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Introduction :

This document attempts to describe the effect of noise
on calibration and selfcalibration . The algorithms used will be
assumed to be ANTSOL Tor calibration and Schwab's algorithm for
selfcalibration . Minimisation of L2 is also implicit .

The basic problem in both ordinary and self
calibration is to calculate or improve estimates of the complex
gains of the antennae used in an observation . In ordinary
calibration { 0OC ) an unresolved source is used to constrain the
antenna gains whereas in selfcalibration ( SC ) an estimate of the
true shape of the source is used to make the source of interest
look unresolved so that OC can be used . Hence in one sense
OC and SC are similar but.in the latter the effect of noise
is much more complicated . In particular , the effect of noise
on the selfcalibration of extended sources presents an intractable
analytical problem since , in general , it i1s necessary to solve
a set of simultaneous linear equations in the .gain variances .

It i possible , however , to perform this solution in a computer
as the selfcalibration is performed but I doubt that this is really
useful .

The influence of closure errors is also briefly

discussed .

The algorithm @

Both OC and--SC act to minimise the residuals between
2 model of the source and the observed data . The degrees of freedom
available are the complex antenna gains g(i) . The quantity minimised
is of the form :

S = Sum{{,jX(EV(i,j) - gli)*(complex conj{g(j))2T(i,j)I**2%*w(1,3))
- equation 1

where V(1i,j) = observed visibility between telescopes i and j
T¢1,j) = "true" visibility between telescopes { and J
wii,j) = weighting factor
the square brackets [...] denote the modulus

and Sum{1,j) represents a sum over all 1,jJ where i<{j .

Some averaging over time may also be done .

This can be rewritten in a more {l1luminating fashion :
S = Sum{1,j)(IX(1,j)-g{i)*(complex conj{g(j)))I®*2%w(i,j))
- equation 2

where ¥{(1,j) = correlator-based gain between telescopes { and j :



XC1,3) = VU4, 33/T01,5) - equatfion 3

and the weighting factors have been changed .

One may arbitrarily constrain the complex gains to
have amplitude unity so that only the phases are corrected ,
this is usually only done in SC .

In OC the true visibility is estimated from the previously
known position and Flux of the calibrator whereas in SC. it is
estimated from a model of the source e.g. a set of clean components .

The effect of noise :

Thompson and D'Addario ( preprint , 1981 )} give an algorithm
for solving the above maximisation . This involves solving ,
by 1terative substitution  , the non-linear equation for
the g(i) obtained by differenttating Equation 2 with respect
to the gains :

gl{t1) = {Sum{j, not=1){ wli,j)*X(i,j)i%*g(j) )2
/ Suml{j, not=1}{ w(i,j)*[g(j)l**2 ) -equation 4

Using the law of propagation of errors we find that the
variance in the estimate of g{(i}) , var{g{i})) is :

var{g{(1})) = (Sum(j, not=1 Y w(i,j)==*2 =
{ [2%g(i)*{complex conjl{g(j))) - X{(i1,3131%=%2 * 'var{X(1,3§))
+ 2%[g(13)1%%2 * var(g(j)) )3
/ (Sum(j, not=iX{w(1,j)*Llg(jlI**2))**2 - equation 5

A1l variances quoted are those appropiate Tor the given
interval between gain solutions .
In principle this set of simultaneous equations in
the variance of the gains can be solved by matrix inversion
to yield an answer in terms of the driving terms var(X{i,j)) .
In order to investigate the structure of these equations
we can replace the gains by their expected value of unity .
In a1l but some pathological cases ithis should not alter
our conclusions too much . We then have @

var{g{(1)) = CSum{j, not=1)( w{i,j)ax2 =
{ var{X{(i,j)) + 2=%var(g(j)) ) ¥»2
/7 (Suml{j, not=1)wli,j))==2 - equation 6

As an example of the use of this equation consider
calibration on a point source . The weights should be equal {f
all telescopes have uniform levels of sensitivity . Furthermore
the variances should be independent of both { and j . Thus we
have , after some rearrangement :

var{g) = var{(X)/(N-3) - equation 7

where N is the number of telescopes .

Hote that the errors become inFinite for a three
telescope array in which the number of constraints ( the
X(i,j)s ) is equal to the number oF degrees of Freedom
( the gli)s ) . If we only allow correction of the phases
i.e. [g(i1)) = 1 . then the variance becomes :

var{g) = var{(}{)/{(N-2) - equation 8

Further constraints on the gains similarly reduce



~he variance .

To test this calculation ! used the AIPS ASCAL program
to seifcalibrate point sources of various strengths : 188 to #.1
mdy in quasilogarithmic intervals . The noise added was 25 mdy
19 seconds and about 7 minutes of data was used .

In Table 1 1 show the r.m.s. of the difference between the
selfcalibrated map and the initial clean map . This subtraction
vas performed to eliminate , to Tirst order , the effects of
aliasing .

Table I :

Flux of point Remes. diff Signal to noise
source , ady micrody on map
159 41 508
54 41 254
25 42 127
19 49 51

5 67 25
2.5 134 13
1.9 266 5
.5 279 3
g.2509 286 1
g.100 286 g.5

In the regime of good signal to noise we expect that , since
only the phases were corrected , the noise will increase by
SQRT(N/{(N-2)) =-1.85 F¥or the twenty antennae used here . Before
selfcaiibration the r.m.s. noise was 197 micrody per beam hence
the test indicates that the ( incoherent )} increase in noise is about
4.5% wnich is in reasonable agreement with the expected value .

In the regime of poor signal to noise the derived values of
the gains will be completely wrong and therefore equation 5 should
b2 used in place of equation 6 . Consequentiy the noise behaviour
becomes much more complicated . I hope that nobody wanted
to selfcalibrate a map with S/N about unity !

The application of equations 6,7 or 8 to the seifcalibration
of resolved sources is made rather more difficult by two Tactors .
First , the weights in equation 6 are not identical and so a true
matrix inversion is required to calculate the variances . Secondly ,
since we are Torcing the data to look 1like our model of the source
any errors in that model will propagate into the final map . The
element of Teedback introduced by continued iteration exacerbates
this problem . In particular , since we use a mapping technique
such as CLEAN to tell us what the sky really looks like any treatment
of the noise behaviour of selfcalibration must include the noise
behaviour of CLEAN . Hence the only case that we can plausibly treat
analytically is single pass selfcalibration .

As an example , consider the selvcalibration of a point
or near-point source using as a model a point source . From
equation 6 we know the variance of the gains . We then have that
tiie variance in the corrected visibility C is @

var{C) = 2%var(g)*ILV1*=2 + var(V) - equation 9

wihere the values of the gains have been replaced by unity .



Substituting equation 7 and approximating [T1*%2 by [V1**2 ywe
have :

var{(C) = (N-1)®*var{V)/(N=3) + 2®yvar{T)}/(N-3) - equation 12
Two interesting points arise Trom this result @

1. The noise is increased by a factor SORT((N=-1)/{N-3))
which for the Tfull VLA is 1.94 . For MERLIN the
amplification is 1.29 and for a ten station VLBA
it is 1.13 .

2. Errors in the model ( var{T) ) are much less
important than errors in the original data . For
the VLA they contribute , incoherently , .98 of the
errors in the final map . This explains the success
of selfcalibration a 1la Perley . For smaller
arrays such as MERLIN or the various VLBAs the
effect of errors in T is much greater :

For MERLIN #.45 and for a VLBA ¥.22 .

However , it is stil11 important to minimise var(T}
by choosing the model ( T ) sensibly . In
particular , in CLEAN a small number of clean
components 1s advisable to avoid the inclusion

in T of the calibration errors we are trying

to eliminate .

Clearly this type of calculation can be made: for the
more general case of a well resolved source and so we can , given
some estimate for the errors in T , find the noise level on the
output map .

The effect of closure errors :

VVe may now also investigate-the effect of closure
errors on calibration . Considering the case of a point source
we have that the variance of the correlator based gain ¥ is @

var{¥} = (var{V) + var{T))/LT1*%2 + var(D) - equation 11

where var{(D) is the variance of the closure errors . This then provides
another driving term in equation 19 . We then have :

var{C) = (N-1)*var{V)/(N-3) + 2%(var{(T) + var{(D)®[V1**2)/(N-3)

- equation 12

where again [T1%¥*2 has been replaced by [VI¥**2 ,

We can now see that closure errors play an analogous

role to model errors and are of similar importance in producing

errors in the final map . One imporiant difference remains , namely

thatTthe closure errors may not average down as will var(V) and

var(T) .



ERRATUM
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Robust Solution for Antenna Gains
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On page 5 of the memorandum, the definitions of L and M are in error.

N (2 7 N = 1 V)Y ¥
The correct expressions are: L = e "1 'k Vikv;k and M = e "'k 'j ijvkj.



