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Abstract : A simple, efficient MEM type deconvolution 
algorithm now implemented in AIPS (VM) is described. It allows 
use of any of a number of uniformity functions with optional 
specifiable upper and lower brightness limits. Control 
parameters are the r.m.s. residual expected (Jy/beam) 
and the total flux in the image. With correct values it 
seems that high quality images can be obtained. The 
question of reliability of super-resolution is discussed.
A full discussion of the properties of VM images is 
presented.

The Problem :

CLEAN (Hogbom 1974, Schwarz 1978) sometimes fails to produce 
aesthetically pleasing deconvolutions of VLA images. Trusting our knowledge 
of the structures of radio sources we might go further and suggest that it 
sometimes produces an incorrect answer. Thus CLEAN must be implicitly 
assuming the wrong sort of information about typical radio sources. Let us 
remind ourselves of the assumptions built into CLEAN : first, the sky should 
be mainly empty so that only a small region of the primary beam is to be 
estimated, secondly, any emission can be modelled by a set of delta 
functions. This second assumption can lead to two problems when imaging 
regions of extended emission : slow convergence and instabilities such as 
mottling or striping. To avoid these drawbacks we should replace the 
assumption of "pointed-ness" by some other reasonable characteristic of 
radio sources. In this paper we will choose uniformity, roughly defined as 
the tendency of pixel brightness to cluster in a histogram. We will also 
extend the first assumption to include knowledge of any uniform background 
on which the radio source sits. Our optimum algorithm will thus choose the 
image which :

1. Is as uniform as possible AND
2. Lies within some well defined brightness limits.

The presence of noise in the visibility data will nearly always prevent such 
an image from fitting the data exactly so we will require that :

3. the r.m.s. residual should be that expected.

It is difficult to see how CLEAN can be modified to obey these 
constraints so we will have to develop an optimisation routine so that the



final image simultaneously obeys these constraints. The third constraint 
requires calculation and optimisation of the residuals, aiming at some 
target value, and obedience to the second constraint can be enforced with 
simple constrained optimisation techniques. The uniformity constraint (1) 
requires some measure of clustering of pixel values; some of the many 
functions which can be used for this purpose are :

S. = Z. -b.2
O i l

H x = Z± -b..ln(b.)

H2 = I. ln(b.)

S3 = Ii (V V 2

S = 1. -(b.)'1 
4 1 1

and Yl are the well known entropy functions which may or may not

have some deep philosophical underpinning; we will ignore this possibility 
to concentrate merely upon the uniformity preference (see e.g. Wernecke 
1977). If the total power is fixed then all these measures are maximised for 
completely smooth images in which the emission is spread smoothly over the 
field of view. All, except for S^, act as a barrier function in any

optimisation; that is, if the initial estimate is totally positive then any 
reasonable gradient-sensitive optimisation procedure will keep subsequent 
images totally positive. This is clearly desirable when dealing with known 
limits on the brightness. We can generalise these forms to include upper and 
lower bounds e.g. :

H_ = E . (ln(b.-b1 ) + ln(b ~b.))
2 l i lower' upper i "

All pixel brightnesses will be kept in the range b, to b . Such a
lower upper

function is of use in deconvolving images of planets ( e.g. Nityananda and 
Narayan 1982 ). Other extensions, such as position dependent brightness 
limits, may be advantageous in some circumstances at little extra 
computational cost.

Thus our optimum algorithm is simply a variant of the Maximum Entropy 
method except that in the latter either or is used (Wernecke and

D ’Addario 1976, Gull and Daniel1 1978). However, we place no undue emphasis 
upon the form of the uniformity measure. To distinguish our algorithm from 
MEM we will, in common with Nityananda and Narayan (1982), call it the 
variational method VM.
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Formulation of the solution

The residuals for interferometry are independent in the u,v plane 
and so the residuals are of the form :

X2 = Z. w. | T . -B . j 2 1 1 1  l

where w i is the weight assigned to the i'th visibility sample, ^  is the

i'th visibility sample and Bi is the Fourier transform of the image b at the

corresponding u,v point. This can also be written in the image plane ( see 
e.g. Wernecke and D'Addario 1976), using an obvious vector notation :

X2 = ( t - b )^.p.( t - b )

where p is the beam and t is any solution to the convolution equation:

p. t = d

where d is the dirty image. We select the units of b to be Jy pixel"'*'. 
The algorithm must solve the problem :

2 2 
Maximise H( b ) subject to X = 2.N . . c

- J vis

where a is the r.m.s. noise in the real or imaginary part of the visibility,
and N . is the number of visibility samples. If the total flux is not 

vis J

constrained then, in the absence of an upper limit in brightness, the VM
image will have a very large bias in the total flux and, in compensation,
will over-fit to the other spatial frequencies. This is just the principal
solution raised upon a large pedestal (Bhandari 1978). For this reason it is
important to specify and fit to the total flux accurately and so we add an
extra condition, namely that:

F = F . where F = Z . b . 
obs i i

and F is the observed total flux. This is equivalent to accurate

knowledge of the baseline. Furthermore, this constraint is much stronger if 
there are large areas of no emission and so, like CLEAN, VM works best when 
most of the sky is empty.

Equivalently, we maximise the uniformity subject to the constraint 
that the first two moments of the distribution of the residuals equal the 
expected values. The Lagrange multiplier approach is useful for this 
problem. We reformulate the problem :

Maximise J ( b ) = H ( b )  - a.x2/2 - $.F

where a and 3 are chosen so that :

1* F - FQbs = Zi _bi - FQbs = 0.0 - first moment of residuals

2 _ 2
2 . X  - 2 .Nv ^s -0 - second moment of residuals
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2 2 - 1 - 1  
Since X is awkward to calculate and, having units Jy beam pixel , is
not related to any simple observable we will replace constraint 2 by:

2. 1 E = E , = N . ,.o. 2
obs pixel image

where E = ( t - b )T .pT .p. ( t - b )

and a. is the expected r.m.s. noise in the dirty image, and N , is
image  ̂ ° pixel

the number of pixels in the image. This latter quantity, which has units Jy

beam , can be either calculated a priori or measured from a CLEAN image. 
Note that E is only used as a target in the optimisation and that J still 

2
contains X since the statistics of the residuals demand it. If the noise 
were independent in the image plane, as it is in the optical case, then we 
would use E in J directly.
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An algorithm to maximise J

One obvious approach is to use an ordinary first order gradient search 
method. For each iteration one would perform a search in the direction VJ :

Choose % to maximise J( b f) where the new estimate is b' = b + X. Ab and

Ab = VJ = VH - a. Vx 2/2 - 3 . 1

Such optimisation of J is difficult because of the extremely non-linear 
behaviour of H near the brightness limits, e.g. zero, where most of the true 
pixel values reside. Small changes in weak pixels can alter H drastically 
while having little effect on the residuals. This means that the normal 
first order gradient search method is extremely wasteful since for pixels 
which are near the boundaries VJ does not point towards the true minimum. A 
second order correction is required to redirect the vector; this leads to 
the Newton-Raphson approach :

Ab = C-VVJ)"1 . VJ 

The new factor is the Hessian matrix :

VVJ = VVH - a.p

2
which has dimension N and obviously cannot be inverted. However, the

most important part is VVH which is diagonal ( see Cornwell 1980). Hence, 
neglecting the sidelobes of the beam, we obtain :

((-VVJ)'1) = (- (VVH) +o.p )_1
1,1 I)1 1 * 1

((-VVJ)'1) = 0.0 i i j

With this approximation the Newton-Raphson approach is practicable. A 
quadratic search in the direction Ab requires evaluation of VJ at two 
places, requiring two convolutions or four FFTs. The convolution sum for the 
optimum point along the search direction can be interpolated at relatively 
little extra cost. Thus the average cost per iteration is two FFTs plus a 
number of file reads. We use this metric to measure distances, e.g. :

|| VX| | 2 = VXT .(-VVJ)_1. VX

is
Some control procedures are needed. A good choice for the initial image

b . = F , /N . t for all pixels,
l obs pixel

The maximum step length should be limited to some reasonable value ( see
e.g. Skilling and Gull 1983 ). We limit :

VJ^. Ab < g.a.E
— — current

where g is a gain factor, typically 0.5. Sensible initial values of a and 3 
are required. On dimensional grounds we use :
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Binitial2 =  'I ™ l  I'/I I F I  I2

These values are always underestimates of the correct values so it is also 
necessary to iterate a and 3 to force the VM image to obey the constraints. 
For efficiency, changes in these values should be allowed only when a valid 
solution has been obtained with the current values. A suitable criterion for

T
a solution involves the expected change in J : VJ . Ab, if this is less than
a.E we alter a and 3 by the increments :

“initial" = 4 '°-1 I ™ H 2/II ^ 2 H 2

Acc/a = (E /E , ) - 1
current obs

A3/3 = (F /F , ) - 1
current obs

allowing a maximum fractional change of g. These steps may be regarded as 
performing a search in E,F,a,3 space.

Since sometimes a negative pixel may be chosen, we protect against this 
by clipping moves at the levels:

(l-g).b + g.b > b .  > (l-g).b . + g.b.
& max & upper i m m  6 lower

where b is the specified upper bound and b is the previous maximum
upper max

in the image; similarly for the lower bound.
Finally, the stopping criterion is :

a. VJT . Ab < 0.5.a.E , AND
— — obs

b. IE , - E I < 0.05.E u AND
obs current obs

c. |F , - F J  < 0.05.F ,
obs current obs

These latter two tolerances reflect upper bounds in accuracy of E ^ and 

Fobs *
Wernecke and D'Addario (1976) produced the first MEM algorithm used in 

radio-astronomy but they neglected to enforce the first moment constraint, 
and they failed to iterate to 'the true value of o. For these two reasons 
their algorithm did not achieve the full power of the VM.

Our algorithm is similar to that of Skilling and Gull (1983) except 
that, in their algorithm :

1. Optimum values of o and 3 are found at each iteration
by searching in three independent directions and thus 6 FFTs 
per iteration are required. The success of our simpler 
algorithm indicates that such sophistication may not be 
necessary if sensible schemes for choosing and updating o 
and 3 are used.

2. H.̂  is always used and the pixel brightness is normalised

by F ^ • We see no fundamental reason to favour any
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uniformity form and have chosen to use for convenience

and to avoid any dubious interpretation of the meaning of 
a VM image.

3. VVH is used as an approximation to VVJ; we find 
that this slows convergence unacceptably.

The paper of Skilling and Gull (1983) gives some useful tips on the 
design of a VM algorithm and, in particular, on the importance of the 
metric.

Nityananda and Narayan (1982) propose that since the form of the VM 
image is critically dependent upon the total flux, this quantity should be 
adjusted to yield an image of preferred properties, such as resolution. We 
find this argument to be at variance with the philosophy expressed here, 
namely that one should apply as many valid constraints as possible. In many 
cases the total flux is known to a reasonable accuracy and can be used to 
impose useful bounds upon the possible VM image. If the total flux is 
unknown then it seems to us unsound to estimate it from nebulous preferred 
image properties.

McClellan and Lang (1983) have argued that the dual optimisation 
approach, effectively operating in the u,v plane, is preferable since it is 
intrinsically finite-dimensional unlike the primal algorithm considered 
here which is merely a discrete approach to an infinite-dimensional problem. 
However, in their algorithm it is still necessary to evaluate Fourier 
transforms on a very fine grid so little practical advantage arises from the 
dual algorithm. Also they neglect to enforce the first moment constraint on 
the residuals and for that reason will obtain unduly noisy VM images.
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Some Properties of VM images

Some properties of VM images can be deduced from the defining 
equations.

1. Resistance to noise : To first order we may neglect the dependence 
of of the estimate on o and so the sensitivity to noise is given by the 
inverse Hessian :

(-VVJ)"1 = (-VVJ + a.p)"1

Since the beam p has sidelobes which extend over all the image all 
points in the VM image are correlated. Thus for a true noise analysis the 
Hessian must be inverted, which is, for most images, totally impractical. 
Under certain assumptions, such as banded-ness of p, equivalent to a 
limitation in the extent of the beam sidelobes, an approximation to the 
inverse may be satisfactory. This is an interesting topic for further work.

We can investigate the basic character of the noise behaviour by 
neglecting the sidelobes of the beam ( Cornwell 1980). The inverse then only 
has diagonal elements:

(C-VVJ)'1) = (- (VVH). +o.p. . f 1
1 J 1 1)1 1)1

For the example of H„ we have, if b ■+ <*> and b, = 0 :
2 upper lower

0b 2 = ((-VVJ)'1), ± = ( b ‘2 + o.p r 1
-L) X X 1)1

For weak points the relative error is constant whereas for strong points the 
absolute error is constant. Note that, as mentioned above, adding a large 
offset to each pixel will produce an image in which the absolute error is 
constant all over the image. Therefore the value of the total power F is 
very important as a constraint.

In table I we show the asymptotic errors for a variety of uniformity 
measures for general brightness limits.

TABLE I . Asymptotic errors.

uniformity form o,
b

Near limits Far from limits

H, a 5b1/2 a a.
1

H2 a 6b a 0

S3 a 6b3/4 a a

image 
F .
image

image

S, o 6b3/2 a a.4 image

The distance of a pixel from a brightness limit is fib.
Finally, we note that this is only an analysis of the stability of the 

VM image to noise, not an analysis of its stability to changing u,v plane 
coverage.
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2. Sensitivity to u,v plane coverage : The VM image must change as the
u,v plane coverage changes or, equivalently, as the sidelobe structure of 
the beam changes. This effect is calculable to first order but again 
involves the inversion of VVJ, which is, in all practical cases, not 
possible.

If such information is required it may be simpler to perturb p slightly 
and continue the iteration to the new VM image.

3. The residuals of an VM image are not random : The residual image is

p.( b - t ) = Vx2/2

Hence, from the condition that the gradient of J be zero at the VM 
image we have that :

p.( b - t ) = ( VH - 3. 1 )/«

Thus, the VM image is almost certainly incorrect since the probability of 
such a set of residuals is vanishingly small ( see also Bryan and Skilling 
1980).

4.
The size ascribed to an isolated point source in an VM image varies 
with signal to noise : This SNR-dependent resolution arises because VM 
images are always biased towards greater uniformity or smoother images and 
as the SNR decreases the leeway for smoothing increases. It is instructive 
to consider this effect in the u,v plane. Longer spacings are systematically 
underestimated as much as allowed by the constrained value of E; increased 
noise allows greater underestimation. A number of fixes for this problem are 
possible :

a. Use a minimax criterion for the data fitting : chose the image 
which has maximum uniformity and for which the maximum residual is 
minimised. Minimax methods are much more time-consuming than least squares 
methods, probably prohibitively so for problems of the large dimensionality 
encountered in image construction.

b. Fit to the data as well as possible. The noise then propagates 
to higher spatial frequencies and the apparent image quality decreases. For 
most data sets a perfect fit is impossible.

2
c. Minimise a linear sum of x for different regions on the u,v 

plane, constraining a fit to the expected value within each region. Again, 
practical implementation will be difficult.

d. Require that the distribution of residuals be Normal ( see e.g. 
Bryan and Skilling 1980). This only alleviates the problem since 
underestimation at long spacings still occurs.

e. Constrain more moments of the residual distribution than just 
the first two moments.

f. Constrain the information-theoretic ^ntropy of the residuals 
to be equal to the expected value. In the current algorithm entropy has been 
removed from the residuals and structure has been removed from the VM image. 
It may be possible to approximately measure ^  ̂ anc* optimise with

2
that constraint replacing the constraints on F and x .
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All these options lead to increased computing requirements and, for 
that reason, are probably not worth a great deal of effort. We should note 
that if one of these schemes were implemented then the super-resolution in 
the VM image would increase slightly leading to further doubts about 
reliability.

Much has been made of the SNR dependence of the resolution since it 
would seem that this should prevent the use of VM images in spectral index 
calculations. However, if one first convolves the VM images with the 
analogue of a CLEAN beam then it should be possible to make such comparisons 
between different images. The sufficient condition is that for all regions 
of interest the effective resolution should be much less than that of the 
CLEAN beam. We postulate that this will always be true if there is enough 
signal to allow calculation of the spectral index from a pair of CLEAN 
images. In support of this view we note that one would be extremely foolish 
to make spectral index images from unconvolved CLEAN images. Some results 
concerning this point are given below.

5. Gibbs oscillations : VM images are especially subject to Gibbs 
oscillations near sharp edges since the data can be best fit by allowing 
such oscillations. This can be alleviated to some degree by imposing upper 
bounds on the brightness just as lower bounds are imposed. Some examples of 
Gibbs oscillations are shown below.

6. Sensitivity to uniformity form : Gull and Daniell (1978) have 
asserted that, if only the second moment constraint on the residuals is 
enforced, maximising H 1 with the pixel brightness normalised by the total

flux yields superior results than maximising any other form, but in 
particular H2> with no normalisation. Since the normalisation requires that

the total flux be fit this is in complete accord with our observation that 
the first moment constraint on the residuals must be enforced to protect 
against noise.

7. Sensitivity to control parameters ; After convergence, the VM image 
is determined by a number of controlling parameters :

a. Specified residual °image* Higher values produce smoother

images. Low values may prevent a fit and will produce a spikier image.
b. Specified total flux F0^s * High values allow bigger sidelobes.

Low values may prevent a fit.

c. Bounds in brightness bupper»b lower• Accurate limits force flat

baselines and plateaus. Inaccurate values may allow ripples or may prevent a 
fit.

Other parameters such as the gain g, or the path taken to the estimate 
should not affect the final image. Thus, for example, one may keep refining 
the dirty image by selfcalibration (Schwab 1980) or data editing while 
iterating using the same VM image. One can iterate for a while, then 
selfcalibrate or edit, then continue VM iteration with a new dirty image and
the old VM image.
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Some Examples

The first set of tests illustrate the effect of changing the uniformity 
measure. Artifical data corresponding to a Gaussian of FWHM about 5 beam- 
widths and peak S/N of about 100 in the dirty image were used. Figure 1 shows 
the discrepancies of the VM images, a CLEAN image and a smoothness 
stabilised CLEAN image from the original model. It is clear that there are 
no significant differences between the images produced from the different 
uniformity measures.

The second set of tests show the effect of overestimating the noise. In 
Figure 2 are shown the discrepancy from the model of VM reconstructions

"targeting on 2 and 3 times the true o . . As expected the images get
image °

smoother as the fit worsens. Note the very flat background in the VM images.
The 3-0 image is noticeably biased with a large offset in the background.
The VM images converged in about 20 iterations, which for these small images
(128*128) took about 20 minutes wall clock time or about 7 minutes CPU time
on a VAX 11/780 with FPS AP120B array processor.

Gibb oscillations can be a severe problem in VM images unless an upper 
limit in brightness is known and enforced. In figure 3 I show slices through 
VM reconstructions of a box, enforcing various levels of upper limit. The 
first image had no upper bound and consequently large oscillations occured 
at the edges of the box. Decreasing the upper bound shrinks down these 
oscillations, indicating that tighter constraints give better 
reconstructions.

Some reliable super-resolution from VLA data is possible. Figure 4 
shows CLEAN and VM images of 3C449 made from C-array data and a CLEAN° image 
made from B-array data. The latter two images agree to reasonable level 
especially so since some bad data is still present. That such super
resolution is possible is not too suprising since the u,v coverage for the 
VLA is quite often redundant and so some of the derivatives of the 
visibility function are known thus enabling, effectively, an analytic 
continuation. Another, contrary example is shown in Figure 5, where the B- 
array VM image and an A-array CLEAN map of 3C219 are plotted, the former

after convolution with the clean beam of the latter. The size of these 
images is 1024*512 and the VM took about 2 hours of CPU time for 
convergence. However, the CLEAN took a comparable amount of time since only

~ 50 components were removed per major cycle. On the I S it is clear that VM 
has failed to remove the sidelobes of the dirty beam; it appears that the
u,v coverage in this case is insufficent to allow the visibility function to 
be extrapolated. This example shows that, as with CLEAN, experience with VM 
is required for the reliability of images to be predictable.

Figure 6 shows various parts of CLEAN and VM images of Cygnus A at X6cm 
made from the same A-array data. The levels plotted are as a percentage of a 
well resolved peak and therefore are equivalent in surface brightness. The 
peak signal to noise is 3000; convergence was acheived in 26 iterations or 
about 5 hours VAX CPU time. The resolution has improved markedly and is now 
limited by the pixel size; sizes of barely resolved components agree with 
those calculated from IMFIT (i.e. by beam deconvolution). The well resolved 
regions have the same overall structure but gradients are stronger in the VM 
image. No gross new features are seen on the VM image.
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Some Conclusions

VM will be useful in VLA data reduction for the analysis of images of 
large extended objects for which CLEAN is notoriously slow and inefficient. 
It is harder to control than CLEAN but sometimes gives better results. 
Super-resolution of compact, oversampled objects may also be possible, at 
least for qualitative results. In terms of FFTs required the current 
algorithm is roughly comparable to that of Skilling and Gull (1983) but it 
has some added flexibility in that brightness limits can be imposed and that 
the uniformity function can be selected. However, the effect of changing the 
uniformity function is minimal compared to the effect of specifying 
correctly the noise level and the zero spacing flux. We note that VM can be 
used to obtain the MEM solution for either H^ or H^.

The VM program described here is available in AIPS. We note that VM has 
an option to analyse optical data in which the noise is normally distributed 
and is independent from pixel to pixel.
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-1.0, 1.0, 2.0, 3.0,
6.0, 7.0, 8.0, 9.0,

ARC SEC 
DEC 39 06 03.50

-9.0, -8.0, 
-3.0, “2.0, 
4.0, 5.0, 

1 0 . 0 )



<rad 
o 

cnujcj

3C449 IPOL 1485.000 Vwlfe GAUSSM.3SIG.1

3 c r

erarr)

ARC SEC
CENTER AT RA 22 29 07.629 DEC 39 06 03.50 
PEAK FLUX = 2.8553E-04
LEUS = 0.5000E-04 xl ( -10.0; -9.0; -8.0; 

-7.0; “6.0; -5.0; -4.0; -3.0; -2.0; 
”1.0; 1.0; 2.0; 3.0; 4.0; 5.0;



“flf

- O -
I

-J+

I«$< - o.t

«-5o5
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D
E
C
L
I
N
A
T
I
0
N

3C449 IPOL 1485.000 MHZ 3C449 1485,IUM.l

22 23 00 
RIGHT ASCENSION
PEAK FLUX = 1.3964E-02 JY/PIXEL 
LEUS = 0.1000E-03 * C -1.0; 1.0i 2.0; 

4.0; 8.0; 16.0; 32.0; 64.0; 128.0; 
2S£. 0 ; ^ 1 2 . Qd.L024.ai



D
E
C
L
I
N
A
T
I
0
N

3 T M S  I PUTT 1485.000 MHZ 3C449 B*C.ICLN.l

22 29 10 05
RIGHT ASCENSION
PEAK FLUX = 3.7141E-02 JY/BEAM 
LEUS = 0.1479E-02 * ( -1.0, 1.0, 2.0,

4.0, 8.0, 16.0, 32.0, 64.0, 128.0, 
>j.0, 512.0,1024.0)

n 
c



45 53

D
E
C
L
I
N
A
T
I
0
N

09

R , S  
*------ -

45 53 45

09 10 02

IPOL 1464.900 MHZ 3C219 L.IH1CNU.1

P E A K  F L U X  : 5 . S 2 8 3 E - 0 3  U N D E F I N E  
L E U S  : 3.112 S E -0 3 * ( -10.0, -9.0* -8.0, 

-7.0, -6.3, -5.0, -4.0, -3.0, *2.3, 
-1.2, 1.0, 2 .0 , 3.0, 4.0, 5.0, 
6.0' 7.0, 8.0, 9.0, 10.0)

5 4
A S C E N S I O N

%  / C?

____ ^ ^ ^ ----------X.
18 02 00 17 58 56 54

RIGHT ASCENSION
PEAK FLUX : 6.650BE-02 JY/BEAM
LEUS : 0.1330E-02 * ( -10.0, -9.0, -8.0,

~7.0, -6.0, -5.0, -4.0, -3.0, -2.0,
-1.0, 1.0, 2.0, 3.0, 4.0, 5.0,
6.0, 7.0, 8.0, 9.0, 10.0)

_______ \______
52

Cl

50

A , f V



3C405 IPOL 4866.350 MHZ CYGA.ICLN.l

19 57 44.6 44.4 44.2 44.0 43.8 43.
RIGHT ASCENSION

PEAK FLUX = 3.2951E+00 JY/BEAM 
JS = 0.2471E-02 * ( -1.0;
3.0; 4.0; 5.0; 6.0; 7.0; 8.0 j 
9.0; 10.0; 11.0; 12.0; 13.0; 14.0; 

15.0; 16.0; 17.0; 18.0; 666.7)

rLAK r LUX : jj. 1L + UU J Y/ d LAH _  , i__
LEUS = 0.2471E-02 * ( -1.0; 1.0; 2.0; C ' ) f T /tTSlt n. a a. r a. rr. 7a. n n. >—» ^  ’

O ' )  C o t

3C405 IPOL 48GG.350 MHZ CYGA.IH1.1

19 57 44.6 44.4 44.2 44.0 43.8 43.6
RIGHT ASCENSION

PEAK FLUX - 4.5881E-01 JY/PIXEL
L E U S   ̂ 3 . 2 2 9 4 E -03  * ( 1.0; 2 . 0 ;  3 .0 ,

4.0; 5.3; 6.0, 7.0; 8.0; 9.0;
10.01 11.3> 12.01 13.0; 14.0, 15.0;
16.0, 17.0; 18.0; 19.0; 20.0)



3C435 I POL 4866.350 MHZ CYGA.ICLN.l

VM 1+
3C405 I POL 4866.350 MHZ CYGA.IH1.1

40 35 57

19 57 42

PEAK FLUX : 4.5881E-01 JY/PIXEL 
LEUS  ̂ 0.4588E-03 * ( 1.0, 2.0 

4.0, 5.0, 6.0, 7.0, 9.0,
10.0 , 1 1 .0 ,  12. 0, 1 3 . 0,  14 .0 ,
16.0, 17.0, 18.0, 19.0, 20.0)



3C405 IPOL 48SS.3S3 MHZ CYGA.ICLN.l

LEUS = 0.3295E-02 * ( -1.0, 1.0, 2.0; 
3.0, 5.0, 7.5, 10.0, 15.0, 20.0,

30.0, 50.0, 75.0, 100.0, 200.0, 300.0,
400.0, 500.0, 700.0, 900.0) 4 (C 7 o < p

3C405 IPOL 496S.350 MHZ CYGA.IH1.1

PEAK FLUX r 4.5981E-01 JY/PIXEL 
LEUS : 0.4593E-03 * ( 1.0, 2.0, 3.0j 

5.0, 7.5, 13.0, 15.0. 23.3, 33.0, 
53. 0 > 75. 3» 133.0. 200.0, 330.0, 400. li* 

500.0, 7C0.O, 533.0)



3C4Q5 IPOL 4866.350 MHZ CYGA.ICLN.l

19 57 39.4 39.2 39.9
RIGHT ASCENSION 

PEAK FLUX = 3.2951E+03 JY/BEAM 
LEUS = 3.3295E-32 * I -1.3, 1.0, 2.0, 

3.0, 5.0, 7.5, 10.0, 15.0, 20.0, 
30.0, 50.3, 75.Q, 130.0, 230.0, 300.0,

400.0, 500.0, 7C0.0, 930.0)

38.8 38.S

3C405
J  '

IPOL 4 8 S S. 35 0 MHZ CYGA. IH 1 .1

N t  la,

c i _ £ n - N

V k

19 57 39.4 39.2 39.0 38.8 38.6
RIGHT A S CE NS I ON  

PEAK FLUX - 4 . 5 8 8 1 E -31 JY/PIXEL 
LEUS : 3 .4 59 8 E- 03  :* ( 1.0, 2.0, 3.0,

5.0, 7.5, 10.0, 15.0, 20.0, 30.0,
50.0, 75.0, 120.0, 200.0, 300.0, 4 0 U . 0,

500.0, 700.3, 9O0.0)


