 2.00
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