# NATIONAL RADIO ASTRONOMY OBSERVATORY <br> SOCORRO, NEW MEXICO <br> VERY LARGE ARRAY PROJECT 

VLA TEST MEMORANDUM NO. 122

ELEVATION EFFECTS AT 2 cm AND 1.3 cm
N. R. Vandenberg

December 1977

Test observations at 2 cm and 1.3 cm on 1977 December 19 were analyzed for elevation effects. At the two high observing frequencies there are three effects which vary with elevation and cause a reduction in antenna amplitude as the elevation decreases: system temperature, atmospheric extinction, and dish efficiency. The data obtained at 2 cm and 1.3 cm were corrected for the first two effects and the resulting data should reflect the dish efficiency. The theoretical variation in efficiency with elevation is due to the rms dish surface errors due to gravitational deformation. The efficiency is a maximum at 50d elevation, and decreases toward higher and lower elevations. At 2 cm , the relative efficiency at 0 d and 90 d is 0.96 . At 1.3 cm , it is 0.91 . (These numbers from Peter Napier.)

The atmospheric absorption can be estimated from the variation of system temperature with zenith angle. The system temperature at any elevation is:

$$
\text { Tsys }=\text { Tsys }(\text { zenith })+a(\text { zenith }) *(\sec z-1) * 300 \mathrm{~K}
$$

where "a" is the absorption coefficient. The values derived from the measured system temperatures are $1.3 \%$ at 2 cm , and $4.9 \%$ at 1.3 cm . Using these numbers, the data were corrected by multiplying by the quantity $1+a * \operatorname{secz}$. Then ANTSOL was run with the fully corrected (system temperature and extinction) data, and the results are shown in the accompanying figures.
1.3 cm -- The amplitudes of antennas 4 and 8 follow roughly the pattern expected for the efficiency dependence, although the decrease in efficiency is larger than the expected value. Antenna 9 has a very steep fall-off toward low elevations, and antenna 7 shows little
variation. Both channels A and C give consistent curves, which is some indication that this is truly an effect of the antenna.

2 cm -- Antenna 8 shows the expected pattern of efficiency, although the effect is still larger than expected. Antenna 9 shows a dramatic increase of amplitude toward low elevations, about a $30 \%$ increase from zenith to 10d. Antennas 7 C and 4 C also show increases toward low elevations. The data from antennas 7 A and 4 A were too noisy to allow determination of this effect. (The effect in antenna 9 shows up in the raw data itself, and the various corrections made only serve to make this behavior more pronounced.)

The ratio of the amplitudes at $10 d$ and $90 d$ elevation to that at the maximum of the curves is given in the following table.

RATIO OF ANTENNA AMPLITUDES
Antenna Efficiency Measurements at 1.3 cm

| IF | 10d/max | $90 d /$ max |
| :--- | :---: | :---: |
| 4C | .80 | .84 |
| 8A | .76 | .79 |
| 8C | .73 | .86 |
| 9A | .64 | .91 |
| 9C | .69 | .91 |
| Predicted .91 | .91 |  |

Antenna Efficiency Measurements at 2 cm

| IF | 10d/max | $90 \mathrm{~d} / \mathrm{max}$ |
| :--- | :---: | :---: |
| 4C | .96 | .87 |
| 8A | .92 | .88 |
| 8C | curve approx. | flat |
| 9A | curve has no maximum |  |
| 9C | curve has no maximum |  |
| Predicted .96 | .96 |  |

At low elevations, neither focus nor pointing has been thoroughly investigated, and these two effects could be masking the efficiency measurements. More thorough testing and investigation of the focus and pointing at the high frequencies needs to be done to see if they might affect these results.

Power Amplitude :* ve00)


Power Amplitude (: 1000 )
IANTENNAS OALIERATION FILE


Prower Amplitude $\mathrm{K} *$ H000)
IANTENNAS QALIERATION FILE


Power Amplitude (* 1000 )
IANTENNAS OALIBRATION FILE




Power Amplitude \{'* I:000)


Power Amplitude : * wave)
ANITENNAS OALIBRATION FILE


IANTENNAS OALIBRATION FILE
Prower Ampllitude K* H000)


Fower Amplitude (** 1000)
IANTENNAS GALIBRATION FILE


PRower Amplitude $3 *$ H000)


