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I Introduction 

This memo will describe the present state of the design of 
parts of the VLB A correlator. As in VLB A correlator memo 71, 
information presented here is somewhat preliminary because of 
the evolving nature of the present design. 

II What1s new 

A number of things have changed in the VIBA correlator design 
since memo 71. Below is a list of such changes; 

1) A tentative decision has been made to do 2048 point 
Fourier transforms. The main disadvantage to this size 
FFT was stated in memo 71 as the inability to use radix 
4 FFT butterflies. In was recently realized, however, 
that a radix 2 butterfly was sufficiently like the radix 
4 butterfly that a gate array chip designed to do a 
radix 4 butterfly could easily be used for both radix 4 
and radix 2. Hence a 2048 point FFT can be performed by 
doing 5 radix 4 butterflies and one radix 2 butterfly. 

2) Toshiba recently announced a series of very fast 
RAMs including a 25 nsec, 2K by 8 static RAM. I have 
called about this chip and was given a price of $6.00 
each in quantity. At this low a price, I don't know if 
radix 4 butterflies make much sense. The advantages to 
radix 4 are fewer RAMs and fewer gate array chips (fewer 
IC1 s in general). If the RAMS are cheap enough and a 
smaller gate array (that would result from doing radix 2 
butterflies) reduces the cost of the gate array chips, 
much of the advantage is lost. We intend to carry the 
correlator design along in both radix 2 and radix 4 for 
some time until the economic tradeoffs are clearer. 
Hence, this memo will present gate arrays designs for 
both. 

3) The input multiply of the first butterfly stage in a DIT 
FFT is trivial and hence this gate array function is 
available to do whatever we can think of for it to do. 
The two leading contenders for this multiply are the 
fringe rotation and the window function. In this memo 
it will be assumed that the window function multiply 
will be done in the first FFT butterfly stage. 

4) The last butterfly stage must calculate only one half of 
the points of other stages since one half of the 



a) final b u t t e r f l y s tage and fractional sample tine correct ion 

b) final b u t t e r f l y s tage doing fractional sample tine correct ion 
in two steps 

FIGURE 1. 
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spectral points of the FFT output will be discarded. 
This fact allows the last butterfly stage to also do the 
fractional sample time error correction. One picture is 
worth a thousand words and figure 1 is that picture. 

5) The numbering system has changed somewhat. The number 
representation will now have sign-magnitude 
mantissas external to the chip and one's complement 
in the chip adder stages. The advantage to the 
sign-magnitude input is in having smaller hardware 
multipliers. The advantage to one's complement is 
the ability to do un-biased truncation. A second 
change in the numbering system is the change from an 
integer conception of numbers in the FFT to fractions. 
A point in the FFT chain will now have the structure 
S.XXXX * 2**-YYYY where S is the sign bitf .XXXX is 
the 4-bit mantissa magnitude, and YYYY is the 4-bit 
exponent. This change has a few advantages in addition 
to being a slightly more natural form. First, the window 
generator can now have the full range of the number 
system and second, numbers will shift to the top of 
the butterfly adder stages resulting in less truncation 
error. The next section will try and explain this in 
more detail. 

6) The sin/cos terms into the FFT butterflies will have 
6-bit instead of 5-bit precision. This change was 
mentioned in correlator mono 71 and has now been 
adopted pending analysis of computer simulations 
of the system described in this memo. 

7) The gate counts given in figures 3 and 5 were higher 
that first anticipated and some thought is now being 
given to having several small gate array chips made 
instead of one large chip. The remainder of this memo 
will , however, consider a single multi-purpose chip. 

Ill Block diagram 

A block diagram of the signal path is seen in figure 2 . A 2048 
point FFT is done using 5 radix 4 butterflies and 1 radix 2 
butterfly. 

Each butterfly block shown consists in hardware of 5 integrated 
circuits, one gate array IC and two sets of two (actually 14/8) 
2K by 8 RAMs. Two sets of RAMs are used for double buffering. 
If 15 nsec 2K by 8 RAMs become available in the future, this 
count can go down by one set of RAMs. 

The baseline multiplier shown is a single gate array chip. This 
chip interfaces directly with an accumulator RAM. The 32 wide 
output of the baseline multiplier shown is the logical width. 
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The hardware width will be 8-bits (that i s , 32-bit running sums 
of the multiplier/accumulator will be written to or read from 
the gate array chip in four 8-bit accesses). 

Signal dynamic levels thru the block diagram of figure 2 are 
given below; 

1) Fringe generator. Samples enter the fringe generator in 
one- or two-bit form and leave as 
complex fractions with the 5-bit 
mantissas of the form S.XXXX and 
zero exponents. 

2) Window. Complex points enter in the form S.XXXX for 
real and imaginary components and zero 
exponents. Weights enter as real fractions 
with the form S.XXXXX * 2**-YYYY. Points leave 
complex with the full dynamic range potential 
of the 5 , 5 , 4 numbering system. Because of the 
limit set by using 15-bit registers and adders 
at the complex multiplier output in the gate 
array chip, the smallest effective non-zero 
number in the system will be S. SSSSSSSSSSSSSX 
or S.SSSX * 2**-10 . If a more negative 
exponent is encountered, the significant bits of 
the number will be shifted out of the adder 
stage and only zero would be left. 

3) FFT stage. In the FFT stages the points enter in the form 
S.XXXX * 2**-YYYY where, as above, YYYY has a 
effective maximum size of 10. The sin/cos terms 
enter the FFT butterfly as 6-bit fractions of 
the form S.XXXXX with zero exponent. All of 
the inputs to the FFT butterfly stage are 
in sign-magnitude notation. After the complex 
multiplier, an arithmetic shifter stage will 
convert the signals to one's complement 
fixed point numbers. Since the numbers are 
considered fractions with a radix point at 
the top of the subsequent adder stages, any 
error due to the shifting significant bits 
below the LSB of the adder is minimized. The 
FFT butterfly chip allows a 2-bit growth in 
the maximum size of points in each radix 4 
stage. To keep a fractional notation through 
the FFT an effective scaling of 2**2 will be 
applied. That is , if a point comes out of a 
radix 4 butterfly with the same exponent 
it had at the input, it in actuality grew 
by two bits in the stage. The samples of a 
flat spectrum will thus progress down the FFT 
with exponents that get ever more negative. 
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4) Scaling stage. The scaling stage will add a number, 
programmable by spectral point (and 
antenna if that is necessary), to the 
exponent of each spectral point out of 
the FFT. The smallest exponent allowed 
at the scaling stage output will be -5. 
Thus, points that are much smaller than 
the expected value (as reflected by the 
programmed scaling factor) will have 
significant bits truncated and points 
that are much larger that expected 
will be clipped. Scaling is necessary 
because without it the output products 
of the baseline multiplier would have 
a 2**30 dynamic range. 

5) Baseline multiplier. The input points to the baseline 
multiplier will range between 
S.XXXX and S.XXXX * 2**-5. Only 
16 bits of the product between 
such numbers from two antennas 
will be kept. I f , for example, 
the two points to be multiplied 
were +.000001001 and +.000001100, 
+.000000000001101100 should be the 
result. The 16 bits accumulated 
would be +.000000000001101 and there 
would be a truncation error of 
+.000000000000000100. 

6) Accumulator. The accumulator input will be 16-bit 2 ' s 
complement numbers (converted from the 
one's complement output of the complex 
multiplier). The accumulator will integrate 
up to the 32-bit level. After accumulation, 
the scaling factors introduced by the 
scaling stage will be reunited with the 
baseline integrations in the correlator 
back end. 

IV) The gate array chip 

This section describes a plan to implement a gate array 
integrated circuit which can perform four distinct, 
functions. They are fractional sample time error (FSTE) 
corrections, baseline multiplies, accumulation, and 
radix two and radix four butterflies. The FSTE function 
may not be needed since, as discussed above, a final 
radix 2 butterfly stage can perform this function. 

The chip will be driven by a 32 MHz clock. 



FIGURE 3, THE RADIX 2 CHIP BLDCK DIAGRAM 
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Two versions of the chip will be presented. One will perform 
either radix 2 or radix 4 butterflies. The other will only 
perform radix 2 butterflies. A butterfly consists of floating 
point complex multiplies, followed by additions of the products. 
The complex multiply portion can also be used to implement the 
fractional sample time error (FSTE) corrections. FSTE is also 
referred to as fractional bit shift. 

An accumulator section after the complex multiply can be used to 
implement the baseline multiply/accumulate function. 

Thus, a single integrated circuit can be selectively used in 
these four functions. 

A) Floating Point, Complex Multiply Function 

Figure 3 is the Radix 2 Chip Block Diagram. All the chip 
functions use the initial complex multiply. Two floating 
point, complex numbers are input into the chip. The real 
and imaginary portions of each share a common exponent. To 
justify this, think of a number in polar form. The larger 
component is the major contributor to the magnitude. The 
exponent can be added separately from the multiplications 
si nee: 

(A + jW) * 2**L * (B + jX) * 2**M = 
[(AB - XW) + j(AX + BW)] * 2**(L+M)) 

The resolutions used depend on the function desired. Refer to a 
5 bit real mantissa, a 5 bit imaginary mantissa, and a 4 bit 
exponent as 5 , 5 , 4 . 

For the butterfly and FSTE applications, a 5 , 5 , 4 number will be 
multiplied by an angle of the form cos a + j sin a. Since the 
angle has unity magnitude, the exponent will always be zero. B. 
Clark has suggested that 6 bits of resolution in the mantissa is 
desirable for the angle. Hence, 5 , 5 , 4 and 6, 6 , 0 numbers will 
be multiplied together. 

For the baseline multiply, two 5 , 5 , 3 numbers will be multiplied 
together. 

The chip will contain four 5-bit x 6-bit multipliers. These 
will perform the four multiplications required to perform the 
complex multiply in a single machine cycle. The output precision 
of the multipliers is 10 bits, assuming sign-magnitude 
mul tipl ies. 

After the exponents are added, it is necessary to convert to 
fixed point notation for the subsequent additions. Recall the 
number are stored in a S.XXXX * 2**-YYYY format, where the 
exponent, -YYYY, has a maximum value of zero. Thus the peaks of 
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the spectrum will have a value of one minus the LSB. The 
conversion is implenented by means of an arithmetic shifter. 
The exponent determines the number of shifts. 

B) Radix 2 Butterfly Implementation 

To perform a radix 2 FFT butterfly, it is necessary to perform 
the sum and difference of two, sequential complex products. 
Figure 3 is the block diagram of a gate array chip that will do 
a complete radix 2 FFT butterfly. Figure 4 is the flow diagram 
of a radix 2 FFT butterfly. Referring to figure 3, the registers 
A, B, and C store the real parts. The registers W, X, and Y 
store the imaginary parts. 

The chart below, shows the radix 2, two port adder timing. 

Each column represents one clock cycle. What is calculated in 
each entry is strobed in at the end of the entry. Four, two 
clock cycles are shown. The number associated with each entry 
tells the cycle number. 

Row 1 shows the product terms being fed to the real stage of the 
adder. The A, B, and C registers are used. Row 2 shows the sums 
and differences output. The imaginary portion works similarly. 

The adder outputs are in fixed point notation. The outputs must 
be converted back to 5 , 5 , 4 floating point notation. The real 
or imaginary component with the largest magnitude is used in 
calculating the exponent. This exponent is then used to 
arithmetic shift the fixed point, complex number back to 5 , 5 , 4 
floating point. This forms the output of the butterfly. 

C) FSTE implementation 

The FSTE function requires a complex multiply, without the two 
port addition. The addition can be bypassed by having zero 
always applied to one port of the adder. 

For the FSTE function, the complex product is converted back to 
5, 5 , 4 floating point and output. It was necessary to convert 
the product first to fixed, then back to floating point to 
recalculate the exponent. 

D) Baseline Multiply Implementation 

Clock Cycle 
1 2 3 4 5 6 7 8 

1. A1 
2. 
3. W1 
4. 

CI A2 C2 A3 C3 A4 C4 
Al+Cl Al-Cl A2+C2 A2-C2 A3+C3 A3-C3 

Y1 W2 Y2 W3 Y3 W4 Y4 
Wl+Yl Wl-Yl W2+Y2 W2-Y2 W3+Y3 W3-Y3 
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For the baseline multiply function, the 16 bit outputs of the 
complex multiplier are stored in registers B and X. These then 
go to the accumulators. 

The accumulation takes place in two stages. The sum will be added 
to a sum stored in RAM. 

The chart below shows the accumulator timing when 8 consecutive 
cross products are summed together before accumulation. 

Clock Cycle 
1 2 3 4 5 6 7 8 

1. A1 A2 A3 A4 A5 A6 A7 A8 
2. Wl W2 W3 W4 R1 R2 R3 R4 

The I /O to the RAM sends 32 bit words over an 8 bit bus in 4 
clock cycles. 

On the above chart, A1 through A8 represent 8 consecutive cross 
products. W1 through W4 represent the writing of a 32 bit word 
to RAM in 4 , 8 bit sections. R1 through R4 represent the reading 
of a 32 bit word from RAM in 4 , 8 bit sections. 

Referring to figure 3 and the above chart, the accumulator 
timing is described for an eight clock cycle as follows: 

Clock Cycle Number 

1 . The F register here contains the summation of the previous 
value from RAM plus the previous 8 cross multiplies. To output 
the F register, 24 of its 32 bits are temporarily stored in Reg 
G, while 8 bits are output to RAM as Wl. The H register (Reg H) 
has previously been read from RAM. 

Reg H + A1 -> Reg F. 

This adds the value from RAM to the first cross product, and 
accumulates the sum in register F. 

2 . W2 is output from Reg G. 

A2 + Reg F -> Reg F. 

This accumulates the cross products. 

3. W3 is output from Reg G. 

A3 + Reg F -> Reg F. 

4. W4 is output from Reg G. 

A4 + Reg F -> Reg F. 
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5. R1 -> Reg H. 
This begins the inputting of a 32 bit word from RAM in 4 , 8 
bit sections. 

A5 + Reg F -> Reg F. 

6. R2 —> Reg H. 

A6 + Reg F -> Reg F. 

7 . R3 —> Reg H. 

A7 + Reg F -> Reg F. 

8. R4 -> Reg H. 

A8 + Reg F -> Reg F. 

And back to clock cycle 1. 

The imaginary values are accumulated/ in parallel, in a separate 
accumulator. 

E) Radix 4 Butterfly Chip Implementation 

Figure 5 shows the block diagram of a chip which can perform 
radix 4 butterflies. It is identical to the radix 2 chip, with 
the addition of the blocks enclosed in the dashed lines. That 
section implements the second stage of the four port adder 
function. The output of the four port adder is 16 bits, as was 
the output of the radix 2, two port adder. The first stage of 
the four port adder also outputs 16 bits. This allows for when 
it will be used as a radix two butterfly. Figure 6 is a picture 
of the radix 4 FFT butterfly. 

The four port adder performs 4 sums of the 4 complex products. 
Assume the four complex products are output in the following 
order: A+jW, C+jY, B+jX, D+jZ (see figure 6 ) . The four outputs 
required from the butterfly are: 

1 . [ (A+C) + (B+D)] + j[ (W+Y) + (X+Z)] 
2 . [ (A+C)-(B+D)] + j [ (W+Y) — (X+Z) ] 
3. [(A-C) + (X-Z)] + j[ (W-Y)-(B-D)] 
4 . [ (A-C)-(X-Z)] + j [ (W-Y) + (B—D) ] 

The method to compute the real halves will be described. The 
imaginary halves are analogous. 

On figure 5 , registers A, B, and C alternately offer A and C, 
then B and D to the adder. The adder will calculate the sums and 
differences and store them in the next row of registers. These 
will be multiplexed and summed to form the final outputs. 



FIGURE 5. THE RADIX 4 CHIP BLDCK DIGRAM 
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FIGURE 6, RADIX 4 DIT FFT BUTTERFLY 
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The four port adder timing is shown in the chart which follows* 

Clock Cycle 
1 2 3 4 5 6 7 8 9 10 

1. A1 CI B1 D1 A2 C2 B2 D2 A3 C3 
2. Al+Cl Al-Cl Bl+Dl Bl-Dl A2+C2 A2-C2 B2+D2 B2-D2 
2a. Al+Cl Al+Cl Al-Cl Al-Cl A2+C2 A2+C2 
3. Wl Y1 XI Z1 W2 Y2 X2 Z2 W3 Y3 
4. Wl+Yl Wl-Yl Xl+Zl Xl-Zl W2+Y2 W2-Y2 X2+Z2 X2-Z2 
4a. Wl+Yl Wl+Yl Wl-Yl Wl-Yl W2+Y2 W2+Y2 

5. Al+Cl Al+Cl Al-Cl Al-Cl A2+C2 
+ - + - + 

Bl+Dl Bl+Dl Xl-Zl Xl-Zl B2+D2 

6. Wl+Yl Wl+Yl Wl-Yl Wl-Yl W2+Y2 
+ - - + + 

Xl+Zl Xl+Zl Bl-Dl Bl-Dl X2+Z2 

Each column represents one clock cycle. What is calculated in 
each entry is strobed in at the end of the entry. 3Vo and one 
half, four entry cycles are shewn. The number associated with 
each entry tells the cycle number. 

Row 1 shows the real products from the multipliers. Row 2 shows 
the sums and differences of the terms from row 1 . Row 3 shows 
the imaginary products. Row 4 shows the sums and differences of 
the imaginary terms. Row 5 shows the sums and differences of the 
suns and differences from row 2. This produces the butterfly 
output terms. Note that for row 5 , clock cycle 9 , Al-Cl is 
required. In row 2 , at the end of the previous clock cycle, 
A2-C2 was written. Hence Al-Cl would no longer be available. To 
resolve this, register E is added to the upper input of the 
second stage adder. Row 2a shows what is stored in register E. 
Register E is clocked at the end of the even clock cycles. The 
multiplexer on the input to the register is toggled at the end of 
the odd clock cycles. The timing for the imaginary portion is 
analogous. 

Hence, the four complex, radix four butterfly terms are output 
from the four port adders. One complex term is output each clock 
cycle. 

If a 2048 point FFT is to be implemented, using radix 4 butterfly 
chips, one stage of chips must do a radix 2 FFT. Since 2048 
equals 4**5 * 2, it requires 5 radix 4 stages and one radix 2 
stage. The radix 4 chip can be made to perform a radix 2 
butterfly by bypassing the last adder stage. For example, for 
the real portion, have the upper MUX permanently in the A+C 
position and the lewer MUX output zero. This bypasses the second 
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stages of the four port adders, forming two port adders. 

F) Possible Multiple Uses of Hardware 

The gate count could be reduced by switching hardware between 
functionalities for different applications of the chip. Some 
suggestions follow. 

The adders in the accumulators could be shared with the adders in 
the four or two port adders. The four or two port adders are not 
otherwise used in the baseline multiply function. A counter 
could implement the most significant bits of the accumulator 32 
bit adder, since it would be counting carries from the 16 bit 
inputs. 

The multiplexing of the 32 bits from the accumulator to the 8 
output bits could be done by the arithmetic shifters of the final 
fixed point to floating point conversion. This would also 
implement a dual use of the output pins between the functions. 


