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1, Introduction. An assumption implicit in the usual scheme for self-calibration of 
radio interferometer data is one of i»oplanaii»m: that oyer each element of the array, all 
wavefronts arriving from different parts of the sky to which the interferometer pairs are 
sensitive are subject to identical tropospheric/ionospheric path delays. Approximate 
validity of the isoplanatism assumption is a necessary condition for the success of self-
calibration. This memorandum is an outline of a means by which the self-calibration 
algorithm might be modified in order to deal with the anisoplanatic case. 

Anisoplanatism is a severe problem with a low-frequency array, such as the one 
which has been proposed by R. A. Perley and W. C. Erickson [8] for construction 
at the VLA site. This is because, of the extreme magnitude of ionospheric effects at 
long wavelengths, and the large field of view of such an instrument. An initial attempt 
at a scheme for self-calibration of low-frequency array data is outlined in Perley and 
Erickson's proposal; and the need for a generalization of the self-calibration algorithm 
is reiterated in [2] and [4]. 

In § 2 is described a method of incorporating an interpolation formula in the self-
calibration solution for antenna phases. The idea is to express the phase corruption 
seen by a given array element, in an arbitrary direction, as a linear combination (i.e., 
as an interpolation) of the phase corruptions {/r}£Li toward the centers of some small 
number m of "isoplanatic patches". Setting m — 5 to 20, or so—with the patches 
judiciously centered—might suffice in a typical instance. When the source model used 
for self-calibration is given by a set of CLEAN point source components, it is easy to 
modify the solution scheme so as to yield the /{. Choice of an appropriate interpolation 
formula is discussed in § 3. 

Having obtained from the ^self-calibration solution algorithm a set of n space-
variant antenna phases, one for each antenna, the next problem is finding a way to 
make use of this information in mapping. The usual mapping/deconvolution schemes, 
such as Fourier inversion combined with CLEAN or with the maximum entropy 
deconvolution algorithm, are not designed to cope with space-variant effects. A means 
of utilizing the space-variant antenna phases in a modified, mosaicing version of the 
usual map/CLEAN combination is outlined in § 4. 

A drawback of the method described in § 2 is the increase (by a factor « m) over 
the usual number of solution parameters, or degrees of freedom, in the self-calibration 
solution algorithm. Because of this increase, a better source model, higher signal-to-
noise ratio (S/N), or a larger number of antenna elements, (or a combination of 
all three) becomes desirable. By incorporating assumptions of spatial and temporal 
correlation of the antenna phases^ one may try to hold this larger number of degrees 
of freedom in check; this idea is pursued in §5 5-6. Perley and Erickson argue that for 
the proposed low-frequency array, which is designed to operate at 75 and 150 MHz, 
simple and accurate source models often will be available (perhaps from 327 MHz 
observations). And their data suggest that the spatial extent and the velocities of 
the ionospheric irregularities responsible for the severest phase fluctuations at 75 MHz 
are such that the techniques of §§ 5-6 would be useful. They report that during this 
summer they have found the typical case in 327 MHz VLA observations to be one of 
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near-isoplanatism over 5° to 20° patches, with dominant fluctuation time scales of 5m 

to 20™. They estimate that at 75 MHz the isoplanatic patches would be 1° to 5° in 
angular extent. The observations often would be of very high S/N with the proposed 
array design. 

2. Incorporating an interpolation formula in the solution for antenna/i.f. 
gains. In the usual scheme for self-calibration, the visibility measurement obtained 
on the i-j baseline at time t is assumed to be given by 

V{"iM »*(*), «>«>(*)) = 9i(t)9j(t)V{uiM ViM *>iM + error, (2-1) 

where V is the true source visibility and where the spatial frequency coordinates 
(u, v, w) have been parametrized by time, gigj is the systematic "calibration error", and 
the additive error is assumed to be well-behaved, and not troublesome. The (complex-
valued) function gk{t) is called the antenna/i.f. gain for antenna k of the array (or the 
complex gain, for short), gt may be written as 

9k{t) = , (2-2) 

with at real, where $k = arg(^) is called the antenna/i.f. phase (the antenna phase, 
for short). Various sources of systematic error—in addition to the phase errors arising 
from differences in the tropospheric and ionospheric path delays—are absorbed into 
the <7*. But for purposes of the present discussion we shall consider only the phase 
errors, which, for a low-frequency array, are dominated by the ionospheric effects; and 
so we shall rewrite Eq. 2-1 as 

nuijit), Vij{t), wi3{t)) « «>1>(M*). •*(«)) • (2-3) 

Now, given a source model whose Fourier transform is V (obtained, say, by Fourier in-
version of roughly calibrated data and by deconvolution of the point source response), 
and given the visibility observations obtained at a given instant of time, one can 
solve for an approximation to the instantaneous phase corruptions. The least-squares 
solution (e.g.) for the vector ^ of phase corruptions is obtained by minimizing the 
functional 

$ ( * ) = £ v > i k \ v j k - e * + ' - * * v J , (2-4) 
1 <j<k<n 

where the toy* are appropriately chosen weights, n is the number of antennas com-
prising the array, and V/* = V(ujk, Vjk,Wjk) (see [9] for details). 

Since the g's and ip*are written above as functions of time only, an assumption of 
isoplanatism is implicit in the preceding discussion. To handle the anisoplanatic case, 
we shall now (with a slight abuse of notation) write the antenna phases as functions 
of position on the sky and of time: ^jfc(s,y,£), where ( x , y , z = y/\ — x2 — y2 — l ) 
are direction cosines with respect to the visibility phase tracking center. Assume now 
that the field of view of antenna k can be divided into some small number, m, of 
"isoplanatic patches" whose centers are N = {(zi>yO}/!Li- By isoplanatic patch we 
mean a patch of sky over which the isoplanatism assumption is very nearly valid. 
Now the idea is simply to approximate nfjk by a function ij>k that interpolates the 
phase corruptions { f i } over the set N of interpolation nodes, so that (ignoring the 
time variable): 

1>k(*, y) i>k (x> y) = z2 Wt(x' M > (2_5) 
t » i 
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•where the wj are weights prescribed by whatever interpolation formula we choose (see 
§ 3). The fi will be the unknowns in a modified self-calibration solution scheme for 
antenna phases. 

In self-calibration, as it usually is applied, the source model is given by a linear 
combination of a finite number N of point source components, obtained by some 
variant of the CLEAN algorithm. In this case, the model source visibility is given by 

N 
V{u, v, w) = £ p q e , (2-6) 

where the pq are the point component fluxes, and ylq,mq,nq = y 1 — — m2
q — 1J 

their positions with respect to the visibility phase tracking center. Assuming, for 
the sake of simplicity, that there are the same number m of interpolation nodes or 
isoplanatic patches over all antennas of the array, and that the directions {(zj, 
to the centers of these patches are the same for each antenna, we can solve for the 
nm solution parameters fki by minimizing, in analogy to Eq. 2-4, the functional 

S ( f ) = 
N 

9 - 1 

(2-7) 

Here, fki is the phase corruption for antenna k and the center of the /th isoplanatic 
patch. 

In ordinary self-calibration, since only pairwise differences of the if)k occur in Eq. 
2-4, the unknowns are; determined only up to an additive constant; similarly, only 
pairwise differences are required in order to correct the data. One may assume that 

= 0 for some choice r of "reference antenna" and, hence, that there are only 
n — 1 rather than n unknowns. Likewise, in the anisoplanatic case nm — 1 unknowns 
are well-determined (assuming there are observations on sufficiently many baselines). 
This number is nm — 1 rather than nm — m because the interpolation formula for the 
reference antenna provides a 'connection' between the fri, I = 1 , . . . , m. 

3. Choice of interpolation nodes, and choice of an appropriate interpolation 
formula. Two considerations might govern the placement of interpolation nodes: (i) 
the geometry of the array, and (ii) the location of the brighter components of the 
source model. The ideal situation is that in which the source component which is 
of primary interest (and of unknown structure) is surrounded by bright components 
of simple structure, for which a simple and fairly accurate model is known. For a 
simple array geometry, if (i) were to govern the placement of the nodes, then the 
nodes might be regularly spaced. However, a necessary condition in order for the phase 
correction for a given isoplanatic patch to be well-determined is that the antenna must 
be seeing modeled emission somewhere in the patch. The latter observation, combined 
with the fact that array geometries generally are somewhat irregular, dictates that in 
most cases consideration (ii) would govern the placement of interpolation nodes. So, 
instead of one of the familiar interpolation rules for regularly spaced data, such as a 
polynomial interpolation formula, an interpolation formula appropriate for scattered 
data is needed. 

A particularly simple scattered data interpolation method, due to Shepard, is 
described by Gordon and Wixom in [7]. This is an inverse-distance weighted method, 
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Fig . 1. Qualitative behavior of the Shepard interpolant. At left, ay = 2, Vj, in Eq. 3-1. At center, 
a j = 20; the interpolant approaches a piecewise constant function as the parameter is increased. 
At right is shown the somewhat 'sensible' behavior of the interpolant in areas away from any of the 
interpolation nodes; here, different values of aj are used for different nodes—the respective value is 
noted at the right of each node. Adapted from Gordon and Wixom [7]. 

for which Eq. 2-5 assumes the form 

M z > y ) = V ^ n it ^ J W ' M E j = i U f r i - Xj)- + ( y - y t f ) 

for some choice of the ay > 0; ay = 2, Vj, might typically be chosen. Other 
interpolation schemes which might be suitable are described by Franke in [9]. Eq. 
3-1 can be rewritten in the equivalent form 

r*m » ! aif 2 

where ri denotes the Euclidean distance between (x, y) and (z(, yi). In our application, 
we would probably choose ai = a = constant. 

A desirable feature of Shepard's method, which it does not share with the usual 
polynomial interpolation schemes, is that the interpolant is bounded, even at infinity, 
and its behavior may be somewhat 'reasonable' even outside of a figure encompassing 
the nodes. Its extreme values, in fact, are equal to min/ fi and max/ /<. When a < 
1, the interpolant is rather peculiar, generally with a cusp at each of the nodes. 
However, when a > 1, the surface tends to be flat at each of the nodes (the parti als 
with respect to x and y are equal to 0 at the nodes). As a —*• oo, the interpolant 
approaches a piecewise constant function, constant in some 'domain of influence' of 
each node. The Shepard interpolant, in fact, reproduces constant functions—i.e., when 
fi = constant, ipk = constant. These properties, which are described in more detail 
in [7], are illustrated in Fig. 1. Because of the flatness of the Shepard interpolant, 
this method is not often used in the ordinary applications, such as contour mapping, 
except with modifications, say to incorporate derivative information [6], 
4. Utilization of space-variant antenna phases in inversion. The self-
calibration algorithm has two basic components: an algorithm, such as that described 
in § 2, to solve for an approximation to the antenna/i.f. gains, or the antenna phases, 
given a source model and given the error-corrupted visibility data; and an inversion 
algorithm, which, given corrected visibility data, generates a source model. In the 
isoplanatic case , the inversion algorithm usually is a pair consisting of a Fourier inver-
sion scheme and a deconvolution algorithm—i.e., say, a mapping program combined 
with either the CLEAN, or the maximum entropy, deconvolution algorithm. 
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In the anisoplanatic case, because of the departure from the assumption of space-
invariance, there is a departure from straightforward Fourier inversion. One way of 
coping with space-variant effects is by means of mapping in the usual manner over the 
patches of a mosaic, and then deconvolving from each patch the point source response 
appropriate to that patch. This must be accomplished by dealing with all patches of 
the mosaic simultaneously, because sidelobes from a source in any one patch fall into 
each of the other patches. 

Any one of the many sophisticated deconvolution algorithms could, with some degree 
of effort, be modified to incorporate mosaicing, and to cope with space-variant effects; 
however, to date, only the CLEAN algorithm has been suitably modified to be capable 
of making use of space-variant antenna phases. A mosaic version of the "battery-
powered" CLEAN algorithm of Cotton and Schwab (see the AIPS Cookbook glossary) 
has been implemented by Bill Cotton in an AIPS program named MX. Briefly, the 
program works as follows: It is a variant of the Clark CLEAN algorithm, which incor-
porates two nested iteration loops. In the inner iterations, each mosaic patch is treated 
as in the standard CLEAN algorithm. At the outer iterations, the residual maps ap-
propriate to each patch are computed by correcting the model visibility corresponding 
to the current iterate for sky curvature (the wz term) and possibly for instrumental 
effects (finite bandwidth, finite integration time, primary beam attenuation, etc.), and 
re-gridding the (residual) data appropriately for each patch; this is followed by Fourier 
inversion to obtain a patchwork residual map. The algorithm then goes into more in-
ner iterations. The only modification required is to correct the visibility residuals for 
the space-variant antenna phases at the same time that the data are re-gridded in the 
outer iterations. 

5. Incorporating an assumption of spatial correlation of the antenna phases. 
In this section I shall assume that the same set N of interpolation nodes, specified by 
their direction cosines in the map, {(z/, !//)}J2»i, is used for each of the n antennas 
of the array. Closely spaced antennas see a given interpolation node (xi,yi) through 
nearly the same tropospheric/ionospheric path; hence, if antennas j and k are near to 
one another, then \fji — fu\ ought to be small. A straightforward way to incorporate 
this assumption in the solution scheme is by adding a penalty function to the right-
hand side of Eq. 2-7. An appropriate choice of penalty function might be an expression 
of the form 

x ± ( ^ M , (5-1) 
1 < i < m 

where ry* is given by some monotone increasing function of the physical separation 
of antennas j and k (r^ = («yfc + Vyfc)7/2, for example—see §7, Remark 7). The 
prime denotes that terms corresponding to antenna pairs whose physical separation 
is so large that fji and fki might be very different are excluded from the summation. 
X would be chosen so as to achieve a reasonable balance between the influence of 
the x2 error term (Eq. 2-7) and the penalty term—the method of cross-validation, as 
described in [10], could be used to choose X. 

One could carry this idea a bit further by building into the penalty function some 
standard norm of the difference between and for example, incorporating the 
square of the 1? norm, use 

x £ j i // I'M2*y) - » ) f d x d y • (5-2) 
f.o.v. 

Here, f.o.v. denotes the field of view, or region of interest. Or one might choose a 
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Sobolev norm—say, the H 1 norm: 

dx dy, (5-3) 

where 6jk = i>j — "0** The latter choice not only encourages the difference between 
the computed antenna phase surfaces for proximate antennas to be small, but it 
urges that difference to be smooth, as well. Although Expressions 5-2 and 5-3 are 
computationally tractable (at least for certain choices of interpolation formula), the 
added sophistication might not be worth the extra effort required. 

fl. Incorporating an assumption of temporal correlation. An assumption of 
temporal correlation of the antenna phases could be incorporated by either of two 
means: (i) through use of a 'data (time-) window'; or (ii) via a penalty function method, 
as in § 5, serving to bias the computed solution toward the solution obtained, say, 
for the next earlier time—or toward a running mean of the solutions obtained for 
earlier times. In case (i), the summation (Eq. 2-7) defining the x2 error term would 
be extended over time as well as baseline, and, to approximate the phase corruptions 
corresponding to the center of a time interval [t — r/2, t + r/2], the data weights would 
be chosen to be proportional to a real-valued function symmetric about, and peaked 
at, t. In case (ii), one might assume a Gaussian prior distribution for fa, of mean hm 
equal, say, to the running mean of previous solutions, and of standard deviation a. 
The penalty term to be added to the right-hand side of Eq. 2-7 then would be of the 
form 

As with the X of § 5, X' would have to be chosen adaptively, in order to achieve a 
reasonable balance with the x2 error term and, possibly, with the penalty term of § 5. 
Again, in case (ii) the method of cross-validation could be used to choose X', or, in 
case (i), in order to choose the characteristic width of the weight function (or even a 
parameter defining its shape). 

7. Remarks. 1) The technique described in § 5 for incorporating an assumption of 
spatial correlation of the antenna phases could be applied in ordinary self-calibration, 
as well (via Expression 5-1, with m = 1). This might be a useful modification for the 
case of low S/N observations, especially at short observing wavelengths or whenever 
atmospheric effects are dominant. The n — 1 degrees of freedom in the solution for 
antenna phases would essentially be reduced as X is increased; for X = 0, one would 
have the case of ordinary self-calibration. However, there mightn't be very suitable a 
priori information for choosing the 'right' value of X. This modification could, with 
little effort, be incorporated in the AIPS program for self-calibration. 

2) Both of the techniques of § 6, for incorporating an assumption of temporal 
correlation, are already employed in some fashion in self-calibration. A rectangular 
data window, whose width is specified by the program user, is used in the AIPS 
implementation; the window, however, does not 'slide'—but rather it 'jumps', in time 
increments equal to its full width. Cornwell and Wilkinson in [3] describe the use of 
a penalty function method in order to constrain the moduli of the computed antenna 
gains (rather than to constrain the antenna phases, as in § 6). This modification is 
incorporated in a version of the AIPS self-calibration program which is used primarily 
for VLBI data r educ t i on . 

(6-1) 
1 <t<m 
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3) The remarks in §§5-8 that cross-validation could be used to choose the 
parameters X and X' are a bit flippant. Cross-validation is probably too expensive 
a technique to be practical in this application, but in a sense it would be the 'ideal' 
method. 

4) It may be useful to compare the computational expense of the solution for antenna 
phases (as outlined in § 2) in the anisoplanatic case, against the case of ordinary self-
calibration. In the present implementations of self-calibration in the AIPS software 
package, two methods, both of them iterative, are used in the solution for antenna 
gains or antenna phases. The method used most often for VLA data reduction is 
a successive substitution algorithm [9], requiring only first-order information—the 
gradient, VS, of the right-hand side of Eq. 2-4. The other method, which is used 
both in the global fringe search algorithm for VLBI [11] and in a version of the self-
calibration algorithm which incorporates a penalty function to constrain the moduli 
of the computed antenna gains, requires second-order information, V25; moreover, at 
each iteration it requires the numerical solution of a system of M simultaneous linear 
equations, where M denotes the total number of solution parameters. 

In the anisoplanatic case, one would need to compute VS, and perhaps V2S, where S 
now is given by Eq. 2-7 (derivatives of the penalty terms of §§ 5-6 also have to be added 
in—but see below). M is increased by a factor TO, equal to the number of isoplanatic 
patches. S and V5 still are comprised of n(n — l)/2 terms, where n is the number of 
array elements. There is of order m times as much expense in evaluating each term 
of VS, because of the 2(m — 1) additional antenna phases, and their accompanying 
interpolation weights, in the argument of the exponential function in Eq. 2-7. Each 
observation contributes to 4m2 elements of V25, rather than only to four, so one 
would want to avoid evaluating V2S; this means that one would use a successive 
substitution algorithm,, requiring more iterations, but less work per iteration, than a 
Newton method. 

Additionally, the larger number of unknowns requires a larger number of itera-
tions—but the rate of increase in this number ought not to be proportional to m, but 
more gentle. Incorporating the penalty terms of §§ 5-6 entails little added expense, be-
cause the observational data are not included in the penalty sums. In fact the penalty 
constraints tend to stabilize the solutions, and so should produce better-conditioned 
minimization problems. 

Overall, for fixed ny the computational expense in a careful implementation is 
increased by a factor equal to a few times or several times m, rather than a few 
times m2. With TO in the range say, 5 to 20, and n smaller than 50 or so, the burden, 
though considerable, would seem manageable. In the present implementation of self-
calibration in AIPS, the solutions for antenna gains or antenna phases are computed 
by the AIPS host computer, rather than by a high-speed array processor (AP). In the 
anisoplanatic case one would want to compute V5 (at least) in an AP, as AP's are 
fairly well-suited to the task (and should yield a speed-up factor perhaps in the range 
of 20 to 60). 

5) In the isoplanatic case, one has n(n — l)/2 visibility measurements, and (given 
a source model) n — 1 unknowns, the if>k, to be determined by the antenna phase 
solution algorithm. Hence, the i>k are overdetermined by a factor q = n/2; that is, 
there are n/2 times more equations than there are unknowns. When the source model 
is inaccurate or the data are noisy, this overdeterminacy is essential to the success of 
self-calibration. 

In the anisoplanatic case, for a fixed number of antennas, and ignoring (for the 
moment) the possibility of incorporating the penalty functions of §§ 5-6, q is reduced 
by a factor which is nearly equal to the reciprocal of the number of isoplanatic patches; 
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i.e., q = 2(1^1—1) - I n order for the solutions for the fki to be overdetermined, TO must 
be less than r = + J . For a 27 element array, such as the VLA, r = 13^; and 
for a 50 element array, r = 241§. When m is close to r, both a very accurate source 
model and very high-quality data are required in order to obtain accurate solutions 
for the fki-

An easy way to understand the effect of the penalty function method of § 5 (to 
incorporate the assumption of spatial correlation) is to consider the case of a low-
frequency array in which the array elements are placed down in pairs that are so 
closely spaced that each element may be considered to be looking through the same 
part of the ionosphere as one nearest neighbor. Then, as X is increased, the number 
of unknowns is essentially halved, and the overdeterminacy is doubled—i.e., now q = 

An advantage of the technique of § 5 is that the penalty can be made continuously 
variable as a function of antenna separation. For very closely spaced antennas, the 
antenna phase solutions may be constrained to be very close, whereas for proximate 
antennas which are not so closely spaced, the solutions still may be constrained to be 
close, but need not be as close. 

6) As an alternative to use of computed antenna phase surfaces given by the 
interpolation formula Eq. 2-5, one might consider use of a bilinear or biquadratic 
polynomial form, such as 

i>kix> y) = akX2 + bkxy + cky2 + dkx + eky + fk . (7-1) 

Then Eq. 2-7 would be replaced by 

S(a, . . . , f ) = 

l<3<k<n 

N (7-2) 

where a = (a i , . . . ,a n ) , etc., denote the new solution parameters (six unknowns per 
antenna, in this example). One can go a step further by assuming that tf>k is, say, 
locally quadratic in the neighborhood of each of a family of interpolation nodes—that 
the phase surface for antenna k, in the neighborhood of (®t,yi), is given by 

Mx, y) = akl{x - x{f + bkt{x - xi)(y - yt) + eu[y - yi)2 

+ dkt{x - xt) + eM{y - yt) + fkt. 
(7-3) 

These surfaces can be pieced together by means of a 'generalized' Shepard interpola-
tion formula, 

V) - ™ -j / at/2 > I 7 " 4 ) 

where, as before, r j denotes the Euclidean distance between (x, y) and (zj, yi). Then, 
for m interpolation nodes, there are 6m unknown parameters per antenna. Probably, 
however, this technique would be most useful when the anisoplanatism is not too severe 
(e.g., in 327 MHz VLA observations), so that just one 'interpolation node' would suffice 
(i.e., ra = 1, with x\ = yi = 0). 

In practice, the numerical stability of the solution algorithm would be improved 
b y us ing, in p lace of Eq . 7-3, a l inear combina t ion of two-d imens iona l po lynomia l s 
orthogonal over an appropriate domain. One could, for example, choose polynomials 
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orthogonal over a square region of the sky. However, since the array element primary 
beam patterns often are nearly circularly symmetric, a better choice (in the case 
TO = 1) might be polynomials orthogonal over a disk—or polynomials defined over the 
entire x-y plane, but orthogonal with respect to a radially symmetric weight function. 
Suitable candidate families of bivariate orthogonal polynomials are described in [5, p. 
264 ff.]. 

7) Armstrong and Sramek [1] and Sramek [12] characterize the tropospheric phase 
scintillations affecting interferometric observations at microwave frequencies by means 
of a so-called structure function, and by means of Allan variances. The structure 
function represents the spatial statistics of that component of the interferometer phase 
variations which is due to the troposphere. The Allan variances of observed phase 
variations bear a close relation to the structure function. In observations at 5 GHz, 
Armstrong and Sramek find the structure function to be well approximated by a power 
law relation—the variance of the observed variation is proportional to some power 7 
of the baseline length, and the value 7 « 1.4 is typical for interferometer baseline 
lengths of 1-35 km. At 22 GHz Sramek finds the Allan variance of observed phase 
variations, computed over a time scale of 16m, to be well modeled, again, by a power 
law relation—over baselines of 100 m to 3 km—with an exponent 7 px .72 

These results suggest that an appropriate choice for the weight function appearing 
in Expressions 5-1-5-3 might be the choice 1/ry* — («yjfc+Vyfc)7/2, for some empirically 
derived value of 7, identical to the 7 used above. A further refinement to the technique 
described in § 5, for incorporating an assumption of spatial correlation, would be to 
constrain the mean square variation of each of the computed antenna phase surfaces 
to be in accord with some empirical determination of the structure function. Again, 
one might employ a penalty function, say one of the form 

where $kji is the angular separation between the ray paths by which antenna k 
sees interpolation nodes / and I, and where h is an appropriately chosen monotone 
increasing function of this separation. 
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