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1 INTRODUCTION 
Around the time the VLA was commissioned, a great deal of work was done on the polar-
ization properties of the VLA antennas and computer algorithms to correct for the spurious 
instrumental polarization. In the last ten years little has been done largely due to the lack of 
manpower and the lack of fast computers. Algorithms which address problems in total intensity 
imaging have continued to develop over the years, and it has been assumed that polarization 
imaging can "piggyback" on these advances. In many cases, improvements in the total intensity 
algorithms do not improve the polarization imaging capabilities because some of the problems 
with polarization are unique. It is time to reexamine the issues in polarization imaging and 
possible algorithmic solutions to the problems we still face. 

Here is a list of some outstanding problems with polarization at the VLA. Many will also 
be problems for the VLBA. 

• Determination of the instrumental cross-polarization (D) terms. The standard approach 
to this problem uses the rotation of the astronomical signal with antenna parallactic 
angle and the non-rotation of the corrupting D terms to separate the two (Bignell, 1982). 
This method requires a polarization calibrator, preferably a bright point source, to be 
observed over a range of parallactic angle, which usually requires that the observer have 
a block of time of at least four hours. However, this method cannot correctly treat time 
dependent D terms. We will present evidence for large temporal fluctuations in the D 
terms. 

• RCP-LCP phase drifts. Currently, the D term solutions and the polarization position 
angle calibration are only as good as the RCP-LCP phase stability of the reference an-
tenna. 

• Total Intensity. The instrumental D terms corrupt the total intensity visibilities as second 
order terms. For highly polarized sources, these second order terms may limit the dynamic 
range of the total intensity images. 
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• Beam Squint. Because of the off-axis cassegrain feed system, the left and right circular 
polarized beams are offset by about 6% of the FWHM beam width, greatly limiting the 
accuracy of circular polarization measurements. Recently, some work has been done on 
correcting for the beam squint in the image plane (Vourlidas, 1992). The beam squint 
also feeds back into a proper treatment of large field imaging of linear polarization. 

• Polarization sidelobes. The polarization properties of the antenna change with position 
in the beam. At the present time, only the on-axis instrumental polarization is corrected 
for. The off-axis instrumental polarization will lead to spurious polarization features and 
sidelobes in the polarized image due to the spurious polarization signal changing in time. 
Hence, polarization measurements are often restricted to within the beam's half power 
point, and attempts to perform wide field polarization imaging usually meet with great 
difficulty (Carilli and Holdaway, 1992) 

• Ionospheric Faraday Rotation. Daytime observations at L band can suffer from position 
angle drifts of 10 degrees or more (Bignell, 1982), and P band polarization is unexplored. 

While these problems are rooted in the atmosphere or in hardware which are not likely to 
improve, they all have algorithmic solutions. In the past, it has been assumed that some of 
these algorithmic solutions were too computationally cumbersome or expensive. However, our 
experience with the MMA simulations in SDE indicate that such algorithmic solutions are now 
within reach. Now is the time to take a fresh look at how these problems affect VLA images, 
what improvement is possible, and how much computer power these algorithms will require. 

The most important issue in polarization calibration is the instrumental polarization, also 
known as the cross polarization leakage, or "D" terms. Assuming the feeds are sensitive to 
a linear combination of the nominal polarization as well as the orthogonal polarization, the 
signals detected from the R and L feeds from antenna j will be 

Viurj = R R e - ^ - ^ + RLD*Rje~ i^ i+x^ + L R D R t e ^ + x ^ + LLD R i D m
R e x ^~^\ (3) 

VjuLj = RL c-«'<w+x») + RR D*L.e-•"(»-*•) + LL DRte^x'~x^ + LR ( x ' + x ' \ (4) 

where RL = Q+ iU, LR = Q - i f j , RR = /+V", LL = I-V, and J is the Fourier transform of 
the I Stokes parameter image evaluated at the appropriate value of (u, v) for the i,j baseline, 

2 D Term Variation 

Rj = Erj + D r j E l , 

Lj = ELj + DLjERj 

Neglecting the antenna gains, the RR correlation is 

(i) 
(2) 

and the RL correlation is 
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Dr{ is a complex number indicating the leakage of LCP into the RCP feed for antenna i, Xi 
is the parallactic angle for antenna t, and Vr.l, is the measured correlation between the RCP 
signal from antenna i and the LCP signal from antenna j , not corrected for parallactic angle. 
For weakly polarized sources, the first three terms are all of the same magnitude, and the last 
term is much weaker. 

Cotton (1992) also analyses the problem of feeds sensitive to general elliptically polarized 
radiation. The D term leakage formulation of the problem is exactly analogous to the ellipticity-
orientation formulation, where the D terms are related to the ellipticity 9 and the orientation 
<f> as 

D = tan(0 ± 7r/4)eT,"2*f (5) 

where the top sign is for DR and the bottom sign is for DL- The main difference between the D 
term polarization calibration (opcode = 'APPR' in the AIPS task PCAL) and the orientation-
ellipticity polarization calibration (opcode = 'ORI-' in PCAL) is that the former neglects second 
order terms in D (ie, LR DRI D*L ) in Equation 4). Neglecting second order terms results 
in a set of linear equations whicii can be easily solved, but there is no fundamental reason why 
a nonlinear least squares optimization could not be applied to the full D term formulation 
to obtain the same calibration as the ellipticity-orientation formulation. The trigonometric 
functions in the elipticity-orientation representation may make the optimization somewhat ill-
conditioned, and the full nonlinear D term optimization may yield better solutions. 

What sorts of image errors result from errors in the D terms? First, consider the case of 
uncorrelated D terms. By assuming no circular polarization, identical parallactic angles, and 
neglecting the last term in Equation 4, the measured visibility is approximated by 

Vk.L; * RR(DRL + DL.) + RLe*2x. (6) 

The central value theorem indicates that if the DR + D\ are random variables of antenna 
number with Gaussian statistics, but constant in time, the errors in the polarization image 
will be Gaussian. Applying a similar analysis as Perley (1989), the polarization dynamic range 
will be limited to N/(Y/2D) for a snapshot and N/D for full tracks, where N is the number of 
antennas1. Because the D terms are supposedly constant in time, they do not integrate down 
like Gaussian receiver noise. Long tracks will be roughly y/2 better in dynamic range because 
the change in parallactic angle will smear the errors out. For Gaussian D's of 0.02, the VLA 
should be able to observe fractional linear polarizations of 0.1% without any calibration of the 
D terms. Clearly, the D's are not Gaussian. 

On the other hand, correlated D terms (ie, D terms which are the same for all antennas) 
will limit the polarization dynamic range to 1 /D, resulting in spurious polarization which 
copies the total intensity. A combination of correlated and uncorrelated D terms will limit the 

1 As total intensity images are often judged by dynamic range, or the peak of the total intensity image divided 
by the off-source rms, polarization images may be judged by the polarization dynamic range, or the peak of the 
total intensity image divided by the polarization image's rms. However, since some errors affecting polarization 
images are systematic, we may choose to evaluate the polarization image's rms error on source or off source. 
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polarization dynamic range to 

I peak 

y/D* + (Du/N)2' (7) 

Data presented in Appendix A indicate that Dc is about 0.015 and Du is about 0.02. The 
correlated portion of the D terms influences the final image quality more dramatically than the 
uncorrelated part because correlated D terms place all of the polarization error in the same 
place in the polarization map while uncorrelated D terms scatter the power throughout the 
image. 

Similarly, we can estimate the effects of changing D terms on images. The polarization 
dynamic range will be limited to 

It is clear that correlated changes in the D terms will affect the images more dramatically. 
In principle, polarization images should be noise limited. While images of bright quasars 

in total intensity run up against a poorly understood dynamic range limitation of two hundred 
thousand to one, the polarization dynamic range is usually less than a thousand to one. This 
limitation in polarization dynamic range may be due to coherent changes of about 0.002 in the 
D terms during the observations. 

Currently, the D terms can be calculated by the AIPS program PCAL by separating out the 
astronomical signal from the instrumental signal over the entire time range of the observations. 
This method assumes that the D terms are not varying in time. However, the D terms are 
known to vary with time. On page 6-15 of Synthesis Mapping, Bignell (1982) shows evidence 
for coherent variations of 0.003 over a few hours in two antennas' D terms. Breaking the 
solution up into smaller time ranges will often compromise the quality of the solution since 
full parallactic angle coverage is required for effective signal separation. The D terms may also 
vary with antenna azimuth and elevation, making the D term solution obtained from a distant 
calibrator somewhat invalid for the target source. Hence, if the time variations of the D terms 
limit the polarization images, PCAL cannot solve our problem. 

Given a model for the source polarization, or model cross hand visibilities, and model 
parallel hand visibilities, it is possible to solve for the instrumental D terms with a new form 
of self-calibration. The uncertainty in the resulting D terms od is given by 

ay 
"D * swir- i - D ( 9 ) 

where S is the total intensity flux, ay is the noise in the visibilities (assumed to be the same for 
total intensity and polarized visibilities), and N is the number of antennas. At 6 cm, 50 MHz 
bandwidth, and 27 antennas, observing a 1 Jy point source for 10 minutes will result in noise 
in the D terms at a level of 0.0005. Observations of a bright source like 3C273 will have D 
term noise of 0.00001 in the same amount of time, allowing us to track changes in the D terms 
on the order of one part in a thousand on time scales of minutes. 
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One problem with using a self-calibration scheme to determine the D terms is that a good 
source model must be known. Since the D terms give additive errors, a simple polarization 
structure with constant D terms could lead to similar visibilities as an unpolarized source with 
time variable D terms. Traditionally, the changing parallactic angle is used to differentiate 
between the astronomical polarized signal and the contribution of the D terms. It may be 
possible to make a first pass at the polarization imaging assuming the D terms to be constant. 
The resulting polarization image can then be used in the self-calibration procedure to determine 
the coarse time variations of the D terms, which can be applied to the polarization visibilities 
to yield an improved polarization image. A goodness of fit parameter for each antenna can 
be used as a diagnostic to indicate if the model is insufficient and if polarization structure is 
being absorbed into the D terms. Simple source structure, such as a polarized point source, 
could become confused with time dependent D terms, but complex source structure cannot be 
absorbed into the D terms. 

We have developed a Hoy' linear D term self-calibration algorithm which is found to produce 
D term solutions which agree with PCAL's solutions when the solution interval is set to the 
entire observation (see Appendix B and Appendix £). In the linearlized model, the D terms 
corrupt the cross hand visibilities always in a pairwise fashion (ie, + D^.)), and an 
arbitrary constant can be added to all the DR and the complex conjugate of that arbitrary 
constant can be subtracted from all D^. with no net effect on the polarization visibilities. This 
is not a problem if only polarization data is corrected, but a global offset could not be tolerated 
if the total intensity visibilities are to be corrected for the effects of the D terms. Turned around, 
we can use the constraint that the model visibilities corrupted by the instrumental D terms 
must be consistent with the measured total intensity visibilities to eliminate the global offset 
in the D terms. The best way to achieve this goal is to perform a global optimization using all 
parallel and cross-hand data and model visibilities to do a nonlinear least squares fit for the D. 

Using the D term self-calibration program, we can see significant variations in the D terms 
on time scales as short as 10 s on 3C84. These unexplained variations are shown in Appendix B). 
Both uncorrelated and correlated variations in the D term phases and amplitudes are seen, on 
short and long time scales. The correlated variations are about 0.003 in at least two different 
observations at C and X band, which is large enough to explain the spurious time dependent 
linear polarization observed in the core of 3C84. 

2.1 Future Work 
More work needs to go into determining how to finesse time variable D terms and the correct 
model out of the cross hand visibilities. Alternatively, it should be determined whether the 
D terms vary with time, with position on the sky, or both. This question can be addressed 
by observing many bright calibrators with "known" polarization. If the D terms do not vary 
strongly with position on the sky, then the varying D terms can be solved for by observing a 
calibrator source of known polarization sufficiently close to the target source. Also, the full 
blown nonlinear optimization algorithm needs to be implemented. Solving for the absolute D 
terms rather than the D terms relative to a reference antenna will enable us to solve other 
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problems mentioned below. 

3 RCP-LCP Phase Stability 
In the instrumental polarization calibration schemes implemented in the AIPS task PCAL, 
data from the entire observing session are required to arrive at the D term solution. This 
means that any relative drift in the reference antenna's R and L phases (the AC phase drift in 
VLA terminology) will have a systematic effect on the D term solution, thereby limiting the 
quality of the polarization image. 

Including the antenna gains G and the R-L phase difference for the reference antenna 
0R-L(t), the measured cross hand visibility will be 

Bignell (1982) cites RCP-LCP phase drifts on the order of 10° over an 8 hour observation. The 
error in the solved D terms due to fluctuations in Br-l will go like 

where Brms is the rms of the R-L phase of the reference antenna about its mean value, p is 
the fractional polarization of the source and Dc is the correlated part of the instrumental D 
terms, and 6r-l is measured in radians. This variation could be ~0.002, or about 10% of 
the D terms. The error in the D terms should be correlated, and would limit observations of 
fractional polarization to >0.1% 

Currently, the D terms are solved for relative to DR of the reference antenna. If the absolute 
D terms were solved for, as is advocated in Section 2, then (uncorrelated) AC phase drifts would 
result in random (ie, smaller) errors in the polarization image. 

4 Total Intensity 
The total intensity visibilities are corrupted by leakage from polarized signals as described by 
Equation 3. For an unpolarized source, only the first and last terms will contribute to the 
parallel hand visibility, leading to errors of order D2 times the visibility. Fluctuating D terms 
will result in baseline based gains which can be self-calibrated out of the visibilities with existing 
software. If the source is polarized and the cross hand visibilities are p as strong as the parallel 
hand visibilities, then we can expect to make errors in the visibilities on the order of Dp. For 
the case of a point source, we can estimate the errors caused by leakage from the polarized 
signal. A rough estimate indicates that dynamic range of a point source will be limited to 
about N/pD, or about 14,000:1 for a 10% polarized source and uncorrelated D terms of 0.02. 
Full track VLA simulations assuming random D terms of a 10% polarized 1 Jy point source 
indicate artifacts in the total intensity image have an rms of about 0.0001 within 5 beams of 
the point source and an rms of 0.00003 far away from the point source. If the D terms are 

VrxLj = e ^ - ^ G R t G l . (RR (Dr. + D*L.) + RL e'2*) . (10) 

A D~0rma(p + Dc\ (11) 
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correlated, the errors are worse. (Analysis of D terms indicates that the uncorrelated EMS of 
Dr. + Dlj is about 0.02, and since we do not have the absolute D terms, it is not possible 
to determine the correlated part.) In sources with more complicated structure, the cross hand 
visibility will be lower due to beating between regions with different polarizations, leading to 
a decreased effect upon the image. 

Results of high dynamic range imaging seem to contradict our assertion that the dynamic 
range of a polarized should be limited to a few tens of thousands to one. 3C273 has been 
imaged with dynamic range of 200,000:1, but the core is only weakly polarized. If a highly 
polarized source is observed over a small range of parallactic angle, much of the effects of the 
D terms on the parallel hand data could be removed by baseline based self-calibration. 

The solution to the problem of total intensity visibilities corrupted by the cross hand visi-
bilities is to take calibrated cross hand and parallel hand data visibilities or model visibilities, 
multiply them by the appropriate D terms which have been calculated by some method, and 
subtract the various terms visibility by visibility. It seems safe to say that if this procedure 
is employed, total intensity imaging will not be limited by residual errors in the polarization 
models or the D terms. This procedure should run very quickly on current computers. The 
AIPS task PCAL sets the Dr of the reference antenna equal to zero, and the other D terms are 
referenced to that antenna. If the effects of the D terms are to be removed from the parallel 
hand data, the D terms must be determined absolutely. The D term self-calibration scheme 
with explicit optimization advocated in Section 2 of this memo should produce absolute D 
terms, at least for high SNR data or highly polarized sources. 

5 Beam Squint and Circular Polarization 
The off-axis feeds on the VLA antennas result in the RR and LL beams being separated by 
6% of the FWHM beam size (Clark, 1976; Thompson, 1976). This offset in RR and LL beams 
is known as the beam squint The beam squint for off-axis feeds is explained by Chu and 
Turrin (1973). Since the beam squint occurs in the antenna (ie, AZ-EL) frame, the relative 
orientation of the RR and LL beams changes on the sky with parallactic angle. The antenna 
pointing is adjusted so that the the RCP and the LCP beams are symmetrically displaced 
from the nominal pointing position, so the measured RR and LL signals are related to the true 
source brightness distribution as 

where A is the primary beam, x , is the vector by which the RCP beam is displaced from 
the nominal pointing center rotated by the parallactic angle, (x — x,) ' is related to the sky 
coordinate x via a rotation about the average RR and LL pointing center by the parallactic 
angle, and / (x) and V(x) are the true brightness distributions for total intensity and circular 
polarized intensity. 

RRjkW 

LLJK( u ) 

(12) 

(13) 
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The beam squint is a first order effect in the measurement of circular polarization. Primarily, 
the beam squint results in spurious fractional circular polarization which closely follows the 
total intensity emission. The fractional spurious polarization is equal to the difference between 
the RCP and LCP beams at the location of interest, averaged over time, and divided by the 
total intensity beam. The spurious fractional polarization can be as high as 0.01 near the 
primary beam center, 0.17 at the half power point, and 0.24 at the quarter power point for 
snapshots. Typical values for the spurious fractional circular polarization at the half power 
point for long integrations range between 0.02 and 0.10, depending upon the orientation of 
the feed relative to the emission of interest and the parallactic angle range. Long integrations 
lead to lower average values of the spurious fractional circular polarization, but this process 
introduces a secondary effect: because the effect of the beam squint is changing with parallactic 
angle, the spurious fractional circular polarization changes as a function of time, so even if the 
average spurious fractional circular polarization is near zero, power is scattered across the 
image like the RMS about the mean of the spurious fractional circular polarization times the 
RMS sidelobe level over the amount of time which the beam squint effects are approximately 
constant. Typically, the RMS about the mean of the spurious fractional circular polarization 
at the half power point is about 0.03, and the rms sidelobe level is about 0.10 for extended 
snapshots, so a point source of magnitude S at the half power point will result in scattered 
errors with an RMS of about 0.0035 in circular polarization. 

Fortunately, most astronomical radio sources (ie, synchrotron sources) do not display a 
high degree of circular polarization. However, circular polarization is observed in emission 
lines through Zeeman splitting, and in stars and masers. The beam squint is a serious problem 
when observing the sun, a group of masers scattered across the beam, or Zeeman split lines 
in a large HII region. For Zeeman observations, one can float the relative left and right gains 
by requiring that the left circular polarization integrated over frequency is equal to the right 
circular polarization. This solution is nonoptimal because the effects of the beam squint vary 
across the image, power is still scattered across the image due to the fluctuations in the beam 
squint with time at that particular location, and radiative transfer effects may actually make 
the integrated LCP and RCP signals different. 

If the beam squint orientation is time variable (ie, time variable in the AZ-EL frame) 
or is different for each antenna, high fidelity imaging of circular polarization will require an 
algorithm similar to that required for imaging with known pointing errors (Holdaway, 1992b). 
Since this procedure requires a DFT rather than an FFT, such an algorithm would take several 
Sparc2 CPU days to produce a single full beam D array image. Since beam squint is a purely 
geometrical effect, the squint should be almost identical for all antennas. Appendix C bears 
out this assertion. The squint is so similar among antennas that the assumption of identical 
squint will not limit the fidelity of circular polarization imaging, and correction for the squint 
in software should be straightforward. 

Vourlidas (1992) has developed a straightforward technique for removing the effects of the 
beam squint when imaging circular polarization. The data are split into several blocks of time 
over which the change in the parallactic angle is small, and the data from each of these blocks 
is imaged independently. The effects of the beam squint are removed for the mean parallactic 

8 



angle of each block, and the images axe combined in a weighted average to form the final image. 
This is analogous to one possible solution to the non-coplanar baseline problem: the VLA is 
instantaneously planar, and a large dataset can be imaged piecemeal using two dimensional 
transforms and deconvolutions. This is also analogous to the polarization mosaicing scheme of 
Carilli and Holdaway (1992). Averaging of multiple images may lead to a final image which has 
the expected off-source noise, but because deconvolution is a nonlinear process, there will be a 
higher level of on-source errors in any approach which utilizes many separate deconvolutions. 
An example of how image quality can be degraded by cutting the data into many pieces and 
performing separate deconvolutions is given in Appendix D 

But how can we deconvolve all the data simultaneously if the squint's RA-DEC orientation 
varies with time? Consider treating the squint problem as an inverse problem. Since we know 
the orientation of the squint in RA-DEC as a function of time, given models for the source 
total intensity and circular polarized brightness and distributions, we can calculate the squint-
afflicted RR and LL visibilities. Comparison of model RR and LL visibilities with the data 
visibilities instructs us how to update the model brightness distributions so as to minimize the 
difference between RR and LL. The internals of such an algorithm would break the problem 
up into parallactic angle blocks and utilize FFTs on each. An analogous algorithm would be 
required for self-calibrating the RR and LL data in circular polarization imaging experiments. 

This simultaneous deconvolution scheme requires the same number of FFT's as the multiple 
deconvolution scheme of Vourlidas (1992), it will require slightly more cpu time for explicit 
primary beam rotation and application, and it will require less cpu time to perform the single 
deconvolution rather than the multiple deconvolutions. The main advantages to this method 
are: 

• the astronomer never has to worry about breaking the imaging up into time blocks, as 
this is all done internally. 

• the data is deconvolved simultaneously, leading to a superior image. 

• it can be extended to work with multiple pointing mosaics. 

• when imaging time is dominated by the deconvolution step, this method will be much 
faster than separate deconvolutions. 

It should be remembered that when observing in only RCP or LCP (as in spectral line 
observing or in some VLBI) the antennas will have a systematic, time dependent pointing 
error of 3% of the FWHM. This is about the same as the MMA pointing specification, which 
limits wide field imaging to a dynamic range of about 1000:1 and the fidelity to about 20. Wide 
field imaging with the VLA will be somewhat worse, since this 3% pointing error is correlated 
over the array, there are pointing errors on top of this systematic error, and there are fewer 
antennas. If necessary, imaging could be performed as suggested above. Alternatively, since 
we find that the VLA's spectral line images are rarely limited by the effects of pointing, we 
might argue that similar pointing errors will not usually limit the imaging for the MMA. In 
4IF mode, both RCP and LCP are used, and the relative pointing errors will be twice as bad. 
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5.1 Future Work 
In order to accurately account for the beam squint in imaging, the RR and the LL primary 
beams need to be well determined. For this algorithm, a two dimensional model for the 
primary beam will not be any more expensive to apply than a one dimensional model. The 
actual coding of the algorithm can piggyback on the maximum entropy algorithm of Cornwell 
and Evans (1985). 

6 Polarization Sidelobes 
Because of the way the electric field vectors reflect from the antenna's primary surface, the 
polarization leakage terms vary across the primary beam (Bignell, 1982). This polarization 
leakage pattern, called polarization sidelobes, is attached to the Azimuth-Elevation frame of the 
antenna, and rotates with parallactic angle on the sky. Each antenna has different polarization 
sidelobes patterns, but the general pattern is expected to be similar for all antennas. The 
standard (on-axis) D term calibration sets the polarization sidelobes at the center of the beam 
to zero. Assuming no circular polarization, the polarized visibility from a wide field as observed 
by AZ-EL antennas is given by 

RLjik( u) = J A(x') ( f a t f ) + Dlk(x?)) / (*) + W W + ttf(x))c2*) ei2irUxdx, (14) 

where A is the primary beam, x are the sky coordinates, x ' is related to x via a rotation about 
the pointing center through the parallactic angle of the antenna, and the D functions are the 
polarization sidelobe patterns in AZ-EL coordinates. The linear polarization errors which result 
from the polarization sidelobes are similar to the circular polarization errors which result from 
the beam squint. A point source of S at x© will cause a localized error which is equal to the 
time average value of Dr^x.^) + D1k(x'0) times S, and will also scatter power approximately 
equal to the RMS of the polarization sidelobes about the mean times the RMS of the point 
spread function. Both of these effects were mentioned in Carilli and Holdaway (1992). 

Some relevant questions remain to be answered: 

• What is the time stability of the polarization sidelobes? 

• Do the polarization sidelobes have a strong dependence on elevation or azimuth? 

• How similar are the different antennas' polarization sidelobe patterns? More specifically, 
what is the mean pattern and the dispersion about the mean of the ensemble of patterns 

If the polarization sidelobes were stable with respect to time and pointing direction, if the 
patterns were highly correlated (ie, similar) among antennas, and if the VLA had equatorial 
mount antennas, the solution to wide field polarization imaging would be as easy as multiply-
ing the total intensity image by the polarization sidelobe pattern, Fourier transforming, and 
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subtracting from the measured RL visibilities as directed by Equation 14. Since the VLA's 
antennas have AZ-EL mounts, the easiest problem we can hope for is stable and correlated 
polarization patterns which will enable us to rotate the pattern to the correct orientation for a 
particular time, multiply the rotated polarization sidelobe pattern and the total intensity im-
age, Fourier transform, and subtract from the RL visibilities measured during the small time 
interval during which the polarization sidelobe pattern is appropriate. The worst problem we 
could have is unstable and uncorrelated polarization sidelobe patterns, which would be possible 
to solve for, but unpleasant. 

The data in Appendix E indicate that between a quarter and half of the power in the 
polarization sidelobes is coherent between antennas. At first glance, it seems that this is too low 
a coherent fraction for useful imaging to result from assuming that all antennas have identical 
patterns. Recall, however, that the most serious errors result from correlated polarization 
errors which produce localized image plane errors like I(x)Dcorri while uncorrelated polarization 
errors produce scattered image plane errors like I{x)Duncorr/N. Hence, if we can remove the 
correlated parts of the polarization sidelobes, we can achieve limiting fractional polarization 
of about 0.03/iV ~ 0.001 (due to the uncorrelated polarization sidelobes of about 0.03). To 
achieve lower errors, we would have to consider each antenna individually. 

6.1 Beam Squint and Linear Polarization 

The beam squint will also have an impact on wide field linear polarization imaging. The 
corrupted (measured) polarized correlations are given by Equation 4. While it is reasonable to 
assume in many cases that the astronomical circular polarization is zero, it cannot be assumed 
that RR = LL in wide field imaging because of the beam squint. As mentioned above, it should 
be possible to determine a significant component of the D terms as a function of position in the 
beam. In determining the D terms across the beam, and in correcting the cross hand visibilities 
for the D terms, the RR and LL visibilities must be correctly calculated from a total intensity 
source model plus a model of the beam squint. This requires algorithms similar to the beam 
squint algorithm described in Section 5. 

6.2 Future Work 
A bright point source of known polarization such as 3C84 should be used to sample the polar-
ization properties of the beam. The shapes of the RR and LL beams need to be determined 
(as opposed to the shape of the I beam). The polarization sidelobes should be determined 
for each antenna, as in Bignell (1982), but over a range in elevation and on different days to 
check for variability. After the polarization sidelobe problem is solved, polarization mosaics 
will become much easier to perform. If the MM A will do any linear polarization observations, 
this problem must be well understood. If possible, the MMA antennas must be designed to 
result in uniform polarization sidelobes. 
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7 Ionospheric Faraday Rotation 
If time dependent ionospheric Faraday rotation occurs during an observation at low frequency, 
an image formed from this data will display uncleaned sidelobes due to the apparent variable 
nature of the source. If the Faraday rotation is strong enough, the true polarized emission 
might be completely canceled out. A typical strategy for dealing with time dependent Faraday 
rotation is to estimate the rotation in polarization position angle as a function of time through 
ionospheric measurements, measurements on a nearby calibrator with some polarized signal as 
a function of time, or by looking at a polarized feature in the source of interest as a function 
of time, and shifting the phase of the L (or R) antenna gains by the time dependent position 
angle (Fomalont, 1992). All of these methods for determining the ionospheric Faraday rotation 
as a function of time leave something to be desired: either we get the Faraday rotation at some 
position on the sky other than the source position (Faraday rotation is sky position dependent 
as well), or we must break the imaging up into time blocks again. 

For a sufficiently bright, polarized source, it should be possible to solve for the relative 
Faraday rotation as a function of time as another free parameter in a self-calibration program. 
The polarization rotation can be interpolated and applied in the usual manner. Hence, the 
time variable aspect of the problem is removed, and excellent images can be formed. However, 
these excellent images will have no information about the true position angle. In order to 
obtain information about the true position angle, the atmospheric Faraday rotation through 
multiple lines of sight and models for the earth's magnetic field and the ionosphere must be 
used. 

For a source which has weak polarization and cannot be detected in the time which the 
electric field vector changes by a radian, we may be able to use all of the data to fit to a simple 
parameterized model of the electric vector rotation. At P band, Fomalont (1992) finds that 
the electric vector rotation is almost linear in time. 

In VLBI polarization experiments, the ionospheric Faraday rotation will be different above 
the different antennas. Again, the Faraday rotation can be solved for as a time variable, antenna 
dependent parameter via a new self-calibration algorithm. 

8 Polarization Addendum to the Calibration Manual 
The existence of an up to date catalog of many calibrator sources' polarized flux and position 
angle would greatly facilitate the determination of time variable D terms. We would want to 
choose calibrators which were hundreds of milliarcseconds in size to reduce the time variability 
of the polarized emission. These sources do not need to be highly polarized, they just need to 
have precisely known polarization properties. They could be observed every few months, and 
the current polarization parameters could be kept in a computer database. 

VLB A polarimetry has an orthogonal requirement: in order to calibrate the absolute polar-
ization position angle, one needs to observe a polarized calibrator in which all of the polarized 
emission is coming from a region a few milliarcseconds across so that the polarization position 
angle measured by the VLA is the same as the polarization position angle measured by the 
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VLBA. These compact calibrator sources, mostly BL Lacs, are highly variable, and would need 
to be observed quite frequently, either weekly or at the same time as the VLBA polarization 
observations. The Brandeis group has always used the VLA as part of its VLBI array, arguing 
that the VLA is required for polarization position angle calibration. Actually, the VLBA could 
perform polarization position angle calibration without the VLA if an accurate and up to date 
database of the polarization properties of a few compact calibrator sources were kept. 

Obtaining accurate position angle calibration for the VLA or the VLBA at low frequencies 
(600 MHz and 330 MHz) will be difficult. Currently, there are no sources which have accurately 
known polarization position angles at low frequencies. It would be nice to know the polarization 
angle above the atmosphere for about 10 calibrators at the 1.4 GHz, 600 MHz, and 330 MHz 
bands. Currently, we know the polarization position angles of only two calibrators at high 
frequencies. We might be able to extrapolate the position angle above the atmosphere by using 
the calibrator's local rotation measure and the galactic rotation measure in that direction. 
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Appendices 

A Correlated and Uncorrelated Fractions of the On-Axis D 
Terms 

To first order, the D terms at the beam center corrupt the RL visibilities as described by 
Equation 6, or as the parallel hand visibility times DR{ + D*L . The quantity DRT + D*L does 
not depend upon whether the D terms have been referenced to a particular antenna or not. 
In the text, we indicate that the correlated and uncorrelated parts of the D terms have very 
different effects upon the polarization image. We present in Figure 1 a scatter plot of the real 
verses imaginary parts of the quantity DRI + D*L for two recent VLA observations. The first 
observation was made of 3C84 on 22 Feb 92 in X band at 50 MHz, around an LST of 4 hours, 
and the second observation was of the VLA calibrator 0023-263 on 15 Sep 92 in C band at 
50 MHz, around an LST of 0 hours. The D terms from 0023-263 have a mean value of 0.015 
and an RMS scatter about the mean of 0.023, while the D terms from 3C84 have a mean of 
0.014 and an RMS scatter about the mean of 0.023. The effects of the D terms on polarization 
images will be dominated by the correlated part, or mean value, of DR{ + D*L . 

The form of the DR -f D*L scatter plots at X and C bands are very similar, but are rotated 
by 57° with respect to each other. Similar scatter plots are observed for IF 1, but they are 
separated by a different angle. Also, the outlying points near the bottom of the C band plot 
are due to large D terms for antennas 15(R) and 22(L), while the outlying points near the left 
side of the X band plot are due to antennas 7(R) and 24(L). We have looked at C band data 
from two different observations separated by more than a year. The general appearance of the 
two scatter plots is very similar, and antennas 15 and 22 are outlyers for both observations. 

B Time Variability of On-Axis D Terms 
B. l D Term Variability Exists 

The core of 3C84 is formally less than 0.03% polarised to the VLA at C band. When we 
perform the standard polarization calibration with a single solution interval, the brightest 
polarized feature is near the total intensity core, but the polarized intensity and polarization 
position angle varies with time (see Table 1), indicating that something is varying, and probably 
not the source. When a solution is performed independently upon each of the seven snapshots 
(about 150 s), the polarized intensity near the core decreases by a factor of 10 in each of the 
snapshot images. The peak in the polarized intensity is shifted away from the core and is a 
factor of 5 lower than the peak in the polarization image made with a single solution interval. 
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Paralactic Angle P Intensity, Jy P Position Angle 
-71° 0.012 45° 
-79° 0.015 -10° 
-90° 0.017 -30° 
-103° 0.017 20° 
-134° 0.028 -20° 
143° 0.021 -45° 
102° 0.016 100° 

Table 1: The instrumental D terms were determined for 3C84 using a single solution interval 
and were then applied to the 3C84 data, which was subsequently imaged in seven separate four 
minute snapshots separated in time by about 1.5 hours. When the seven snapshots are imaged 
together, the peak polarized intensity is 0.010 Jy. The fact that the core polarization is not 
constant indicates that the D terms really are varying. 

B.2 Complex Nature of the D Term Variability 
The Hoy' D self-calibration algorithm solves for the D terms relative to DR of the reference 
antenna, so apparent variation in a D term includes the variation of the reference antenna. 
However, DR^ -f D*L. will not display the reference antenna's DR variations. Both types of 
quantities will be studied. 

The D terms behave in a bizarre fashion, and more than one cause must be invoked to 
explain them. First we consider the long time scale (hours) D term fluctuations: 

• some D terms vary by less than 0.0005 in amplitude and a few degrees in phase (see 
Figure 2). 

• some show amplitude drifts of 100% (0.015) and phase drifts of as much as 100° (see 
Figure 3). 

• in many cases, the amplitude and phase changes are roughly consistent with two different 
complex components of the D terms beating against each other. 

• in a few cases, the D terms display large amplitude fluctuations but small phase fluctua-
tions (see Figure 4). 

• in many cases, the phases of DR and DL vary in opposite senses (see Figure 5). 

• long time scale correlated trends are seen in the quantity DR{ + D^. averaged over all 
baselines. IF 1 and IF 2 display similar behavior, with the amplitudes varying by about 
.002 and the phases varying by 5-10° (see Figure 6. 
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To further illustrate the nature of the long time scale fluctuations, scatter plots of the real 
and imaginary parts of Dr{ + Dl, are made at approximately 1 hour intervals and shown in 
Figure 7 

It has been suggested that the long time scale uncorrected fluctuations in the D terms 
are caused by time constant, frequency dependent D terms modulated by a slowly varying 
bandpass. Assuming the phase of the D terms for individual spectral line channels varies by 
45° across a 12.5 MHz band (Ge, private communication) and the bandpass has a 5% 3 MHz 
time dependent ripple (Carilli, 1991), the fluctuations of the D terms due to a fluctuating 
bandpass will be only 1% of the D term's value at 12.5 MHz bandwidth, 5% at 3 MHz, and 
15% at 0.78 MHz. Hence, the bandpass fluctuations cannot account for the types of long term 
fluctuations which are seen in our data. 

The long time scale fluctuations which are correlated among the antennas is similar for 
both IFs, and can be explained by feed leg droop changing the subreflector reflection D term 
component. Also, the RCP-LCP phase difference can explain long term fluctuations or jumps 
seen in the D terms. 

There is good hope for removing these long time scale D term fluctuations from the data. 
We need to determine how the D terms vary on the sky in order to do this routinely. 

The D terms are variable on very short time scales as well. Observing 3C 84 with 10 s 
time resolution in the D terms, individual D terms are accurate to 0.00014, or about half a 
degree, and correlated D fluctuations determined using all of the data will be substantially 
more accurate: 

• the D term phase is found to drift and oscillate by ~ 10° on minute time scales (see Fig-
ure 8). The phase behavior is correlated across the array, implying that the fluctuations 
are due to a fluctuating RCP-LCP phase at the reference antenna or the fluctuations are 
truly correlated across the array. 

• occasionally, the correlated part of the D terms' phase remains constant for short periods 
of time. 

• the amplitudes of the individual D terms are ccmsistent with noise, but the amplitude 
of Dri + D^ averaged over all baselines shows disorganized fluctuations well above the 
noise (see Figure 9). If the 10° phase variations were caused by two D term components 
beating, the amplitude fluctuations would be an order of magnitude higher. 

• the D term fluctuations are not the same for different IFs. 

• the D term fluctuations are erratic: the fluctuations may be a periodic for several hours, 
and then change to a drift. 

Long time scale changes dominated the correlated changes in the amplitude of Dj^ + D l} , 
but short time scale changes dominate the phase. Because the short term fluctuations are 
highly correlated across the array, we may be able to fix whatever causes them. If these fast 
fluctuations cannot be fixed, they will fundamentally limit polarization imaging. 
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Band Squint/Beam Width Orientation Squint RMS/(Squint/Beam Width) 
L 0.0577 133°.1 0.0123 
C 0.0635 —29°.0 0.0152 
X 0.0613 -81°.6 0.0053 
U 0.0640 29°.9 0.0207 
K 0.0605 —8°.l 0.0404 

Table 2: Degree of stability of the beam squint among the VLA antennas at various frequencies. 
Some of the apparent variability in squint is due to errors in the measurement of the squint. 

C Uniformity of Beam Squint Among Antennas 
Since beam squint is a purely geometrical effect, the squint should be almost identical for all 
VLA antennas (and for all VLB A antennas). VLA pointing data has been analyzed, and the 
figures in Table 2 bear out this assertion. The orientation of the observed squint is slightly 
different from the orientation of the feeds, and only K band shows a large discrepancy. Some of 
the scatter in the squint is due to measurement error. There were more squint measurements 
at X band than at the other bands (by a factor of 10 to 20). The 0.5% variation in squint 
among antennas at X band is probably close to its true variation. This does not preclude the 
variation from being higher at other bands. At both C and U band, the dispersion in the 
azimuthal component of squint values is 0.1%, but the dispersion in the elevation component 
of the squint is between 3% and 4%. At K band, the antennas' surface errors probably cause 
strange beams which might increase the scatter in the squint values. The squints of each 
antenna generally have a Gaussian distribution about the mean squint: after removing the 
mean squint, the residual squint error manifests itself as random pointing errors in RR and LL. 
These pointing errors range from 0.0003 to 0.0024 of the FWHM beam, and are hence much 
smaller than the true pointing errors at all bands. The squint is so similar among antennas that 
the assumption of identical squint will not limit the fidelity of circular polarization imaging, 
and correction for the squint in software should be straightforward. 

D Image Quality and Multiple Deconvolutions 
We have performed a set of numerical simulations to illustrate the degradation of image quality 
which can occur when a single large dataset is split up into many small datasets which are 
deconvolved independently and averaged to give a final image. A single eight hour dataset 
was imaged with UVMAP followed by a maximum entropy deconvolution. The success of 
the deconvolution was gauged by the dynamic range and the fidelity index (Holdaway, 1990). 
The original set was then split in half and each half set was UVMAP'ed and deconvolved, the 
resulting images averaged to give the final image. This splitting was continued until sixteen 
independent images were made from 30 minute time blocks of data. The dynamic range and 
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N blocks Dynamic Range Fidelity Index 
1 15000:1 165 
2 10000:1 115 
4 9000:1 70 
8 7800:1 50 
16 7700:1 45 

Table 3: Relationship between image quality and number of blocks the data is split up into for 
independent deconvolutions, from simulated VLA data. 

fidelity index for each image is recorded in Table 3. Since no errors were added to the data, 
any defects in the image are due to incomplete (u, v) coverage. There is some gain in dynamic 
range which is obtained from imaging all of the data at once. The fidelity index, which reflects 
the accuracy of the reconstruction on-source, is roughly proportional to the square root of the 
number of visibilities used in each separate deconvolution. Simpler sources will not show such a 
drastic improvement in the fidelity index as the number of visibilities used in each deconvolution 
increases. For complicated sources like the model used in these simulations, deconvolution of 
all of the data at once is preferred. 

E Off-Axis D Terms: Correlation of the Polarization Side-
lobes 

In the same data which we used to demonstrate a polarization mosaicing scheme (Carilli and 
Holdaway, 1992), we find that the quantity DJ^ + D*L is somewhat correlated among baselines 
at the half power point. The data consist of three pointings on NGC 253 at L band with one 
pointing centered on the bright nucleus and the other two pointings with the nucleus at the 
half power point. The central pointing indicates that the ~2 Jy central point source is less 
than 0.1% polarized. Since there was some large-scale polarized structure, only baselines longer 
than 1500 A were used in the solution. After the cross hand visibilities were corrected for the 
leakage from the total intensity, essentially noise limited images were obtained. (Note: this 
method enables imaging with this data set only because the source is dominated by a single 
bright region, and is not a general way of producing wide field polarization images. We are 
primarily using this method to illustrate the statistical behavior of the off-axis polarization 
leakage terms.) Table 4 presents the magnitude of the average and the rms about that average 
of the complex quantity DM + D*L-. Between a quarter and half of the power in this quantity 
is coherent. It should be noted that the L band polarization sidelobes are less correlated than 
the C and U band polarization sidelobes (Bignell, private communication). 
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Azimuth Average D^ + D*L. RMS about the Average 
-56 0.026 0.042 
-40 0.023 0.037 
-27 0.019 0.028 
-16 0.014 0.019 
-13 0.011 0.013 
114 0.023 0.019 
131 0.015 0.012 
144 0.013 0.021 
157 0.022 0.036 
160 0.031 0.049 

Table 4: Statistics of an azimuthal slice of the polarization sidelobes: the average value and 
the rms about the average of Dj^ + D*L. evaluated at the half power point and various azimuth 
angles. Azimuth is defined to increase in the same direction as parallactic angle. Because 
a large part of the polarization sidelobes are systematic, it is possible to remove their worst 
effects. 
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Figure 1: Scatter plot of the real and imaginary parts of DR4 + D*L for recent observations 
of 0023-263 (C band, 50 MHz) and of 3C84 (X Band, 50 MHz). The agreement between the 
difference in position angles of the mean DR + D°L and the difference between the C and X 
band feed position angles is coincidental and is not reproduced in the other IF. 

Figure 2: Example D terms as a function of time obtained from X Band 3C84 observations 
and the 'toy' D term self-calibration algorithm. The amplitude and phase of DR for antenna 
21 vary little with respect to the reference antenna 3. 

Figure 3: Example D terms as a function of time obtained from the C Band 3C84 observations. 
Amplitude and phase of Dl for antenna 15 vary considerably with respect to the reference 
antenna 3. 

Figure 4: Example D terms as a function of time obtained from the C Band 3C84 observations. 
Amplitude of DR for antenna 15 doubles while the phase varies by only 6°. 

Figure 5: Fluctuations in the phase of DR and DL for antenna 24 (C Band, 3C84). Note the 
nearly antisymmetric behavior of the phases. 

Figure 6: Plots of the amplitude and phase of the average of DR{ + D*L. from 3C84. The 
amplitudes behave similarly for both IFs. The scatter is actually real structure rather than 
noise. The amplitude is dominated by long time scale variations, while the phase is dominated 
by short time scale variations. 

Figure 7: Scatter plots of the real and imaginary parts of Dr{ + . made at hour intervals 
from 3C84. J 

Figure 8: Fluctuations in the phase of Dr{ + D l j averaged over all baselines with 10 s resolution 
for a number of snapshots. Similar patterns are seen in the phases of the individual D terms, but 
averaging over all baselines removes the reference ambiguity, increases the SNR, and emphasizes 
the part of the D term variations which is coherent across the array. 

Figure 9: Fluctuations in the amplitude of DRi + D ^ averaged over all baselines with 10 s 
resolution for a number of snapshots. Fluctuations shown here are well above the noise, but 
do not show a clear pattern as the phase variations do. 
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