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The correlation interferometer is an example of a two-receiver 

correlation radiometer. Staelin (1974) has analyzed the performance 

of this radiometer. In this memorandum I will follow Stael in's 

analysis but will use a terminology more familiar to most radio 

astronomers.

The block diagram of a correlation interferometer is shown in 

Figure 1. The two receiver inputs s_(t) [or just s(t)] and s. (t) are
a D

identical except for a multiplicative constant:

where K is the sensitivity of the antenna in K Jy~* (KMD.l K Jy~* for 

a 25m antenna).

The autocorrelation function of the signal s at the input to the 

multiplier is

<J>S(T) = sis2»

where s^ = s(t) and S2 = s(t + x). The DC input to the multiplier is 

♦s(0) = kKaSB,

where S is the flux density of the source.



The noises na(t) [or just n(t)] and nb(t) are Gaussian with zero

mean and are independent of each other and of the signals s (t) anda
sb(t). Their autocorrelation functions at the inputs to the 

multiplier differ by a multiplicative constant equal to the ratio of 

the receiver temperatures, with

To get the output signal and noise powers, we must obtain first 

the autocorrelation function of the multiplier output:

Carrying out the indicated multiplications and averages, we 

obtain

and

*m(T) * a2 va(t) vb(t) va(t+t) vb (t+T)

^ ( t ) = a2G2 (sal sbl sfl2 sb2 + sal sa2 ' nfal nb2al bl a2 ab2

+ nal na2 ’ sbl sb2 + nal na2 ' nbl nb2^’

or

Since

s12s22 = ^s2(°) + 2^s2(T)*



we can expand the first term to obtain

♦m(T) = a2G2 Kb ^*(0) + 2 Kb <|>s2(x) +
K Ka a

The associated power spectrum at the multiplier output is then

where uQ(f) is the unit impulse at f=0.

Power spectral components of $m(f) are sketched in Figure 2 for 

signal and noise with flat spectra passing through filters with 

rectangular passbands of width B.

The average output of the low-pass filter is simply the DC output 

of the multiplier, or

To determine the fluctuations about the average it is necessary 

to specify the particular output filter; the simplest filter for our 

purpose is an ideal integrator with integration time x. The power out 

of the fcLKtput-filter is

+

vn2(t) = / V ( f )  df
O CO O



where |H(f)|2 is the magnitude squared of the transfer function of the 

low-pass filter. For integration times of interest, H(f) will be 

negligible except near f=0, and for practical purposes $m(f) may be 

replaced by its value at or near f=0. For an ideal integrator the

impulse response is
^1, 0<t < T  

h(t) = i x
^0, elsewhere, 

and the output noise power is

noise

= 4m(0)/„h2(t)dt

a2G2k2B
T

KaKhS2 + KaSTa /Th 4. kk\ 4. Tk a b  a a / b + b \ + a b

The rms variation in the output is just /"P ! .r noise
In terms of flux density at the input, we find

Ac _ rms output 
rms ~ sensitivity

Therefore,

j noise

3/PDC
as

ASrms =
>/Bt

S2+i/la + M  + I
2 I K. Kl 2

For identical antennas and receivers, we obtain

AS.rms
= 1 

\/Bt~

S2 + ST + 1 1 2 \ i 
K 2 K2 J



In the weak-source case,

1 TAS rms /25T K
and in the strong-source case,

S
/ b7  •

A S  -  S rms

The corresponding expression for a total-power radiometer on an 

identical antenna is

AS  = — - —  
rn,s /Ek

Consequently, the correlation interferometer is more sensitive by a 

factor of f~2 in the presence of independent sources of noise (e.g., 

receiver noise, ground pickup) at each antenna than the total-power 

radiometer but has the same sensitivity to sources of noise such as 

the source itself and the sky background that are common to both 

antennas.

Reference:

Staelin, D.H. 1974, The Detection and Measurement of Radio
Astronomical Signals (Cambridge: The Massachusetts Institute of 
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