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1. INTRODUCTION 

In making maps, a weight is usually applied to each gridded 
visibility cell to compensate for the local density of ungridded 
visibilities. Optimum signal to noise ratio dictates constant weighting 
(natural weighting). In cases where the noise is less significant than 
sidelobe levels, minimizing the rms sidelobe within the dirty map or beam 
leads to weights which are inversely proportional to the local density 
function (uniform weighting). 

Though the deconvolution step should, in principle, remove 
sidelobes regardless of the weighting scheme used, the practicalities 
are quite different. The CLEAN algorithm tends to be faster and more 
reliable when the sidelobe levels in the beam are low (this helps avoid 
the corrugation effect). The maximum entropy method poorly deconvolves 
sidelobes imbedded in extended structure, and the Cornwell and Evans 
algorithm (VM) converges poorly when the dirty beam is broad (In 
determining the inverse Hessian, VM approximates the dirty beam by a 
delta function. Though an iterative improvement technique has been 
proposed, by Cornwell, to improve the estimate of the inverse Hessian, 
this costs extra FFT's). Heuristically most deconvolution algorithms 
should work better, when the.problem they are given is simpler. 

We must not loose sight, however, of what weighting cannot do. 
Weighting is essentially a simple linear deconvolution technique. It 
cannot interpolate or extrapolate unsampled visibilities, and 
consequently some sidelobes are fundamentally unremoveable by weighting. 
For a well filled in u-v coverage, little improvement over uniform 
weighting can be gained. Other weighting schemes are useful only when the 
u-v coverage contains significant holes, as in a VLA snapshot. 



la summary, by appropriate weighting the quality of both the dirty 
and deconvolved map can be improved. This memo considers weighting 
schemes in general and algorithms to calculate optimum weights. Examples 
and results are also given. An appendix describes an A1PS task used to 
implement two weighting schemes. 

2. WEIGHTING IN GENERAL 

Ignoring a scaling constant used to make the beam peak unity, then 
natural and uniform weights are defined as: 

W(£) = M(£) 

and 

W(£) = M(£)/S(£) 

respectively. One dimensional notation will be used for simplicity, as 
extension to higher dimensions is straight forward. Here W(£) is the 
weighting function and S(£) is the sampling density function (measured in 
visibilities per grid cell). M(£) is the transform of the ideal beam. 
Though the ideal beam is usually a delta function (so M(£) will be 
constant), it can be made a gaussian to both suppress sidelobes (at the 
expense of resolution) and improve brightness sensitivity to extended 
objects. 

Defining the grid function, B(£)=W(£)S(£), as the transform of the 
dirty beam, then for natural and uniform weighting, the grid function at 
sampled cells is: 

B(£) = S(£)M(£) 

and 

B(£)=M(£) 

respectively, and zero at unsampled cells. A general description of 
weighting is given by Sramek (1982). 

It is easily shown that uniform weighting minimizes the rms sidelobe 
in both the map and beam. However the actual sidelobe level will be 
strongly dependent on the size of the field of view (or alternately the 
coarseness of the gridding in the u-v plane). As the field increases in 
size, the u-v plane grid becomes finer, until there is only one 
visibility per u-v cell, and the sampling density function reduces to 
zeros or ones. Thus uniform weighting has degenerated into natural 
weighting, with the accompanying high sidelobes. As Clark notes (1979) 
this is in a sense fundamental, yet in another sense only apparent, if 
the sky is assumed mostly blank. 

To make a map of a large field but suppress sidelobes over a smaller 
field, the uniform weights of the small field can be used on the large 
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field map. This is essentially what super-uniform weighting does. More 
specifically, the super-uniform weight is given by: 

W U ) = M(£)/(S(Jt)*II(fc)) 

Here II(fc) is a box function (typically 3-9 cells wide), and "«" 
represents convolution. 

Generally we want to suppress sidelobes in the beam over a region 
where the source's autocorrelation is non-zero. This prevents sidelobes 
from one region of emission falling onto other regions of emission. An 
optimal approach would be to find weights which minimizes sidelobes in a 
given window. Additionally we could give different importance to 
sidelobes in various regions. This leads to minimizing a weighted-
squares measure of sidelobe level, viz: 

E2 = Zkq(k)(b(k)-m(k))2 

Here q(k) is the window function, choosen to be large where sidelobe 
suppression is important, and small or zero elsewhere. Also b(k) and m(k) 
are the transforms of B(fc) and M(fc) respectively. By differentiating and 
equating to zero, the optimum grid function is found to satisfy: 

Q(fc)*B(fc) = Q(fc)*M(fc) * e { sampled cell > 

Here Q(Jt) is the transform of q(k). If q(k) is constant, then Q(£) is a 
delta function, and the solution is uniform weighting, as expected. 

3. ALGORITHMS 

Though the above equation resembles a deconvolution problem, it is 
different in that the equality between sides only holds at sampled cells 
(not the entire plane!). Inverse or Weiner filter approaches are neither 
of theoretical or practical use in its solution. 

Two algorithms for solving this have been investigated. Firstly the 
classical van Cittert algorithm (Schafer et al, 1981) can be used. An 
iteration of this algorithm is defined as: 

B ,-(£) = B (£) + X(Q(£)*M(*) - Q(fc)*B (*)) n+l n n 
I z { sampled cells } 

Here X is a constant in the range 
0 < X < 2/qm ax 

^Snax k®ing the maximum of the window function). The algorithm is 
guaranteed to converge to a unique solution if the window function is 
everywhere positive and non-zero. If the window function is zero in some 
regions, then the iteration will converge to a minimum norm solution for 
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B(£) (provided BQ is zero), but the solution need not be unique. The 
attraction of the algorithm is that it is reliable and well understood. 
It is, however, slow to converge (typically taking 20-30 iterations), and 
quite expensive computationally (2 FFT's per iteration). We will call the 
weights produced by this algorithm "optimal weights". The algorithm is 
too expensive to be of practical use, but has been used here to enable 
comparisons with approximate solutions. 

An alternate algorithm is derived as follows: For any B1: 

Q(£)*(B'(£)B(£)/B'(£)) = Q(£)*M(£) 

If B'(£) is a good estimate of the grid function, then B(£)/B*(£) will be 
roughly unity. Then 

Q(£)*(B'(£)B(£)/B'(£)) ~ (Q(£)*B'(£))B(£)/B'(£) 

Therefore 

B(£) - Bf(£)(Q(£)*M(£))/(Q(£)*B'(£)) 

It has been found in practice that the approximation is quite good when: 

1) Q is reasonably narrow (q reasonably broad), and/or 
2) Q is positive, which will occur if q is an autocorrelation 

function. Additionally if q is positive (which a window function should . 
be), the approximation appears to be very good, regardless of the 
broadness of Q. 

This suggests an iterative scheme, where B1 is the grid estimate 
from the previous iteration. However it seems that 1 iteration is usually 
enough in practice. Possible estimates for B*(£) are the natural, uniform 
or super-uniform grid functions. Uniform and super-uniform grid 
functions should provide better results than the natural grid function. 
We will call weights produced by this equation "approximately optimal 
weights". 

Note that making B'(£) the natural grid function, making Q(£) a box 
function and assuming that the ideal beam is a delta function, then 
approximately optimal weighting reduces to super-uniform weighting (if 
the ideal beam was not a delta function, then approximately optimal and 
super-uniform weighting will be slightly different). 

The approximations made suggest that a superior super-uniform-like 
weighting scheme should be achieved by making B1 the uniform grid 
function. This produces weights proportional to the uniform weight, 
divided by the number of sampled grid cells in some neighbourhood. Note 
that when the u-v plane is completely sampled, then this scheme will 
always lead to uniform weighting (which is always optimal in this case) 
whereas super-uniform will not. The scheme would be very slightly simpler 
and cheaper computationally than super-uniform weighting. We shall call 
this "averaged-uniform weighting". 
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Finally note that as Q in super-uniform weighting is a box function, 
q (a sine) will be a somewhat queer window function, since it will have 
negative parts. 

4. RESULTS 

This section describes a myriad of beam patterns produced by 
different weighting schemes (natural, uniform, super-uniform, optimal 
and approximately optimal). Measures of sidelobe levels are also given. 

All beam patterns come from a 4 minute snap-shot of the VLA. The u-v 
data base contained 4465 visibility records, the maximum baseline was 160 
kilolambda, and the u-v cell size was 1.6 kilolambda. No tapering was 
used (i.e. the ideal beam was a delta function). All contour maps show 
contours at the'-10,-5,5,10,25,50,75 and 100 percent level. The measure 
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of sidelobe level used will be the weighted-squared sidelobe level, z , 
normalized by the weighted-squared sidelobe level of the optimum 
solution. 

Figures 1 and 2 show the natural and uniform beams. The sidelobe 
power (not rms) is 34.3% worse in the natural beam than in the uniform 
beam. 

4.1 Super-Uniform and Sine-Lobe Window Functions 
A comparison between super-uniform and other weighting strategies 

is clearly called for. However a direct comparison (at least with optimal 
weighting) is not possible as the super-uniform window function (a sine) 
has negative regions. A reasonable comparison will be gained by using 
only the main (positive) lobe of the sine. Thus beams were produced 
for:-

a) Optimal weighting, using the main sine lobe as window function. 
b) Approximately optimal weighting, using either the full sine, or 

just its main lobe. The initial estimate of the beam was either natural 
(which would produce super-uniform beams, when the full sine is used), 
uniform, or a previously generated approximately optimal beam (i.e. use 
iteration). 

Figure 3 shows the super-uniform beams corresponding to averaging 
neighbourhoods of 3x3, 7x7, 11x11 and 15x15 u-v cells. The relation 
between the region of sidelobe suppression and the size of the sine 
function (main lobe size is given on the side of contour diagrams) is 
clear for the first three cases. However the fourth example shows a 
worsening in near in sidelobes, indicating that the approximation used in 
deriving super-uniform weighting is bad for this case. 

2 For the 3x3 case, super-uniform weighting has an z only 5.8% worse 
2 

than the optimum (A uniform beam had an z 20.1% worse). However as the 
averaging neighbourhood increased, super-uniform weighting became 
further from optimal (Optimal and super-uniform were still reasonably 
close for the 11x11 case). Super-uniform beams usually had more sidelobes 
outside the suppression region than did the optimal beams (compare 
Figures 3c and 4 for the 11x11 case). 
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Averaged-uniform weighting was superior to super-uniform weighting 
in all cases tested. Again, however, the superiority was not large, but 
increased as the neighbourhood size increased (For the 3x3 case, 

2 
averaged-uniform had an z 1.9% better, whereas for the 11x11 case, it 
was 8.0% better). 

Iterating using the approximately optimal approach did show a 
2 

steady decrease in z . The results of the first iteration were, however, 
so close to optimal, that the improvement was not significant. 
4.2 Large Disc 

Figure 5 shows a window function (roughly a large disc) and its 
resulting optimally weighted beam. The approximately optimal beams, 
using the natural and uniform beams as the initial estimates, were both 

2 
quite similar to the optimal, having z 8.5% and 5.7% worse. The plain 

2 uniform beam's z was 18.7% worse. 
4.3 Medium Disc and Two Small Disc 

Figures 6 and 7 show two different window functions and their 
corresponding weighted beams. The approximately optimal algorithm 
produced essentially rubbish (as Q has negative regions, the algorithm 
leads to a near divide by zero, resulting in the beam being dominated by 
a few visibilities). Both these cases the window functions are becoming 
more specialized, and the resulting sidelobe suppression more 
impressive. Figure 7 is particularly impressive, with large sidelobes 
being suppressed, at the expense of new large sidelobes in the map 
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center. For this case s has been decreased by over seven-fold relative 
to the uniform beam. 
4.4 Autocorrelations as Window Functions 

As mentioned, beam sidelobes only need to be suppressed in the non-
zero region of the sources autocorrelation. Two tests were made with a 
field which contained two point sources, positioned to be in the worst 
sidelobes of each other. The window functions used were: 

1) the autocorrelation of the CLEAN image, and 
2) the autocorrelation of two boxes which contained the point 

sources. 
Figure 8 shows the results for case 2. 

In both cases it was found that the approximately optimal algorithm 
worked well. Indeed for case 1 the optimal algorithm never converged 
satisfactorily (too slow) and the approximately optimal solution was the 
best result. Additionally using the uniform, rather than the natural, 
beam as the initial estimate produced much better results. For example, 

2 for case 2 using a uniform beam as the initial estimate gave e only 0.2% 
2 worse than optimal, whereas for the natural beam, e was 24.8% worse. 
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Some general comments should be made. Firstly (as has been 
previously mentioned) the approximately optimal algorithm works well 
with autocorrelations as window functions (especially when the initial 
beam is uniformly weighted). Secondly autocorrelations will always have 
their maxima at the center of the field. As the beam sidelobes are always 
high near the center, the resulting beams tend to give narrow central 
spikes but not-as-good suppression elsewhere. A comparison of Figures 7 
and 8 illustrates this. To get good localized sidelobe suppression (as in 
Figure 7), neither an autocorrelation as window function, nor the 
approximately optimal algorithm, can be used. 

5. WEIGHTING TO IMPROVE THE DIRTY MAP 

This memo concentrates on minimizing sidelobes in the dirty beam. 
This is partially for simplicity, and partially because it is the 
sidelobes of the dirty beam which create problems for the deconvolution 
algorithms. An alternate approach would be to minimize the sidelobes in 
the dirty map. A derivation indicates that the weights satisfy: 

Q(£)*(W(£)I(£)) = Q(£)*I(£) £ E { sampled cells } 

(Here I(£) is the transform of the source, i(k)). To solve for the 
weights we would need an initial model of the source, as with self-cal 
(An accurate model would be far less critical, and easier to determine, 
than it is with self-cal). In addition if q(k) or i(k) were not even, 
then the resulting weights would generally not be real, and the beam 
would not be even (Note, however, if Q where a delta function, i.e. 
uniform window function, the the I(£)'s cancel, and we return to uniform 
weighting). Constraining the weights to be real complicates the above 
equation to: 

Re(I(£) (Q(£)*(W(£)I(£)-I(£))) = 0 £ £ { sampled cells ) 

(Here Re(x) is the real part function). This appears a somewhat difficult 
equation to solve (even approximately). The additional complication, and 
the probable little extra gain in sidelobe suppression make this approach 
unattractive. 

6. CONCLUSIONS 

Roughly speaking, we can weight to suppress sidelobes 
1) in the dirty beam, in a region near the beam center, or 
2) in the dirty beam, where the autocorrelation of the source is non-
zero, or 
3) in the dirty map. 

The first approach tends to be of general application, whereas the others 
are more data dependent and specialized. The first approach produces 
pretty good results, whereas the gains achieved by the second approach do 
not justify the added complexity (For example compare Figures 3a and 8b 
near the beam center). Extrapolating, the same can be said for the third 
case. There may, of course, be specific examples where the latter two 
approaches may be useful. 
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Super-uniform weighting was found to be, in a sense, nearly optimal 
at suppressing sidelobes in a region near the beam center, provided the 
averaging neighbourhood was less than about 9x9 cells. Averaged uniform 
weighting (a simple modification of super-uniform) works slightly better 
for small averaging neighbourhoods, and can work substantially better 
for large averaging neighbourhoods. The latter weighting scheme should 
be made an option in the map making programs. 

One question not so far considered is: "Are there better Q functions 
for general suppression than the box function of super-uniform and 
averaged uniform weighting?" For practical implementation Q must have 
finite support, and q must be centralized. These are the same 
requirements as for the gridding convolution function. However the 
requirement that q is centralized is less important than in the gridding 
case. Additionally to make the approximately optimal algorithm wofk 
well, Q and q should both be (essentially) non-negative. One desirable 
function would seem to be a gaussian truncated in the u-v plane. 
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8. APPENDIX - AIPS TASK UVWT 

UVWT determines the weights for visibility data to minimize a 
weighted error measure. This is a highly experimental. There are two 
possible algorithms, the 'optimal' and 'adaptive' (approximately 
optimal) algorithms. 

a) The optimal algorithm uses a van Cittert iteration, and takes 
about 60 FFT's (30 iterations). It is of little practical use, other than 
for comparison in tests. 

b) The adaptive (approximately optimal) algorithm uses a technique 
similar to super-uniform weighting. This takes 3 FFT to perform. 

The algorithm to use is given by OPCODE, values being 'OPTl' and 
'ADAP'. 

Two input files are required by the task, the beam file and the 
window file. The beam file can be a file which has been formed with any 
sort of weighting. It should not, however, be grid corrected. For the 
optimal algorithm, the type of weighting of the input beam does not 
effect the output in any respect. However for the adaptive algorithm, the 
input beam should be as close to the desired beam as possible (i.e. use 
uniform or super-uniform weighting, or possible a beam obtained from 
UVWT. If the output beam is to be tapered, so should the input). 

The window file indicates the penalty for sidelobes, in a weighted-
least-squares sense. Generally it will be large in the central regions, 
and small or zero at the edges. It must be even and centered on 
(N/2,N/2+1) (like the beam). 

The output file will be a "weights file" to apply to the map and 
beam. They are applied by convolving. DO NOT USE CONVL to do this (CONVL 
gets it wrong), but use the tried and true approach of FFT(weight file), 
FFT (map), COMB(multiply real part), COMB(multiply imaginary part), FFT. 
Also the grid correction will have to be done manually (good luck!). 

APARM gives some extra parameters. Because of rounding noise, UVWT 
has to use a threshold below which it realizes a cell has not been 
sampled. This is set as APARM(l) by abs(min value). As the minimum value 
will be negative and due to rounding noise, the threshold estimate is 
quite good. APARM(l) is, by default, 75, and should not need to be 
changed. A warning message is given if UVWT thinks the threshold is bad. 

The taper to apply to the data is given by APARM(2), in arcsec. For 
the optimal algorithm, it does not matter if the input beam is tapered. 
But generally for the adaptive algorithm, the input beam should be as 
good an approximation of the desired beam as possible. 

APARM(3) and APARM(4) are used, for the optimal algorithm, to 
determine when to stop iterating. APARM(3) is the taaximum iteration 
count. If the relative rms change drops below APARM(4), then the 
iteration also stops. Good values are 30 iterations and relative rms 
change of 0.001. 

9 



.• I.-S-. ..••JiMV.-iV-'. - v-. 
• I f "i'.-V - ' 

• • * ** 

- . *rV \ .-of , * • • 

- v . < * v - • * .•: • » - - V v r - ^ V . f t a ^ i -
- ••• :>t . V 4 ? ^ A a » : •• 

v tost: • . • w v • • * sua- « 

Figure 1 
Uniform Beam 

Figure 2 
Natural Beam 

Figure 3(a) 
Super-Uniform Beam 
Averaging Neighbourhood 3x3 

Figure 3(b) 
Super-Uniform Beam 
Averaging Neighbourhood - 7x7 



Figure 3(c) Figure 3(d) 
Super-Uniform Beam Super-Uniform Beam 
Averaging Neighbourhood = 11x11 Averaging Neighbourhood 3 15x15 

Figure A 
Optimal Weighted Beam from 
Sine Lobe Window Function 
Roughly equivalent to Figure 3(c) 



Figure 5(a) 
Large Disc Window Function 

Figure 5(b) 
Optimally Weighted Beam 

Figure 6(a) 
Medium Disc Window Function 



Figure 7(a) 
Two Small Disc Window Function 

Figure 7(b) 
Optimally Weighted Beam 
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Figure 8(a) Figure 8(b) 
Two Box Autocorrelation Window Optimally Weighted Beam 


