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Introduction

There are several ways to calculate the dish aperture efficiency (1,) of the VLA antennas.
[Note that throughout this memo, it will be assumed that the reader knows about 7,. If not,
see Napier 1994, or Kraus 1986]. This memo will describe two ways which were initiated in
the early days of the VLLA, and which [ have been using lately to try to guage the performance
of the antennas. The first way is to observe a planet in single-dish pointing mode (“PA”)
and use the measured antenna temperature to infer n,. Described by Herrero (1978), this
technique was resurrected and modified by Doug Wood when he was here in order to check
the Q-band efficiencies. The second way is to observe a source of known flux density, and use
the measured visibilities to infer 5,. This is very similar to a method that Barry Clark used
some time ago to measure antenna efficiencies (Clark 1977, 1978). I do it a bit differently,
but it is essentially the same. This memo will describe only the technique, while results will

come out in a subsequent memo.

Single Dish Observations of Planets

If we want to know 5, for an antenna, it is sufficient to look at a point source of known
flux, and measure the true antenna temperature. This will yield 5, through the relation (see
Kraus 1986, eqns. 6-225, and 6-227, where his €,, is what I'm calling n,):

2T,
a = ; 1
=S (1)

where £ 1s Boltzmann’s constant, 74 is the measured antenna temperature, A, is the physical
area of the antenna, and S is the source flux density. A 10 Jy point source produces an
antenna temperature of only about 0.9 K for VLA antennas (using n, = 0.5). At the higher
frequencies, sources of this strength are few and far between. Since the measurement of
system temperatures is only accurate to about 1% (see below and discussion in Bagri 1994),
sources with larger flux densities are needed. Several of the planets have flux density much
greater than 10 Jy during opposition or conjunction (e.g., the flux density of Venus at 0.5 AU
distance is roughly 500 Jy at 43 GHz). For a planet of brightness temperature T, ignoring
primary beam effects, the source flux density is given by:

2k,
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where ) is the observing wavelength, and (2, is the apparent size of the planet (2, = = R?/D?

for a planet of radius R at distance D). Substituting the value for S from equation 2 into



Table 1: Size and Antenna Temperature of some of the Planets

Ta (K)

body sizet () L C X U K Q
Mercury 12.25 * * * 0.6 | 1.1 3.2
4.63 * * * 0.1 0.2 0.4
Venus 63.41 0.3 4.4 114 | 26.5 | 46.2 | 117.2
9.72 * 0.1 0.3 0.6 1.1 2.8

Mars 25.10 * 0.2 0.6 1.5 2.9 8.5
3.50 * * * * * 0.1

Jupiter | 4986 | 0.7¢ | 1.3 | 22 | 41 | 7.3 | 234
30.55 0.3+ | 05! 0.8 1.5 | 2.8 8.8

Saturn 20.64 * 0.1 0.3 0.7 1.4 3.9
15.04 0.2 0.4 | 0.7 2.1

*
*

Moon - 104.4 | 129.6 | 122.8 | 98.8 | 83.6 | 66.6

* Ty <01K.
! max and min equatorial diameter for years 1995-2020, except for the Moon (see text).
! includes a non-thermal (synchrotron) source which is not confined to the disk.

equation 1 yields: e
T

Mo = A, 7,0, . (3)
However, when the planets are bright enough to contribute significantly to the antenna
temperature, they must be quite close, and are hence quite large on the sky (e.g., at 0.5
AU the diameter of Venus is ~ 30”). This means that the primary beam effects must be
considered, at least at high frequencies, and this will be covered subsequently. Table 1 shows
several of the planets and the Moon, giving their apparent size range, and a rough estimate
of the range of induced antenna temperature as a function of frequency. Note that the
brightness temperature of all of these bodies is a function of wavelength. Also note that for
the Moon, | have used a size which is equivalent to twice the FWHM of the primary beam
at the wavelength in question (i.e., nearly out to the first null). I used the standard average
values of 7, to calculate the values of Ty in Table 1: 0.51, 0.65, 0.63, 0.52, 0.42, and 0.35,
for L, C, X, U, K, and Q-bands.

So, measuring the antenna temperature induced by a planet may be used to infer 7,.



The process occurs in 3 steps:

1. find Ty
2. find T, the modified antenna temperature

3. calculate 5,

Each of these steps will now be discussed in more detail.

Finding T

The total system temperature on a VLA antenna can be recovered from the so-called
“nominal sensitivity”, which is recorded on tape. At every source change, the on-line system

calculates the quantity:

Lions = M (4)
Tea g

for each antenna and IF, where 5/ is the assumed dish efficiency at the observed band, T,
is the assumed noise tube temperature (in K) for that antenna/IF, and ¢ (the so-called
“peculiar gain”) is a fudge factor (see below). The 21.59 is a constant that subsumes the
area of the dish, Boltzmann’s constant, the front end gain, and other radiometric constants
(note that for observations done prior to 1989, this value was 24.32). Now, every 10 seconds,
the on-line system calculates the following quantity (the “nominal sensitivity”):

)i _ 3 _ 3 1 Tc/alg (5)
T Vg Leens Via \2159 7! ’

where Vq is the front end synchronous detector voltage for each antenna/IF. For each corre-
lated visibility, the geometric mean of I, for the two antennas/IFs is used as a multiplicative
factor to convert correlation coefficient to 10’s of Janskys. This value is what is written to
the archive tape. The values of T, 7!, and g are retrieved from files on the on-line system.

The front-end (FE) system temperature is given by:

, 15 Tca Vrp
Tsys = T 5 (6)

where T¢, is the actual (as opposed to assumed) noise tube temperature (in K) for a given
antenna/IF, and Vrp is the total power voltage input to the correlator. The ALC’s constrain
Vrp to be near 3 V. so this is nearly a constant value. The factor of 15 is strictly an
electronics gain factor. This factor is different for the back-end (BE) system temperature. 1

have ignored offsets in the total power and sync detector voltages here. So,

45 Teal

Tow = 7




or

45 Te,
Via ~ ——= (8)
sys
Substituting this into equation 5 yields:
3 Tiys T
]corf ~ Y cal 9 5 (9)
45 Tear \21.59 7!
or,
77(/1 Tcal

Toye ~ 323.85 Lot - (10)

9 Téa
Again, the values of T/, 1}, and g are retrieved from files on the on-line system (the SYSnIF
files where n is the band, e.g. SYSQIF for Q-band). Note that uncertainties in these values
are unimportant, as long as the same ones are used which were used by the on-line system.
Errors are due to fluctuations in T¢,, and in Vpp. Of these, fluctuations in 7., should
dominate. There is no good knowledge of how these values fluctuate over short or long time
scales, however, current wisdom is that the values are relatively stable (to ~ 10%), see Bagri
and Lilie 1993, and Lilie 1992). Therefore, estimating the value of Ty from the nominal
sensitivity, without a good value for 7., should be accurate to ~ 10% for a given antenna.
A more accurate estimate may be obtained if a measured value of T, 1s available. These
values may be deduced via a TIP scan (Butler 1996). Note also that if the BE Ty correction
is used (by turning the right switch in the OBSERVE file), then the multiplicative number
(323.85) will be different than presented above.

For data which was written to VLA archive tapes after some time in winter of 1996/97,
the on-line system estimate of the true system temperature (both FE and BE) are written
on the tape. In this case, it is much easier to recover the true system temperature via:

Tea
Tays=T. =% | (11)
Y Y Téal

where T, _is the on-line estimate of the system temperature. Again, the T values may be

deduced via a TIP scan.

Finding 77

Given the total system temperature, it is then necessary to find the portion of T,y which
is due to the planet. I need to inject a short discussion on how the VLA operates in PA
mode here. During PA mode operation, there is a cycle of positions which is observed by

the antennas which looks like:



submode position

1 *

2 OFF

i —I—EL x  — invz.ili.d data during move to next
5 . position

6 EL ON — antennas pointing to nominal

7 . on-source position

3 LAY +/-A7Z — antennas pointing off source

9 . by a half beamwidth in azimuth
10 A7 —I—/—EL — antennas pointing off source

1 . by a half beamwidth in elevation
12 OFF OFF — antennas pointing off source

13 . by +2.5 beamwidths in azimuth
14 ON

15 *

16 OFF

When a source change is detected in PA mode, the first submode recorded will be sub-
mode 7, but valid data may not be considered to be present until submode 10 is observed
(because of system settling time). So, for each full cycle, 1 pointing is made directly at
the source position, 4 are made at the nominal half power points (calculated apriori by the
on-line system as: HWHM = 1440 / v, arcsec, where v, is the center frequency in GHz, e.g.,
at 43 GHz, HWHM = 33.49 arcsec), and 3 are made at a presumed blank region of sky. By
definition (in the on-line system), each of these pointings is 10 seconds (as are the moves),
but individual samples are collected at intervals specified by the integration time (as small
as 1 % sec). The measured quantity of interest here is Viq, which is sampled at a rate of once
each 1.25 sec. In addition there is a folded in electronic time-constant of 1 second for the
value itself. The software then takes those samples and performs an exponential smoothing
which has a time constant of 5 sec (4 samples) [the on-line system takes each sample of Viq
and modifies the current estimate of that value by adding V.a/N - N/(N — 1) to it, with
N =4, which is the software equivalent of an RC circuit with a time constant of 4 samples,
or 5 sec|]. The implication of this sampling and smoothing is that the right way to do this
sort of observation is to specify an integration time of 1 % sec, then take the last recorded
value of Viq for each submode (there will be 6 per pointing) as the best estimate of the value
for that pointing. There is another complication which must be mentioned here. The on-line
system does not label the records as they are written to the archive tape with the correct
submode. As the system stands currently, the correct way to pick off the last recorded value
for each submode is to actually pick the second (of 6) of the values. The submode mislabeling

is a result of making sure that the submode labels for the survey are correct, and there is



currently no plan to fix this “feature”. Note that the accuracy of an individual sample of
Via is determined by the quantization of the value in the A/D conversion. This accuracy is
about 1 part in 600 (about .2%), because 3 V is set to be 600 A/D counts. The accuracy of
the smoothed values will be somewhat better, but the overall accuracy of values of Ty for
a single antenna/IF is probably only about 1% (Bagri 1994).

Now, making the assumption that 7.y, may be broken into 2 components: one due to
things above the top of the atmosphere (7}), and one due to all things below (T, ), most of the
contribution to Ty not related to the planet may be subtracted out by simply subtracting
the average value of the OFF pointings. For the moment, let us ignore pointing errors,
which we will then reconsider later. In this case, we would only need observations on planet
and off planet, from which we could immediately derive the planetary contribution. For the

on-planet pointings we have:

ffTb(«T,y) A(:Cay) dilfdy
Ts s — To + K —
Y [ Az, y)dz dy

ff TMB(‘Tv y) A({E, y) dx dy

+ K of , 12
G ) dr dy (12)

where Ty is the brightness temperature of the planet being observed, Ty is the microwave
background temperature, A is the normalized antenna reception pattern, x,y are the sky
coordinates, “on” indicates that the integration is to be done over the portion of the sky on
the planet, “oftf” indicates that the integration is to be done over the portion of the sky off
the planet, and K is a term which takes into account the opacity, and the conversion from
planet brightness temperature to antenna temperature (see equations 1-3 above):

N Ap Qp

K = gTo ©s¢ E (13)

A? ’
where 7, is the zenith opacity, and F is the elevation of the planet when observed. For the

off-planet pointings we have:

ff TMBG(:Ea y) A(;L‘, y) dx dy

Tys=T,+ K = 14
y T Ala.y) dz dy "
So, by subtracting out the off-planet pointings, we are left with the quantity:
S J (Toianet(z,y) = Twin) A(z, y) du dy
T =K =2 (15)

fonf Alz,y)dz dy



(making the assumption that Ty is constant). This equation can be directly inverted to
solve for 7n,.

However, recall that this has ignored pointing errors, which complicate the calculation of
the exact value of T%. If we assume that the elevation and azimuth portions of the antenna
reception pattern (the “primary beam”) can be considered separately, then for each of these
two beams, we have 3 measurements. These 3 measuerements must be used to solve for the
3 unknowns: the amplitude at the center of the beam, some measure of the width of the
beam, and the offset of the true beam from the assumed pointing center. If we assume a

gaussian beam, then:

A(U) — Ao e—an(u—Au)2/a’2 ’ (16)

where A, is the amplitude at the center, o is the half-width, and Awu is the offset. In this

case, the 3 measurements are:
Ai — Ao e—an(ui—Au)2/02 ) (17)

This set of equations can be analytically solved for the 3 unknowns (e.g. McKay 1997). Of
course, in a general sense, the fit to the beam is simply a nonlinear least squares problem,
given any arbitrary beam shape. These sorts of problems can be solved, given the equation
for the shape of the beam, and its derivative with respect to the unknowns (see e.g. Press

et al. 1988, section 14.4). In the case of the gaussian beam, the derivatives are:

0 A; 22
= n 1
A, ¢ ’ (18)
8AZ _21n2¢AO —ln2¢2
OAu o ¢ ’ (19)
and,
A, 21n2¢% A, 2
a — n ¢ 6—1112(;5 , (20)

do a
where ¢ = (v — Au)/o. In reality, however, the beam is not a gaussian, but rather has

Besselian form (Napier 1994):

A(u) = A, [A1<U_Au)r , (21)

w

where Ay is the Lambda function of order k : Ag(z) = I'(k + 1) (%z)_k Je(z) (so that
Ai(2z) = J1(2)/(2/2)), A is again the offset, and w is a measure of the beam width. In this

case, the derivatives are given by:

e LI 22

7



O _ A% ) A(ee) (23)

0Au 2w
and,
aAz o Ao 1/)2
A A hal) (21)

where 1) = (4 — Au)/w. The true half-width at half-max is given by: ¢ = 1.61634 w, where
the 1.61634 comes from the fact that [A;(1.61634)]* = 0.5.

So, given the 3 values of the beam measurements yields through the fit the value of A,,
which is actually the value of T, given the scaling. Values are derived independently for each
of the IF’s of the antennas, and for the elevation and azimuth (8 values in all). Checks of

the widths and offsets for both azimuth and elevation provide information on the fit validity.

Calculating 7,

Finally, given the estimate of T' for an antenna, we must solve equation 15 for n,. This
requires knowledge of the distribution of brightness temperature of the planet (7y(x,y)),
and the normalized antenna reception pattern (the “beam”, A(z,y)) over the size of the
planet. We’ve already made the assumption that we know the beam shape, as described in
the above section. Note, however, that if there are significant deviations from the theoretical
beam shape (as was probably the case when the -band receivers were first installed), none
of the following really makes much sense, and values of , derived from use of this technique
will be highly suspect. Also note that we never know the beam response accurately out past
the second null or so. This implies that the Moon is not a very good target to use for this
type of determination, since it is simply too large. To a good approximation, the brightness
distributions on the planets useful for this technique (Venus, Jupiter, and possibly Saturn,

Mercury and Mars) are slightly limb-darkened disks of the form:

Ty(u) =Ty, cos™ 6 (25)

where T}, is the brightness temperature at the subearth point, and € is the incidence angle,

Yy = sin"' (u/Umaz ), With U, = R/), for a planet of apparent radius

given by: 6 = sin”
R. The values of n are usually <0.2. Since both the beam and the planet are circularly

symmetric, equation 15 reduces to:

T, Jo A(p) (1= p*)"* pdp
Jo Alp) pdp

Unfortunately, in general the integrals must be evaluated numerically, but that isn’t a par-

T, =K (26)

ticularly hard thing to do. Assigning the variable f to the ratio of the integrals, the value



of 1, can then be directly calculated:

- T2
Na = Ap e~ To CSC I (Tbo f _ TMB)

(27)

Implementation

Originally, the intent was to implement all of this into AIPS, and to that end, I wrote
two AIPS tasks to do the above derivation of 5,. The first, called TYCVP, takes the values
of nominal sensitivity and converts them to Tyy. The second, called TYPTG, takes the
resultant values of Ty and calculates 77 and hence n,. Note that in order to do the fitting,
the program must have access to the submode information. In current AIPS, FILLM does
nothing with the submode. So, Gustaaf van Moorsel put together a special version of FILLM
which puts the submode into the TY table along with the nominal sensitivity. The above
tasks deal with these non-standard TY tables. However, it became quite cumbersome to
maintain a non-standard version of FILLM, and it turned out that this version didn’t work
right on all PA mode data anyway. Because of this, I have gone to an entirely non-AIPS
implementation. The values of nominal sensitivity (or T, for data written in 1997 or later)
are read directly from the archive with a program written by Wes Young (called sfi11), and
the derivation of 7% and 75, are done with a program I wrote (called typtg).

Problems

Problems with this technique (i.e., sources of error) that I can see include:

1. For the higher frequencies, the Rayleigh-Jeans approximation breaks down, and the
value of Ty should be modified like:

. hv 1

sys — ? 4€hl//kTsys — 1 ) (28)

where h is Planck’s constant, and v is the frequency. The error introduced by this is

about 1% at 43 GHz for a T4y, of 100 K.

2. There is an implicit assumption that the atmosphere is constant as a function of time

and position. This will only be true if the weather is good.

3. The true values of the noise tube temperatures are not known exactly. It is not clear
how accurate the estimation of these values from TIP scans is (Butler 1996). I suspect
that they are no better than a few percent (relative), and can easily be worse in bad

weather.



4. The derived opacity has some uncertainty associated with it. I suspect that it is no

better than a few percent (relative).

5. Uncertainty in the true flux density (brightness temperature) of the observed planet

propagates directly. At the higher frequencies, this may be a significant source of error.

6. Assuming that the beam shape is known, and deriving the beam parameters from only
3 pointings in each direction (elevation and azimuth) seems risky to me. The problem
with obtaining many more samples of the beam shape is that it takes a significant
amount of extra time. In this extra time, there is more chance for things to change

(source elevation, atmosphere, etc. .. ).

7. In the fit to the beam shape, it is assumed that the source is a point source. For the
planets, which are certainly not point sources when bright enough, equation 17 is not
right, as it should involve an integral of the sky brightness over the proper beam shape.

It is not clear at this point how big an effect this is.

Observations of a Source of Known Flux Density

I base my estimates of aperture efficiency in this way on the assumption that the peculiar
gains should really be 1.0, and that given the true values of the aperture efficiencies and cal
temps, the conversion from estimated correlation coefficient to visibility value yields values
which have real meaning on an absolute flux density scale.

The raw visibility that comes out of the on-line system for the cross product of antenna

¢ with antenna j is constructed via (in the case of continuum observations):

‘A/zj = 256 \/]corfi ]corf] 722] 3 (29)

where 7;; 1s the estimate of the correlation coefficient. See equation 5 for a description of
Leorf. The scale is supposed to be set such that a raw value of 0.1 implies a true flux density
“close” to 1.0 Jy, where “close” is arbitrarily defined. Substituting equation 5 (with proper

antenna subscripts) into equation 29 gives:

3 Tclal' i Tc/al] g; .
Vi; = 35.57 \l Via . Va1 rij - (30)

What is the basis for equation 307 Given the true correlation coefficient p;;, the conversion

to visibility flux density (in Jansky) is (e.g. Moran and Dhawan 1995):

2k 026 Tsysi Tsys

Vi = o P 31
! ! Aphys Na; Ma; ( )
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where k is Boltzmann’s constant, Aphys is the physical area of the antennas, Ty is the

system temperature of the 7t

antenna, which has true aperture efficiency 7,,. For the VLA
the system temperature is given by equation 6, so, using the physical size of the VLA

antennas and putting in the constants gives:

Tcali Tcalj
‘/sdi Na; ‘/sdj naj

Vi; = 253.13 \l pii - (32)
Now, the question is: how are p;; and 7;; related? The VLA calculates 7;; as (from Ken

Sowinski):
Cij

where ¢;; is the cross-count output of the correlator for the 25 correlator pair, and ¢;; is

: (33)

ry =

the self-count for 7. This normalization scheme is chosen to account for first-order errors
in sampler 0-level and gain settings (Thompson 1973; D’Addario 1976). This is not the
“standard” way of normalizing, which is (Cooper 1970; Clark 1978):

g = A (34)

where N,,,. is the total number of samples. In this case, and for small correlation coeffi-
cient, the true correlation coefficient is related to the digitally estimated 3 level correlation

coefficient via: (e.g., see the sine approximation in Schwab 1979, using vs = vg = 0.612):

The difference in the normalizations is (see Table I-a of D’Addario 1976 with V; = 0.612,
and noting that his V, is the same as what I call Npay):

£/ Cii C]’J' ~ 0541 Nmax s (36)
implying that
So, the relation between the true correlation coefficient and the VLA correlation coefficient
is:
This agrees with D’Addario 1976, Table I-b (for V; = .612 and small p). Substituting this

back into equation 32 gives:

Tcali Tcalj
‘/sdi Na; ‘/sd] na]

Vi, =312.8 \l P (39)
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This is very close to equation 30 (remembering that this equation is in Jy, and equation 30
is in 10’s of Jy). Note that the difference (a factor of 1.14) is nearly the ratio of 24.32 to
21.59, and that 24.32 was the constant used in construction of the nominal sensitivities prior
to 1989 (see equation 5).

So, given an observation of a source of known expected flux density, and good estimates
of the true T, values, I find the values of the 5, which yield the expected flux density for

all cross correlation pairs. Given the original visibilities, the values of n; , T, , and g;, and

cal;

new, true values of the n,, and T.,,, I modify the original visibilities to the true scale via:

Vi, =819V | —L | (40)
Ri Kj
where 8.78 = 10 * 312.8 / 355.7, and
) T
— i 41
ST (41)
Na;
p= = 42
: Tcali ( )
The steps in the process are:
1. Find the T,,, (from a TIP scan [Butler 1996]).
2. Do a phase-only self-cal on the raw visibilities.
3. Given the Te,,, and setting n,, = 7];, construct an intermediate data set, where the

visibilities (V) are obtained via equation 40.

4. Find the expected attenuated flux density of the source of known flux (currently only
3C286 at Q-band)
Fexpected = Ftrue e_TOA ’ (43)

where 7, is the zenith opacity (measured via a TIP scan [Butler 1996]), and A is the

alrmass.

5. Do an amplitude and phase self-cal on this data set, setting the model flux density to

the expected value. The true aperture efficiencies are then:

77/
77a¢ = 5121 9

(44)

where S; 1s the CALIB solution value for antenna z.
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6. As a check, construct a final data set, using the true T.,, and 7, and equation 40,
and make sure that the visibility curve is flat (for 3C286, at least, since we know
it is basically unresolved by the VLA at Q-band in all configurations), and that the

visibilities average to the correct (expected) flux density.

Problems

Problems with this technique (i.e., sources of error) that I can see include problems 1-5 listed

for the planet observing determination above, and, in addition:

6. Second order sampler level and offset errors are not taken into account. Lore is that

these errors are on the order of 0.1%.

7. If there is a pointing error which is not corrected by reference pointing (for example,
if the reference pointing is done at X-band, and there is an error in the collimation
for the band at which the observations are done), this will make the derived efficiency

lower than the actual efficiency.

8. The linear conversion from r;; to p;; (equation 35) introduces some error. This error
can be calculated given the expected true correlation coefficient by calculating a better
conversion from r;; to p;; (e.g., the sine approximation of Schwab 1979) and comparing
it to the linear conversion. For 3C286, which has about 1.5 Jy flux density at 43 GHz,
the expected value of p is about 0.001, for which the error in the linear conversion is
very small. Even for a 20 Jy source (e.g. 3C84) at 8.5 GHz, the expected value of p is
only about 0.06, for which the error is about 0.02%.

9. There are real effects that the peculiar gains are supposed to take care of in the system.
An examplesis an incorrect delay for a given antenna/IF. Magnitude of the error caused
by these effects is uncertain, but certainly should not exceed the rms fluctuation among

the peculiar gains themselves, which is on the order of 10%.

Comparison of the 2 Methods

Because the second method uses the correlated visibilities, it does not produce a true
value of the aperture efficiency, but rather a combination of aperture efficiency and other
loss terms which occur between the front-end and the correlator. The efficiency derived in
this way is therefore a “system” efficiency value. It is interesting in that it is this system
efficiency which should be used in place of the true aperture efficiency when estimating what

the thermal noise on the visibilities should be (e.g., equation 7-41 in Crane and Napier
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