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1. Introduction.

I would like to introduce criteria for the optimality1 of the functions em-—
ployed by the convolutional gridding scheme that commonly is used in producing
radio interferometer maps. Earlier memoranda in this series ﬂﬂZ] describe the
scheme and tally a number of functions frequently used in this application. Lit-
tle attention, heretofore, has been paid to the definition of objective criteria
for the selection of appropriate functioms, though, according to folklore, the
first of the prolate spheroidal wave functions of order 0 are the "best" functions
to choose. The recognition of these as optimal functions, and the definition of
the criterion by which they are so, derive from a part of the well known work of
Slepian and Pollak [3) and Landau and Pollak [4]. But probably better suited to
our application are functions which are optimal by criteria which slightly gener-
alize the latter. Following Rhodes, who in [5, sec.7] studies the extremal prop-
erties of the spheroidal functions (a class which includes the spheroidal wave
functions; see Stratton [6]), I define a continuum of optimality criteria parame-—
trized by a real number &>-1. The parameter determines a weight function, and
the weighting has a ready interpretation in terms of aliasing suppression: Alias-
ing from far-out sources, already rejected by instrumental effects, need not be as
heavily suppressed as aliasing from sources closer to the region of interest.
Similarly, since the radio map usually is centered upon the region of interest,
one might prefer that the spurious responses occurring near the central region of
the map be suppressed to a greater degree than other spurious responses.

For the choice %=0 (no weighting), the optimal function is a O-order prolate
spheroidal wave function. For «=t%, the optimal functions are simply related to
periodic Mathieu functions. Solutions for integral « =n are related to n-th order
prolate spheroidal wave functions. (The Mathieu functions are the fundamental so-
lutions to the wave equation in a system of elliptic cylinder coordinates; the
spheroidal wave functions arise from separation of the wave equation in prolate
or oblate spheroidal coordinates.)

Before continuing, recall that radio interferometer observations are essen-
tially samples of the Fourier transform (FT) of the radio brightmess intensity
distribution on a patch of sky, and that these samples are irregularly spaced.

The patch, for present purposes, may be considered to be flat and 2-dimensional
(even l-dimensional throughout most of the development). The "eridding" operation
referred to above is simply that of convolving the samples with some given function.
The purpose is twofold: first, to interpolate the data onto an equi-spaced

1. An optimal function is not necessarily a '"good" one -- rather, it is one that
is best according to some well-defined (perhaps sensible) criterion.



rectangular lattice (the grid) so that a Fast Fourier Transform algorithm may be
used to approximate the brightness distribution, and, second, to reduce the in-
tensity of spurious features that are due to radio sources lying outside of the
region of interest. These features, called aliases, appear because, from samples
of the FT of a function f, if the samples are distributed over a finitely spaced
grid, f (unless it is periodic) can only be recovered if it is confined to some
bounded region and if the linear measures of the region do not exceed limits
which are dependent on the grid spacing. The effect of the convolution, in addi-
tion to interpolating the measurements, is to pre-multiply the source brightness
distribution by the FT, 6, of the function C with which the data are convolved.
In this way, the assumption of bounded support may be made approximately valid.
Judicious choice of C greatly suppresses the spurious features.

C is always taken to be real and symmetric about the origin, and C inherits
these properties. Usually C is separable and supported in a rectangle. The com-
putation time required for the gridding is proportional to the area of the rec-
tangle; hence, for computational economy, the sides of the rectangle seldom
measure more than 6-10 times the grid spacing.

I shall concentrate first on the definition of the optimality criteria and on
the properties of the functions which are optimal, and then on the computation of
the spheroidal functions. Their computation is relatively easy. In a few cases I
shall compare, with these optimal functions, some of the functions that ordinarily
are used in gridding.

2. Optimality Criteria.

Suppose the sky to be flat and 2-dimensional, i.e. sky=R2, and suppose that

the observer is interested only in radio emission within a region ACR™. Let 1=

(71,72) denote the sky coordinates.2 Also suppose that C is confined to a pre-

scribed region Bc:RZ; i.e. C=0 outside of B, or supp(C)=B.
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in A. The problem, then, is to find a function C, with supp(C)=B, which maximizes
R. We shall also wish to include a weight function in the definition of R:

2. x and y are reserved for later use, when the FT will have a factor 27 in the
argument of the exponential kernel.
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are symmetric about the origin.

A fair body of literature, much of it reviewed and extended in Fedotowsky
and Boivin [7], deals with this type of problem. Certain cases in which A and B
are both rectangular, or both circular, or both ellipsoidal reduce to nice prob-
lems whose solutions satisfy well-studied second-order ordinary differential
equations. Results pertaining to rectangular domains A and B, in the absence of
weighting, are due to Slepian, Landau, and Pollak; those pertaining to rectangular
domains with a particular separable weight function are due to Rhodes, Fedotowsky,
and Boivin; and results gertaining to circular domains, in the absence of weight-
ing, are due to Slepian.

We shall restrict our attention to the case of A and B rectangular, with
sides parallel to the coordinate axes. Without loss of generality, we may assume
that A is the square [:1,i]x[-1,l]. We shall take B to be the rectangle of linear

dimensions my and m, times the respective grid spacings (m1 and m, needn't be in-

tegral). And we shall choose a separable weight function given by w(q) = wl( 71)'
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function look like:
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The optimal solution is a separable function which is equal to w(q) times the
product of the solutions to two l-dimensional problems of the form:

—sV

find f which maximizes Rdfc):. li_ﬁzji;ll[_Q:jL) A
/ I Fa, 1}‘ L""l'"’“cvzl

where F((c,1) =_feiclt (l—tz)“ £(e) de

and where ¢ is related to the m, by c; = ﬂ’mi/Z.

3: Slsplan 1ntroduc§d what he termed "generalized prolate spheroidal wave func-
tlons: These functlons, over circular domains, have properties analogous t h
fun?tlons described below. Because of their orthogonality and completgnes or f
erties, they ?ave been proposed for use in various reconstruction al orithtflspl:op
the dissertations of radio astronomy students. They are difficult t§ computeln



The treatment given this problem by Rhodes is summarized below. For the 2-dimen-

sional problem, the maximal R is given by ROPE - R?Ft(cl)' Rgft(cz)

The function that maximizes Rﬁﬁc) is among those solutions of the differen-
. . 2 . . . .
tial equation (1‘ﬁh)f"—2(m+l)v1f'+(b—c212)f = 0 which remain finite at «=tl.

These bounded solutions of the differential equation are termed spheroidal
functions. TFor each « and ¢ there are countably many solutions which are dis-
tinct up to an arbitrary normalization factor and which, in the literature, are

denoted by /Y;n(c,q), n=0,1,2,... . They correspond to eigenvalues b n(c) of
, x

the DE that may be arranged in ascending order, 0¢ bMO(C)< bml(c) <bd2(c)< .

AT;O(C’T)’ which corresponds to the smallest eigenvalue, maximizes R_(c). More

generally, for each ~ and ¢, the first N+l of the spheroidal functions are the
N+l linearly independent functions of the form F,(c,y) which are the most con-
centrated on [-1,1}, according to the criterion R (c). The latter statements may

cause the reader to pause, since it is not f, but rather the truncated, weighted-
kernel FT of f, F (c,q), whose concentration is supposed to be maximized. The
statements follow because the differential equation above is equivalent to the in-

tegral equation vf(q) = felc?t (l—tz)lak f(t) dt (= Fﬁﬂc,q) ), }qlsl. In

lv " - ) .
other words, 7C{n(c,1) is, apart from a multiplicative constant (the eigenvalue
V‘n(C) of the integral equation), its own finite, weighted-kernel Fourier trans-

o
form.

The spheroidal functions have a number of interesting properties. For fixed
o, and c, the Y’n are simultaneously orthogonal over two domains, both over the
x

interval Pl,I] and over the whole real line, with respect to an inner product
weighted by \l—q?,f They are complete in the function on [;l,l] square integrable
with weight fl—qzri and they are complete in the space of band-limited, filtered
functions of thé form F%(c,q). Jf;n 1s real for real 15 has exactly n zeros in

the interval [fl,i}, is nonzero at ¢ =tl, is even or odd depending on whether n is
even or odd, and its analytic extension to complex v 1s entire. Certain of the
spheroidal functions are named special functions. The relation to prolate spher-

-m/2 S

oidal wave functions 1is /f;n(c,q) = (l—nz) o m+n(c’q)’ for m=0,1,2,... . The
3

. . . . . . / -1 2
relation to periodic Mathieu functions is /Y_; n(c,vl) = cen(cos v,c /4) and
2

Y, o) = Q- Ese | Ceos My, rm).
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3. Computational Recipe.

By the criteria introduced in the preceeding section, having decided upon the
use of a separable function C(u,v) = Cl(u) CZ(V) supported in a rectangle whose
sides in the directions of the coordinate axes measure my and m, times the respect-

ive grid spacings Au and Av in these directions, and having chosen exponents oy

and d2 in the separable weight function defined above, the optimal function for



gridding is of the form C(u,v) = \l-qi(u)]«'!1—?§(V)riy%;o(cl (U))/Y/ (V))

where ql(u) = u/mlﬂu , qz(v) = v/mzév , and4 c. =I*mi/2. Thus we need to ap-

proximate ﬂ%go(c,q) for 1 in the range [O,ll,uy perhaps in the interval [Q,Z], and,
assuming m<10-20, for c45x -10-v.
I have used two means of approximating FY“O. Hodge, in [9], gives an effi-

cient method to calculate the eigenvalues of the differential equation for the pro-
late spheroidal wave functions. I have modified his procedure to yield the
eigenvalues Ey (c) of the more general DE for the spheroidal functioms. YaO’

can be computed by an expansion in fractional-order Bessel functions given by
Rhodes in [5 sec.3] -- the eigenvalue determines the expansion coefficients. This
expansion, convergent for all real , is a fairly efficient means of calculating
the functions for values of the parameters in the range of interest to us. Given
an accurate determination of the eigenvalue, a more straightforward method, if one
is only interested in bﬂ<l, is simply to numerically integrate the DE, starting at
N =0. This method, though, is guaranteed to blow-up near q=11, even 1f exact
arithmetic, but an inexact eigenvalue, is used, since the solutions to the DE are
bounded at q=il for only a countable number of eigenvalues.

then,

Fortran subroutines implementing the two methods are shown in Figures 1 and 2.

The routine in Figure 2 tabulates ydo(c 1) for evenly-spaced arguments 0< 1 <1;

it does so by numerically integrating the DE, and replacing the inaccurate function
values in the tail-end region by function values obtained from the routine in Fig-
ure 1, which uses the Bessel function expansion. I have been able to reproduce
scattered published tables of 6 and 8 significant figure accuracy; however, better
programs must be fairly readily available, since these functions are useful in di-
verse applications. Thus I neither economize on the number of terms used in the
Bessel function expansion, nor check, for extreme values of the parameters, that suf-
ficiently many terms are summed, nor economize on the order of the matrix used in
approximating the eigenvalue.

The Fourier transform of C (assuming 27 in the argument of the exponential
1,*71()()) O(IO(CZ’?Z(Y)) ,
where ql(x) = 2x0u , 72(y) = 2ydy , and, as before, c; =’Nmi/2. The gridding

. - . A /;
kernel of the FT) is simply given by C(x,y) oc Y“O(c
i

scheme, as implemented in most radio interferometer data reduction programs, uses
either a step function approximation or an interpolatory approximation to C. When
the map is corrected to compensate for the gridding, it is more appropriate to
correct by the FT of the approximation to C, rather than by a direct approximation
to C. The weighting corresponding to negatlve o is of little interest, but if it
were used in conjunction with a step function approximation to C, one would need
to beware of the integrable singularity at n=l, and not place a step there.

4, This is if R is computed by integrating over the rectangle A = {(x,y)
[x{< 1/2Au, |y1<1/2Av} If the integration is over a fractionally smaller rect-
angle, A = {’flx fzy) X,y as in previous lineJ , then choose ci—fiwmi/Z.



4. Discussion.

Graphs of a few of the spheroidal functions are shown in Figure 3. Figures
4-7 need explanation: These are plots of IOglolé(Q)(’ where C is defined as in
Reference [1]. That is, for a source at position # on the coordinate axis, é(q)

. . A 2 )
is the ratio of C(y) to C((4+1) mod 2 -1) -- or, the ratio of the strength of an
alias from position s outside of the field of view, to the strength the source
would have if it actually lay within the field at the position of its alias.

A “ € .
Since C(q)= f;o(c,1) has no zeros in the region M}é 1, C, for the spheroidal

functions is everywhere defined. 1In these graphs, sharp spikes at =3,5,7,

are of no concern because sources at these positions have their aliases at the
very edge of the radio map (and the spikes are of finite amplitude since T(1#0).
Figure 6 compares the weighted spheroidal functions with Gaussian-tapered sinc
convoluting functions; the Gaussian-tapered sinc in the lower right-hand corner
of the figure is optimal in the sense that, for a weighting exponent «=0, I have
computed the function's optimal characteristic widths (for support m=6, only).
This is a rather laborious procedure which could be carried out for other para-
metrically defined convoluting functions. Figure 7 compares weighted spheroidal
functions with the so-called Kaiser-Bessel functions, which originated as low or-
der approximations to the prolate spheroidal wave functions of order 0; I do not
know the form of the Kaiser-Bessel functions for support width m#4.

In practice, C should be chosen so that C is not too small, since inexact
arithmetic is used in the computer implementation of the algorithm. Apparently
the main problem arises not from magnification of observational errors (when the
spheroidal functions are used, the relative signal-to- n01se ratio is close to
unity -- see below) but rather from magnification by 1/C(x y) of roundoff errors
that occur in the FFT computation. Let £ denote the characteristic unit round-
off error of the floating-point arithmetic (on a machine whose number base is Pa A

with a k-digit mantissa,

, 1-k . . 1-k . .
€ =% @ k if the machine rounds, and ¢ =ﬁ if the machine truncates; for the
array processor now in use, ¢ = 2_275‘7-5'10-9)- The relative errors in the FFT

A
do not exceed a small multiple of &£ . Probably C(x,y) ought to exceed & by an

order of magnitude or so at the corners of the map (€ is much larger a small dis-

tance into the interior). Table I shows ’7/ (c,1) for various values of the sup-

A0
port width m (c=%nm/2) and several choices of the weighting exponent «¢. The
upper line drawn through the table delineates a conservative upper bound on m when
C 1is taken to be the separable product of two weighted spheroidal functions of
identical parameters, assuming that the full area ((4J/[4J51) of the map is of

. . 3 . . .
interest, and allowing a safety factor of 107; the lower line is less conservative,
allowing no safety margin at the corner pixels. Both lines were drawn assuming
that ¢= 2 27,

Additionally, m need not be made very large because one soon reaches a point
at which aliased sources and aliased sidelobes are sufficiently well suppressed,
but where the dominant annoying features of the radio map are the sidelobes of out-

lying sources. The convolutional gridding scheme does nothing to alleviate this
problem.



Because the spheroidal functions are essentially their own truncated weighted-
kernel FT's, the relative signal-to-noise ratio (SNR), as defined in VLA Scientific
Memoranda 124 and 131 [2,10], can be expressed in a simple form when the convolut-
ing function is a weighted spheroidal function:

T

L/ 2oa
SNR(q) oC Ardo(c,7) J kgi/Y}xé(c,7 +2k) (assuming that the convolution

is done exactly, not, say, by a step function approximation). Table II shows SNR(1)
for the same set of convoluting functions as in Table I (the normalization is such
that SNR(0)=1). Evidently, for nonnegative &, SNR(1)-»;2/2 as m-»~. SNR is
monotonic on the interval [0,1], stays near unity (for moderate m) over most of the
interval, and drops abruptly to SNR(1). Because SNR is of order unity, the upper
limit on the useable support width, m, is governed by the floating-point unit round-
off characteristic, €£.

To my knowledge, the only choice of weight function in the definition of the
concentration parameter, R, which leads to a well-studied class of optimal separable
convoluting functions is the choice [l—qzrf However, Jarem in [ll] does give a
numerical construction method for a broader class of optimal functions arising from
weight functions of a more general form. For our purposes the spheroidal functions
appear to be "good enough."
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The spheroidal functions fora=—1/2,0.1/2,1,2, 3, ¢=6.n =010 8, with \on(c)=1/van ()
Figure 3.

Plots of a few of the spheroidal functions (taken from
Rhodes [5]).
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10

11

12

13

14

N

L4 (-1)
.3(-1)
.1(-1)
.1(=2)

.2(-3)

1(-3)
.0(-4)

2(-4)

.8(-5)
.5(-6)
.5(-6)
RACYD]
.7(-8)

.7(-8)

4

.9(-1)
.5(-1)
.9(-1)
.0(-1)
.8(-2)
.6(-2)
.3(-2)

L7(-3)

s e o

6(-3)
0(-4)

5(-4)

2

8.

1

3

5

JA(¢-1)
L9(-1)
A (-1)
LA4(-1)
.2(-1)
.3(-2)

.2(-2)

3(-3)

0(-3)
.0(=-3)

4 (=4)

.6(-5) 4.6(-5)\\\ 1.1(-4)

TABLE 1. wuo(c, 1) (c = 7 m/2)
o

1 3/2 2 3
L9(-1) 8.2(-1) 8.4(-1) 8.7(-1) 8
.0(-1) 4.6(-1) 5.1(-1) 5.9(-1) 6
.5(-1) 2.0(-1) 2.4(-1) 3.2(-1) 3
.0(-2) 7.2(-2) 9.6(-2) 1.5(-1) 2
.5(-=2) 2.3(-2) 3.3(-2) 5.9(-2) 8
.0(-3) 6.9(—2}H 1.1(-2) 2.1(-2) 3
.1(-3) 1.9(-3) \\ 3.2(-3) 7.2(—3)’ 1
L7 (=4) 5.3(~4) 9.3(-4) 2.3(-3) \\”f
.7(=5) \\ 1.4(-4) 2.6(-4) 7.0(-4) 1.
605 3503 6.9-5) \ 2.1(4) s
.9(-6) 8.9(-6) 1.8(-5) MM;:;:;;*\\ 1.
.3(-7) 2.2(-6) 4.6(-6) 1
2(=7) 5.4(-7) 1.2(-6) 4.4(-6) 1.
.1(-8) 1.3(-7) 2.9(-7) 1.2(-6) 3.

3(-5)

8(-6)

3

1

.3(-5)

.0(-5)
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