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Abstract: The effects of imperfect coincidence of the azimuth, elevation, 
and collimation axes on fringe phase are evaluated. It is shown 
that the azimuth and elevation axes should be made to intersect 
as closely as practicable, while the placement of the collimation 
axis is not critical. 

I, Phase Error Due to Imperfect Axis Intersection 
Figure 1 shows the basis of the problem. The azimuth, elevation, and 
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collimation axes of an antenna ideally should intersect at a common point P. 
In practice, however, the intersection is unlikely to be perfect, owing to the 
finite errors of fabrication and assembly. As a result, when two nominally 
similar antennas are used together as an interferometer, the length and 
orientation of the baseline will vary somewhat with the azimuth and elevation 
toward which they are pointed. This in turn introduces a position-dependent 
shift in fringe phase. -X 

The baseline vector B between two antennas 1 and is nominally the line 
joining the points P^ and P T h e actual baseline vector B', however, is the 
line joining and P^ (see Fig. 1), which varies in length and orientation 
with changes in the pointing elevation h and the pointing azimuth z. We have 

B' = B +(D2 - D^) ..,(1) 
a. 

where D is the vectorial separation of P and Pl. If the interferometer is .V pointed in the direction S, and receives radiation from a point source which 
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The collimation axis is the axis of symmetry of the primary reflector. It 
points toward the object being observed. 
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is displaced from this direction by AS, the fringe phase component due to 
D^ and D^ is 

A$ = (D2 - Dx) • (S + AS) turns f ...(2) 

How does D depend on the errors of ;axis intersection? It can be seen from 
Fig. 1 that the displacement of Pr from P can be represented by three constants, 
which we assume to be expressed in units of the observing wavelength: 

a = lateral offset between the azimuth and elevation axes, reckoned 
positive toward the pointing azimuth Zj 

b = collimation axis offset component perpendicular to the elevation 
axis, reckoned positive if it is in the direction Z ± 180° when 
h = 90°; and 

c = collimation axis offset component parallel to the declination axis, 
reckoned positive in the direction Z - 90° f 

a. and b̂  are both perpendicular to but they are perpendicular to each other 
only when h = 0. The north, east, and zenith components are denoted respectively 
by Dn, D£, and Dy. 

It then follows from Fig. 1 that 

D = 
"Dtf ~(a - b sin h) cos Z + c sin Z 
dE = -c cos Z + (a - b sin h) sin Z ...(3) 

L v b cos h — 

In the same alt-az frame, 

S + AS = 
cos h cos Z - sin h cos Z Ah - cos h sin Z AZ 
cos h sin Z - sin h sin Z Ah + cos h cos Z AZ 

sin h + cos h Ah 
...(4) 

where the displacement of the source from S is given by the elevation offset Ah 
and the azimuth offset AZ (both expressed in radians). Now define 
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Then 

a = a2 - a1 , 

3 = b2 - b1 , 

Y = c2 = c± . 

D 2 - D l = 

"(a-3 sin h) cos Z + y sin Z 
-y cos Z + (a-3 sin h) sin Z 
3 cos h 

(5) 

The scalar product of (4) and (5) reduces to 

A$ = a cos h - Ah (a sin h - 3) - Y^Z cos h (6) 

It can seen from this result that the first term, which depends on the minimum 
distances between the azimuth and elevation axes of the two antennas, is 
strongly dominant. The collimation axis offset parameters 3 and y appear only 
in products with Ah and AZ, which are small quantities since are concerned 
with a source within the primary beam, 

II. Offset between Azimuth and Elevation Axes 
The phase effect due the offset between the azimuth and elevation axes 

alone is 

A$' = a (cos h - Ah sin h) . 

Let the linear equivalent of a be A = Aa. Ah cannot much exceed the HPBW of 
the primary beam, which is approximately Ad ^ (where cl is the diameter of the 
antennas). Therefore 

|a$' - a cos h| £ A d sin h . 

Even if A were as large as a centimeter, the right-hand side of this inequality 
could not exceed 4 x 10 ̂  turns, or 0?14, for d = 25 meters, Hence it is 
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entirely sufficient to take 

A$f = a cos h , 

|A$f| should be kept below 0.25 (i.e., 90°) if it is not to introduce 
a potentially messy calibration problem. This requires a < A/4, or a < A/8 
for the individual antennas. Since the shortest VLA wavelength is 1.3 cm, 
this requires that the azimuth and elevation axes intersect within 

0.163 cm = 0.064 inch . 

E-Systems has agreed to a tolerance of ±0.030 inch in setting up the VLA 
antennas. Thus in practice we can expect that 

|A$f| < 0.117 cos h (turns) = 42° cos h . 

We can live with this, but the measurement of a clearly will have to be a 
regular part of the VLA calibration procedure, and the on-line reduction 
programs will have to correct for it. 

It obviously is not practical to try to make A$r negligible by adjusting 
the antennas. To ensure that |A$f| < 1° at XI.3 cm, for example, the axes 
would have to intersect to within 0.0007 inch—an accuracy which would be very 
difficult to achieve and preserve. 

III. Collimation Axis Offset 
The phase effect due solely to the offset of the collimation axis is 

= Ati sin h - yAZ cos h . 

E-Systems will keep within a tolerance of ±0.250 inch in setting the linear 
equivalents of b̂  and c_. Hence 

| * o,, 
AS. 
^ i ̂  £ 0,5 inch = 1.27 cm 

or, nearly enough, 
|B| 

M 
^ £ 1 for A = 1,3 cm . 
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The greatest possible values of |Ah| and |AZ cos h| are approximately the 
-4 

HPBW of the primary beam, or 5 x 10 radians at X = 1.3 cm. Therefore 

|A$"| < 5 x 10~4 (1 + sin h) turns . 

The worst case occurs near the zenith, where |A$"| < 10~3 turns = 0?4 , 

Thus the phase effect of the collimation offset should be negligible at all 
times. 



z 

Bic i 
Ants 

Azimu-tU 

h t f s 

fv^ Lc-r { 


