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Introduction :
This document attempts to describe the effect of noise 

on calibration and selfcalibration . The algorithms used will be 
assumed to be ANTSOL for calibration and Schwab's algorithm for 
selfcalibration . Minimisation of L2 is also implicit .

The basic problem in both ordinary and self 
calibration is to calculate or Improve estimates of the complex 
gains of the antennae used in an observation . In ordinary 
calibration < OC ) an unresolved source Is used to constrain the 
antenna gains whereas in selfcalibratIon ( SC ) an estimate of the 
true shape of the source Is used to make the source of Interest 
look unresolved so that OC can be used . Hence In one sense 
OC and SC are similar but.In the latter the effect of noise 
Is much more complicated . In particular , the effect of noise 
on the selfcalibration of extended sources presents an Intractable 
analytical problem since , In general , 1t Is necessary to solve 
a set of simultaneous linear equations in the gain variances .
It 13 possible , however , to perform this solution in a computer 
as the selfcalibration is performed but I doubt that this is really 
useful .

The influence of closure errors is also briefly
discussed .
The algorithm :

Both OC and SC act to minimise the residuals between 
a model of the source and the observed data . The degrees of freedom 
available are the complex antenna gains g(1> . The quantity minimised 
is of the form i
S = Sum(1,j><CV(1,j ) - g<1 )*(complex conj<g(j))*T(1,j)3**2*w(1,j))

- equation 1
where V<1,j) = observed visibility between telescopes i and j 

T(1,j) = "true" visibility between telescopes i and j 
w(1,j) = weighting factor
the square brackets [...] denote the modulus 

and Sum(1,j) represents a sum over all 1»j where 1<j .
Some averaging over time may also be done .

This can be rewritten In a more illuminating fashion :
S * Sum<1,j)(CX(1,j )-g(1)*(complex conj<g(j)))3**2*w(i>>

- equation 2
where X(1,j) = correlator-based gain between telescopes 1 and j :



- equation 3
and the weighting factors have been changed .

One may arbitrarily constrain the complex gains to 
have amplitude unity so that only the phases are corrected , 
this is usually only done in SC .

In OC the true visibility is estimated from the previously 
known position and flux of the calibrator whereas in SC it is 
estimated from a model of the source e.g. a set of clean components .
The effect of noise :

Thompson and O'Addarlo < preprint , 1981 ) give an algorithm 
for solving the above maximisation . This involves solving , 
by Iterative substitution , the non-linear equation for 
the g(1) obtained by differentiating Equation 2 with respect 
to the gains :

g(1) = CSum(j, not=1>< w< 1, j )*X( 1, j )*g< j ) >3
/ Sum<j, not=1>< w<1,j >*Cg<j)]**2 ) -equation 4

Using the law of propagation of errors we find that the 
variance in the estimate of g(i) , var(g(1)) Is t

var(g<1)> = CSum<j, not=1 )( w<1,j)**2 *
{ C2*g(i )*<complex conj(g(j>>> - X(1,j>3**2 * var<X(1,j >>
+ 2*Eg<1>]**2 * var(g(j )) >3 

/ (Sum(j, not=i >(w< 1, j } =* Eg< j )]**2 ) )**2 - equation 5
All variances quoted are those appropiate for the given 

interval between gain solutions .
In principle this set of simultaneous equations In 

the variance of the gains can be solved by matrix inversion 
to yield an ansv/er in terms of the driving terms var(X<1,j)) .
In order to Investigate the structure of these equations 
we can replace the gains by their expected value of unity .
In all but some pathological cases this should not alter 
our conclusions too much . We then have :

var<g( 1 )) = CSum<j, not* IX w<1,j>**2 *
( var< X(1,j >) + 2*var< g(j )) ) >3 
/ (Sum{j, not=1)w{1,j))**2 - equation 6

As an example of the use of this equation consider 
calibration on a point source . The weights should be equal 1f 
all telescopes have uniform levels of sensitivity . Furthermore 
the variances should be Independent of both i and j . Thus we 
have , after some rearrangement :

var(g) = var(X )/<N-3 ) - equation 7
where N is the number of telescopes .
Note that the errors become infinite for a three 

telescope array in which the number of constraints ( the 
X(1,j)s > is equal to the number of degrees of freedom 
{ the g{1 )s ) . If we only allow correction of the phases
i.e. Eg(1 )] = 1 . then the variance becomes :

var(g) = var(X)/<N-2) - equation 8
Further constraints on the gains similarly reduce
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the variance .
To test this calculation I used the AIPS ASCAL program 

to selfcal 1 brate point, sources of various strengths : 100 to 0.1 
mJy In quasilogarithmic Intervals . The noise added was 25 mJy 10 seconds and about 7 minutes of data was used .
In Table I I show the r.m.s. of the difference between the 
3elfca1ibrated map and the initial clean map . This subtraction 
was performed to eliminate , to first order , the effects of 
al1 as 1ng .

Table I :

Flux of point R.m.s. dlff Signal to noise
source , mOy mlcroOy on map

100 41 508
50 41 254
25 42 127
10 49 51
5 67 25
2.5 134 13
1.0 256 5
0.5 279 3
0.250 286 1
0.100 286 0.5

In the regime of good signal to noise we expect that , since 
only the phases were corrected , the noise v/111 increase by 
SQRT(N/(N-2)) =1.05 for the twenty antennae used here . Before 
selfcalibration the r.m.s. noise was 197 mlcroJy per beam hence 
the test Indicates that the < incoherent ) increase in noise Is about 
4.5% which Is 1n reasonable agreement with the expected value .

In the regime of poor signal to noise the derived values of 
the gains v/111 be completely wrong and therefore equation 5 should 
be used In place of equation 6 . Consequently the noise behaviour 
becomes much more complicated . I hope that nobody wanted 
to selfcal1brate a map with S/N about unity 1

The application of equations 6,7 or 8 to the selfcalibration 
of resolved sources is made rather more difficult by two factors . 
First , the weights 1n equation 6 are not identical and. so a true 
matrix inversion is required to calculate the variances . Secondly , 
since we are forcing the data to look like our model of the source 
any errors In that model will propagate into the final map . The 
element of feedback introduced by continued Iteration exacerbates 
this problem . In particular , since we use a mapping technique 
such as CLEAN to tell us what the sky really looks like any treatment 
of the noise behaviour of selfcalibration must Include the noise 
behaviour of CLEAN . Hence the only case that we can plausibly treat 
analytically is single pass selfca11 brat ion .

As an example , consider the selfcalibration of a point 
or neai— point source using as a model a point source . From 
equation 6 we know the variance of the gains . l/e then have that 
ti:e variance in the corrected visibility C is :

var<C) = 2*var(g )*CV1**2 + var(V) - equation 9
where the values of the gains have been replaced by unity .
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Substituting equation 7 and approximating CT]**2 by tV3**2 wehave :
var(C) = < N—1)*var(V)/{N-3) + 2ftvar(T>/(N-3> - equation 10 

Two Interesting points arise from this result :
1. The noise is Increased by a factor SQRT((N-l)/(N-3)> 

which for the full VLA is 1 .JGT4 . For MERLIN the 
amplification Is 1.29 and for a ten station VLBA
it Is 1.13 .

2. Errors in the model ( var(T) ) are much less 
Important than errors In the original data . For 
the VLA they contribute , incoherently , 0.08 of the 
errors in the final map . This explains the success 
of selfcalibrat ion a la Perley . For smaller 
arrays such as MERLIN or the various VLBAs the 
effect of errors in T is much greater :
For MERLIN 0.40 and for a VLBA J0T.22 .
However , It 1s still important to minimise var(T) 
by choosing the model ( T ) sensibly . In 
particular , In CLEAN a small number of clean 
components Is advisable to avoid the Inclusion 
In T of the calibration errors we are trying 
to elIminate .

Clearly this type of calculation can be made for the 
more general case of a well resolved source and so we can , given 
some estimate for the errors in T , find the noise level on the 
output map .
The effect of closure errors :

V/e may now also Investigate the effect of closure 
errors on calibration . Considering the case of a point source v/e have tha~t the variance of the correlator based gain X 1s :

var(X) = (var<V) + var(T))/ET3**2 + var(D) - equation 11
where var(D) Is the variance of the closure errors . This then provides 
another driving term 1n equation 10 . V/e then have :

var(C) = (N-l )ftvar{V)/(N-3) + 2*(var<T> + var<D)*£V]**2) / ( N-3)
- equation 12

where again CT]**2 has been replaced by [V]**2 .
We can now see that closure errors play an analogous 

role to model errors and are of similar importance In producing 
errors In the final map . One important difference remains , namely 
that the closure errors may not average down as will var(V) and 
var(T) .
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ERRATUM

VLA SCIENTIFIC MEMORANDUM NO. 136 

Robust Solution for Antenna Gains

Frederic R. Schwab 
February, 1982

On page 5 of the memorandum, the definitions of L and M are In error. 

The correct expressions are: L = e*^i an<̂  ^ E e^^k


