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Introduction 
There are several ways to calculate the dish aperture efficiency (rja) of the VLA antennas. 

[Note that throughout this memo, it will be assumed that the reader knows about rja. If not, 
see Napier 1994, or Kraus 1986]. This memo will describe two ways which were initiated in 
the early days of the VLA, and which I have been using lately to try to guage the performance 
of the antennas. The first way is to observe a planet in single-dish pointing mode ("PA") 
and use the measured antenna temperature to infer r)a- Described by Herrero (1978), this 
technique was resurrected and modified by Doug Wood when he was here in order to check 
the Q-band efficiencies. The second way is to observe a source of known flux density, and use 
the measured visibilities to infer rja. This is very similar to a method that Barry Clark used 
some time ago to measure antenna efficiencies (Clark 1977, 1978). I do it a bit differently, 
but it is essentially the same. This memo will describe only the technique, while results will 
come out in a subsequent memo. 

Single Dish Observations of Planets 
If we want to know r/a for an antenna, it is sufficient to look at a point source of known 

flux, and measure the true antenna temperature. This will yield rja through the relation (see 
Kraus 1986, eqns. 6-225, and 6-227, where his cap is what I'm calling rya): 

2 kTA 

where k is Boltzmann's constant, Ta is the measured antenna temperature, Ap is the physical 
area of the antenna, and S is the source flux density. A 10 Jy point source produces an 
antenna temperature of only about 0.9 K for VLA antennas (using rja = 0.5). At the higher 
frequencies, sources of this strength are few and far between. Since the measurement of 
system temperatures is only accurate to about 1% (see below and discussion in Bagri 1994), 
sources with larger flux densities are needed. Several of the planets have flux density much 
greater than 10 Jy during opposition or conjunction (e.g., the flux density of Venus at 0.5 AU 
distance is roughly 500 Jy at 43 <3Hz). For a planet of brightness temperature Tp, ignoring 
primary beam effects,^J^e density is given by: 

, (2) 

where A is the observing wavelength, and is the apparent size of the planet (Ctp = t R2/D2 

for a planet of radius R at distance D). Substituting the value for S from equation 2 into 

1 



Table 1: Size and Antenna Temperature of some of the Planets 

TAI K) 

body sizef (") L C X U K Q 

Mercury 12.25 * * * 0.6 1.1 3.2 
4.63 * * * 0.1 0.2 0.4 

Venus 63.41 0.3 4.4 11.4 26.5 46.2 117.2 
9.72 * 0.1 0.3 0.6 1.1 2.8 

Mars 25.10 * 0.2 0.6 1.5 2.9 8.5 
3.50 • * * * * 0.1 

Jupiter 49.86 0.7* 1.3* 2.2 4.1 7.3 23.4 
30.55 0.3* 0.5* 0.8 1.5 2.8 8.8 

Saturn 20.64 * 0.1 0.3 0.7 1.4 3.9 
15.04 * * 0.2 0.4 0.7 2.1 

Moon - 104.4 129.6 122.8 98.8 83.6 66.6 

TxCO.l K. 
t max and min equatorial diameter for years 1995-2020, except for the Moon (see text). 

* includes a non-thermal (synchrotron) source which is not confined to the disk. 

equation 1 yields: 

V. = T a > ? (3) 
Ap Tp Clp 

However, when the planets are bright enough to contribute significantly to the antenna 
temperature, they must be quite close, and are hence quite large on the sky (e.g., at 0.5 
AU the diameter of Venus is ~ 30"). This means that the primary beam effects must be 
considered, at least at high frequencies, and this will be covered subsequently. Table 1 shows 
several of the planets and the Moon, giving their apparent size range, and a rough estimate 
of the range of induced antenna temperature as a function of frequency. Note that the 
brightness temperature of all of these bodies is a function of wavelength. Also note that for 
the Moon, I have used a size which is equivalent to twice the FWHM of the primary beam 
at the wavelength in question (i.e., nearly out to the first null). I used the standard average 
values of R)A to calculate the values of TA in Table 1: 0.51, 0.65, 0.63, 0.52, 0.42, and 0.35, 
for L, C, X, U, K, and Q-bands. 

So, measuring the antenna temperature induced by a planet may be used to infer ija. 
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The process occurs in 3 steps: 

1. find r8 y 8 

2. find T'a, the modified antenna temperature 

3. calculate rja 

Each of these steps will now be discussed in more detail. 

Finding Tsys 

The total system temperature on a VLA antenna can be recovered from the so-called 
"nominal sensitivity", which is recorded on tape. At every source change, the on-line system 
calculates the quantity: 

_ 21.59 rt 
•'sens — T , Jca1 9 

for each antenna and IF, where r)'a is the assumed dish efficiency at the observed band, T^i 
is the assumed noise tube temperature (in K) for that antenna/IF, and g (the so-called 
"peculiar gain") is a fudge factor (see below). The 21.59 is a constant that subsumes the 
area of the dish, Boltzmann's constant, the front end gain, and other radiometric constants 
(note that for observations done prior to 1989, this value was 24.32). Now, every 10 seconds, 
the on-line system calculates the following quantity (the "nominal sensitivity"): 

j 3 3 ( 1 TUa\ , , , 
W Kd /.ens ~ Kd \21.59 n'a J ' W 

where V£a is the front end synchronous detector voltage for each antenna/IF. For each corre-
lated visibility, the geometric mean of /«„* for the two antennas/IFs is used as a multiplicative 
factor to convert correlation coefficient to 10's of Janskys. This value is what is written to 
the archive tape. The values of T^j, tj'aJ and g are retrieved from files on the on-line system. 

The front-end (FE) system temperature is given by: 

T _ 15 T ^ VTP 
' • y - V t i ' (6) 

where T^j is the actual (as opposed to assumed) noise tube temperature (in K) for a given 
antenna/IF, and VTP is the total power voltage input to the correlator. The ALC's constrain 
VTP to be near 3 V, so this is nearly a constant value. The factor of 15 is strictly an 
electronics gain factor. This factor is different for the back-end (BE) system temperature. I 
have ignored offsets in the total power and sync detector voltages here. So, 

T 45 
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or, 

. (8) T 
Substituting this into equation 5 yields: 

11 
45 T ^ 
3 r ,y . ( 1 

/corf ~ TTTfr- ' ( 9 ) 

or, 
Tsys - 323.85 ^ ^ ^r f . (10) 

9 ca! 
Again, the values of T^j, 77̂ , and <7 are retrieved from files on the on-line system (the SYSnlF 
files where n is the band, e.g. SYSQIF for Q-band). Note that uncertainties in these values 
are unimportant, as long as the same ones axe used which were used by the on-line system. 
Errors are due to fluctuations in T^ , and in Vrp. Of these, fluctuations in Teal should 
dominate. There is no good knowledge of how these values fluctuate over short or long time 
scales, however, current wisdom is that the values are relatively stable (to ~ 10%, see Bagri 
and Lilie 1993, and Lilie 1992). Therefore, estimating the value of Tsys from the nominal 
sensitivity, without a good value for T^j, should be accurate to ~ 10% for a given antenna. 
A more accurate estimate may be obtained if a measured value of Teal is available. These 
values may be deduced via a TIP scan (Butler 1996). Note also that if the BE Tgys correction 
is used (by turning the right switch in the OBSERVE file), then the multiplicative number 
(323.85) will be different than presented above. 

For data which was written to VLA archive tapes after some time in winter of 1996/97, 
the on-line system estimate of the true system temperature (both FE and BE) are written 
on the tape. In this case, it is much easier to recover the true system temperature via: 

Ziys = Z"gys 7fT~ » (11) 1cal 

where T'ty% is the on-line estimate of the system temperature. Again, the T^j values may be 
deduced via a TIP scan. 

Finding TA 

Given the total system temperature, it is then necessary to find the portion of Tgyg which 
is due to the planet. I need to inject a short discussion on how the VLA operates in PA 
mode here. During PA mode operation, there is a cycle of positions which is observed by 
the antennas which looks like: 
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submode position * 1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

-EL 

+AZ 

OFF 

+EL 

-AZ 

OFF 

ON 

OFF 

* 

* 

* 

* 

* 

* 

* —• invalid data during move to next 
position 

ON —• antennas pointing to nominal 
on-source position 

+/-AZ —• antennas pointing off source 
by a half beamwidth in azimuth 

+/-EL —• antennas pointing off source 
by a half beamwidth in elevation 

OFF —> antennas pointing off source 
by -f2.5 beamwidths in azimuth 

When a source change is detected in PA mode, the first submode recorded will be sub-
mode 7, but valid data may not be considered to be present until submode 10 is observed 
(because of system settling time). So, for each full cycle, 1 pointing is made directly at 
the source position, 4 are made at the nominal half power points (calculated apriori by the 
on-line system as: HWHM = 1440 / v0 arcsec, where v0 is the center frequency in GHz, e.g., 
at 43 GHz, HWHM = 33.49 arcsec), and 3 are made at a presumed blank region of sky. By 
definition (in the on-line system), each of these pointings is 10 seconds (as are the moves), 
but individual samples are collected at intervals specified by the integration time (as small 
as 11 sec). The measured quantity of interest here is Ka, which is sampled at a rate of once 
each 1.25 sec. In addition there is a folded in electronic time-constant of 1 second for the 
value itself. The software then takes those samples and performs an exponential smoothing 
which has a time constant of 5 sec (4 samples) [the on-line system takes each sample of V^ 
and modifies the current estimate of that value by adding V^D/N • N/(N — 1) to it, with 
N = 4, which is the software equivalent of an RC circuit with a time constant of 4 samples, 
or 5 sec]. The implication of this sampling and smoothing is that the right way to do this 
sort of observation is to specify an integration time of 11 sec, then take the last recorded 
value of Via for each submode (there will be 6 per pointing) as the best estimate of the value 
for that pointing. There is another complication which must be mentioned here. The on-line 
system does not label the records as they are written to the archive tape with the correct 
submode. As the system stands currently, the correct way to pick off the last recorded value 
for each submode is to actually pick the second (of 6) of the values. The submode mislabeling 
is a result of making sure that the submode labels for the survey are correct, and there is 
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currently no plan to fix this "feature". Note that the accuracy of an individual sample of 
Vtd is determined by the quantization of the value in the A/D conversion. This accuracy is 
about 1 part in 600 (about .2%), because 3 V is set to be 600 A/D counts. The accuracy of 
the smoothed values will be somewhat better, but the overall accuracy of values of Tsyg for 
a single antenna/IF is probably only about 1% (Bagri 1994). 

Now, making the assumption that Tgyg may be broken into 2 components: one due to 
things above the top of the atmosphere (Ti), and one due to all things below (T0), most of the 
contribution to Tgy, not related to the planet may be subtracted out by simply subtracting 
the average value of the OFF pointings. For the moment, let us ignore pointing errors, 
which we will then reconsider later. In this case, we would only need observations on planet 
and off planet, from which we could immediately derive the planetary contribution. For the 
on-planet pointings we have: 

TSys = T0 + K 

f/Tb(x, y) A(x, y) dx dy 
on 

f f A(x,y) dx dy 

II TMB(X, y) A(x, y) dx dy 

ffA(x,y)dxdy ' ^ 
off 

where TF, is the brightness temperature of the planet being observed, Tmb is the microwave 
background temperature, A is the normalized antenna reception pattern, x,y are the sky 
coordinates, "on" indicates that the integration is to be done over the portion of the sky on 
the planet, "off" indicates that the integration is to be done over the portion of the sky off 
the planet, and if is a term which takes into account the opacity, and the conversion from 
planet brightness temperature to antenna temperature (see equations 1-3 above): 

K = VaApnp e T o € a c E ^ ( 1 3 ) 

A 

where r0 is the zenith opacity, and E is the elevation of the planet when observed. For the 
off-planet pointings we have: 

II TMbg(x, y) A(x, y) dx dy T.y. = ro+ K * . (u) II A(x,y)dxdy 
oo 

So, by subtracting out the off-planet pointings, we are left with the quantity: 

11 (Tpianetfc, y) - T MB) A(x, y) dx dy 
T'A = K ~ HA(x,y)dxdy (15) 
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(making the assumption that Tmb is constant). This equation can be directly inverted to 
solve for Tja. 

However, recall that this has ignored pointing errors, which complicate the calculation of 
the exact value of T'A. If we assume that the elevation and azimuth portions of the antenna 
reception pattern (the "primary beam") can be considered separately, then for each of these 
two beams, we have 3 measurements. These 3 measuerements must be used to solve for the 
3 unknowns: the amplitude at the center of the beam, some measure of the width of the 
beam, and the offset of the true beam from the assumed pointing center. If we assume a 
gaussian beam, then: 

A(u) = A 0 e - h l 2 ^ - ^ 2 / f f 2 , (16) 

where Ac is the amplitude at the center, <j is the half-width, and Att is the offset. In this 
case, the 3 measurements are: 

A{ = ^c-k^ui-Au)2/*2 

This set of equations can be analytically solved for the 3 unknowns (e.g. McKay 1997). Of 
course, in a general sense, the fit to the beam is simply a nonlinear least squares problem, 
given any arbitrary beam shape. These sorts of problems can be solved, given the equation 
for the shape of the beam, and its derivative with respect to the unknowns (see e.g. Press 
et ai. 1988, section 14.4). In the case of the gaussian beam, the derivatives are: 

. (18) 

dAj _ 2 In 2 ^ A0 

d Aw cr 
, (19) yj u u u 

and, 
dAt. 2 ln2<ft2 A0 in 2 <62 
da " a ' 1 j 

where <j> = (u — Au)/<7. In reality, however, the beam is not a gaussian, but rather has 
Besselian form (Napier 1994): 

A W = A 0 [ A 1 ( ^ ) ] 2 , (21) 

where A* is the Lambda function of order k : A*(2r) = T(k + 1) * Jk(z) (so that 
Ai(z) = Ji(z)/(z/2)), Aw is again the offset, and w is a measure of the beam width. In this 
case, the derivatives are given by: 

dAj 
dAn 

= [Ai(V>)]2 , (22) 
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= , (23) 

and, 

^ = , (24) 

where rp = (u — Au)/w. The true half-width at half-max is given by: a = 1.61634 to, where 
the 1.61634 comes from the fact that [Ai(1.61634)]2 = 0.5. 

So, given the 3 values of the beam measurements yields through the fit the value of ACi 

which is actually the value of T'A, given the scaling. Values are derived independently for each 
of the IF's of the antennas, and for the elevation and azimuth (8 values in all). Checks of 
the widths and offsets for both azimuth and elevation provide information on the fit validity. 

Calculating rja 

Finally, given the estimate of T'A for an antenna, we must solve equation 15 for rja. This 
requires knowledge of the distribution of brightness temperature of the planet (Tb(x, y)), 
and the normalized antenna reception pattern (the "beam", A{x, y)) over the size of the 
planet. We've already made the assumption that we know the beam shape, as described in 
the above section. Note, however, that if there are significant deviations from the theoretical 
beam shape (as was probably the case when the Q-band receivers were first installed), none 
of the following really makes much sense, and values of rja derived from use of this technique 
will be highly suspect. Also note that we never know the beam response accurately out past 
the second null or so. This implies that the Moon is not a very good target to use for this 
type of determination, since it is simply too large. To a good approximation, the brightness 
distributions on the planets useful for this technique (Venus, Jupiter, and possibly Saturn, 
Mercury and Mars) are slightly limb-darkened disks of the form: 

Tb(u) = Tbocosne , (25) 

where T&0 is the brightness temperature at the subearth point, and 0 is the incidence angle, 
given by: $ = sin-1 r = sin-1(u/umax), with umox = R/A, for a planet of apparent radius 
R. The values of n are usually ^ 0.2. Since both the beam and the planet are circularly 
symmetric, equation 15 reduces to: 

T'A=K Tbof0
1A(p)(l-p*)»/>pdp 

J-MB 
Jo Mp)PdP 

(26) 

Unfortunately, in general the integrals must be evaluated numerically, but that isn't a par-
ticularly hard thing to do. Assigning the variable / to the ratio of the integrals, the value 

8 



of rja can then be directly calculated: 

Va = (27) A p e - o o c E { T b o f _ T m b ) • 

Implementation 
Originally, the intent was to implement all of this into AIPS, and to that end, I wrote 

two AIPS tasks to do the above derivation of i/0. The first, called TYCVP, takes the values 
of nominal sensitivity and converts them to T,y8. The second, called TYPTG, takes the 
resultant values of T,yB and calculates T'A and hence rja. Note that in order to do the fitting, 
the program must have access to the submode information. In current AIPS, FILLM does 
nothing with the submode. So, Gustaaf van Moorsel put together a special version of FILLM 
which puts the submode into the TY table along with the nominal sensitivity. The above 
tasks deal with these non-standard TY tables. However, it became quite cumbersome to 
maintain a non-standard version of FILLM, and it turned out that this version didn't work 
right on all PA mode data anyway. Because of this, I have gone to an entirely non-AIPS 
implementation. The values of nominal sensitivity (or T ŷB for data written in 1997 or later) 
are read directly from the archive with a program written by Wes Young (called sf i l l ) , and 
the derivation of T'A and RJA are done with a program I wrote (called typtg). 

Problems 

Problems with this technique (i.e., sources of error) that I can see include: 

1. For the higher frequencies, the Rayleigh-Jeans approximation breaks down, and the 
value of rsy8 should be modified like: 

where h is Planck's constant, and v is the frequency. The error introduced by this is 
about 1% at 43 GHz for a Tgys of 100 K. 

2. There is an implicit assumption that the atmosphere is constant as a function of time 
and position. This will only be true if the weather is good. 

3. The true values of the noise tube temperatures are not known exactly. It is not clear 
how accurate the estimation of these values from TIP scans is (Butler 1996). I suspect 
that they are no better than a few percent (relative), and can easily be worse in bad 
weather. 

__ hv 1 
*yi ~ T eW*Tiyi _ i (28) 
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4. The derived opacity has some uncertainty associated with it. I suspect that it is no 
better than a few percent (relative). 

5. Uncertainty in the true flux density (brightness temperature) of the observed planet 
propagates directly. At the higher frequencies, this may be a significant source of error. 

6. Assuming that the beam shape is known, and deriving the beam parameters from only 
3 pointings in each direction (elevation and azimuth) seems risky to me. The problem 
with obtaining many more samples of the beam shape is that it takes a significant 
amount of extra time. In this extra time, there is more chance for things to change 
(source elevation, atmosphere, etc. . .) . 

7. In the fit to the beam shape, it is assumed that the source is a point source. For the 
planets, which are certainly not point sources when bright enough, equation 17 is not 
right, as it should involve an integral of the sky brightness over the proper beam shape. 
It is not clear at this point how big an effect this is. 

Observations of a Source of Known Flux Density 
I base my estimates of aperture efficiency in this way on the assumption that the peculiar 

gains should really be 1.0, and that given the true values of the aperture efficiencies and cal 
temps, the conversion from estimated correlation coefficient to visibility value yields values 
which have real meaning on an absolute flux density scale. 

The raw visibility that comes out of the on-line system for the cross product of antenna 
i with antenna j is constructed via (in the case of continuum observations): 

Vij = 256 ^ fij , (29) 

where r»j is the estimate of the correlation coefficient. See equation 5 for a description of 
/corf- The scale is supposed to be set such that a raw value of 0.1 implies a true flux density 
"close" to 1.0 Jy, where "close" is arbitrarily defined. Substituting equation 5 (with proper 
antenna subscripts) into equation 29 gives: 

V^ = 35.57 
^ 

T^gi T^ 9 j 

v ^ K d X ' ( } 

What is the basis for equation 30? Given the true correlation coefficient pij, the conversion 
to visibility flux density (in Jansky) is (e.g. Moran and Dhawan 1995): 

V* = Pa ~ 10M 

phys \ i V&j 

T T 
(31) 

10 



where fc is Boltzmann's constant, Aphy% is the physical area of the antennas, Tgy8. is the 
system temperature of the ith antenna, which has true aperture efficiency rj^. For the VLA 
the system temperature is given by equation 6, so, using the physical size of the VLA 
antennas and putting in the constants gives: 

Vn = 253.13 
V ^ ' ( 3 2 ) 

Now, the question is: how are p^ and f t i related? The VLA calculates ftJ- as (from Ken 
Sowinski): 

^ = , (33) 
y/Cii c j j 

where Cij is the cross-count output of the correlator for the ij correlator pair, and ca is 
the self-count for t. This normalization scheme is chosen to account for first-order errors 
in sampler 0-level and gain settings (Thompson 1973; D'Addario 1976). This is not the 
"standard" way of normalizing, which is (Cooper 1970; Clark 1978): 

= - (34) 1 'max 

where NMAX is the total number of samples. In this case, and for small correlation coeffi-
cient, the true correlation coefficient is related to the digitally estimated 3 level correlation 
coefficient via: (e.g., see the sine approximation in Schwab 1979, using v5 = v6 = 0.612): 

Pij ~ 2.284 r,j . (35) 

The difference in the normalizations is (see Table I-a of D'Addario 1976 with Vi = 0.612, 
and noting that his VQ is the same as what I call Nm**): 

y/cZcfj - 0.541 ^ , (36) 

implying that 
r*j - 0.541 r{j . (37) 

So, the relation between the true correlation coefficient and the VLA correlation coefficient 
is: 

Pij - 2.284 r{j ~ 2.284 * 0.541 f 0 - 1.236 f 0 . (38) 

This agrees with D'Addario 1976, Table I-b (for Vi = .612 and small p). Substituting this 
back into equation 32 gives: 

Vij = 312.8 ^calj ^calj /s /of\\ 
V.* K, r « • ( 3 9 ) 

11 



This is very close to equation 30 (remembering that this equation is in Jy, and equation 30 
is in 10's of Jy). Note that the difference (a factor of 1.14) is nearly the ratio of 24.32 to 
21.59, and that 24.32 was the constant used in construction of the nominal sensitivities prior 
to 1989 (see equation 5). 

So, given an observation of a source of known expected flux density, and good estimates 
of the true T ^ values, I find the values of the t/̂ . which yield the expected flux density for 
all cross correlation pairs. Given the original visibilities, the values of 77̂ ., T ^ , and pt, and 
new, true values of the rj^ and X ^ , I modify the original visibilities to the true scale via: 

Vij — 8.79 Vij , 
K; Ki . 

- (4°) /Cj Kj 

where 8.78 = 10 * 312.8 / 355.7, and 

K, = ^ • (42) 
J- calj 

The steps in the process are: 

1. Find the (from a TIP scan [Butler 1996]). 

2. Do a phase-only self-cal on the raw visibilities. 

3. Given the Teal,, and setting r/^ = 77 ,̂ construct an intermediate data set, where the 
visibilities {Vij) are obtained via equation 40. 

4. Find the expected attenuated flux density of the source of known flux (currently only 
3C286 at Q-band) 

^expected = -^truc e~T°A , (43) 

where rc is the zenith opacity (measured via a TIP scan [Butler 1996]), and A is the 
airmass. 

5. Do an amplitude and phase self-cal on this data set, setting the model flux density to 
the expected value. The true aperture efficiencies are then: 

n' 
<fc. = . (44) 

where 5, is the CALIB solution value for antenna i. 
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6. As a check, construct a final data set, using the true T ^ and rj^ and equation 40, 
and make sure that the visibility curve is flat (for 3C286, at least, since we know 
it is basically unresolved by the VLA at Q-band in all configurations), and that the 
visibilities average to the correct (expected) flux density. 

Problems 

Problems with this technique (i.e., sources of error) that I can see include problems 1-5 listed 
for the planet observing determination above, and, in addition: 

6. Second order sampler level and offset errors are not taken into account. Lore is that 
these errors are on the order of 0.1%. 

7. If there is a pointing error which is not corrected by reference pointing (for example, 
if the reference pointing is done at X-band, and there is an error in the collimation 
for the band at which the observations are done), this will make the derived efficiency 
lower than the actual efficiency. 

8. The linear conversion from r t j to pij (equation 35) introduces some error. This error 
can be calculated given the expected true correlation coefficient by calculating a better 
conversion from r^ to p^ (e.g., the sine approximation of Schwab 1979) and comparing 
it to the linear conversion. For 3C286, which has about 1.5 Jy flux density at 43 GHz, 
the expected value of p is about 0.001, for which the error in the linear conversion is 
very small. Even for a 20 Jy source (e.g. 3C84) at 8.5 GHz, the expected value of p is 
only about 0.06, for which the error is about 0.02%. 

9. There are real effects that the peculiar gains are supposed to take care of in the system. 
An examples is an incorrect delay for a given antenna/IF. Magnitude of the error caused 
by these effects is uncertain, but certainly should not exceed the rms fluctuation among 
the peculiar gains themselves, which is on the order of 10%. 

Comparison of the 2 Methods 
Because the second method uses the correlated visibilities, it does not produce a true 

value of the aperture efficiency, but rather a combination of aperture efficiency and other 
loss terms which occur between the front-end and the correlator. The efficiency derived in 
this way is therefore a "system" efficiency value. It is interesting in that it is this system 
efficiency which should be used in place of the true aperture efficiency when estimating what 
the thermal noise on the visibilities should be (e.g., equation 7-41 in Crane and Napier 
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1994). So, in guaging the relative (and absolute) performance of the antennas, both of these 
methods are required. The first to measure the true aperture efficiency, and the second to 
measure the total system efficiency. 
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