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Introduct ion . Here I want to discuss data tapering, or windowing, as it relates to the "FX" 
spectral processor design under consideration for the VLBA. Since sidelobes of sharp spectral 
features contaminate adjacent regions of the cross-spectral estimates, control of these sidelobes— 
which is most easily accomplished via time-domain windowing—may be one of the critical factors 
in achieving high spectral dynamic-range. 

A summary of the current design for the FX processor is given in Escoffier and Greenberg's 
VLBA Memorandum No. 72 (July, 1986). In this design, pairs of quantized recorded signals are 
read from magnetic tape, with appropriate synchronization and delay. "Fringe rotation" is applied, 
and re-quantized samples of the data, representing finite length segments of two (complex) random 
processes, z(t), y(t), 0 <t <T, are fed in chunks, K of them, each of length L, to the FFT processor. 
The estimate of the cross-spectrum G x y ( f ) is an average of periodogram estimates based on these 
(possibly overlapping) data chunks, 

Here, w(t) denotes the data window, or taper; and b is the time offset between adjacent data chunks. 
(1 — b/L) is the fractional overlap: b = L corresponds to 0% overlap and b = L/2 to 50% overlap 
(these are probably the only two choices that will be allowed by the VLBA processor; further, some 
modes of operation may offer no capability for overlap). 

In the above I have given a continuous formulation, but we are actually dealing with a set of 
discrete samples, x(tn), y(tn), n = 0, ...,N, uniformly spaced in time, and our Fourier integrals 
above actually correspond to FFT's in the FX processor. This is unimportant in most of the 
discussion below. 

To see why data windows other than u;(<) = constant might be appropriate, consider the case 
K = 1. In this case, the cross-spectral estimate G x y ( f ) is simply a raw cross-periodogram based 
on N data samples—not an average of periodograms. According to the statistical literature (e.g., 
[6, p. 211], [7, p. 265 ff.]), the raw (i.e., untapered) cross-periodogram is not a consistent estimator 
of Gxy(f): as you allow N to increase, the variance of the estimate does not decrease. (Rather, 
what happens is that the additional data allow you to obtain essentially statistically independent 
estimates of G at a larger number of frequencies than you could have before.) 

There are a number of ways to reduce the variance. One is to average the cross-spectral estimates 
over frequency. Since convolution is a form of averaging—transforming to the lag domain, tapering 
the cross-correlation estimate, and transforming back, is a special case of averaging. Another method 
which is essentially equivalent to averaging in the spectral domain is to apply a time domain taper 
before computing the periodogram; what this yields is an estimate of the convolution of G x y ( f ) with 
the square of the Fourier transform of the time domain taper, i.e., with |W"(/)|2; this is essentially 
equivalent to tapering the cross-correlation function with the autocorrelation of the time domain 
window. Another way is to divide the data into K > 1 possibly overlapping chunks, cpmpute K 

K 

where 

and 



MECHANICAL FREQUENCY. CYCLES/METER 

Fig. 1—Comparison of direct spectrum estimates using different data windows. The 
plotted curves are the average over 2556 data sets. 

F i g u r e 1. Spectral bias, or leakage, is especially evident here in the "valley" region which is marked by an arrow. 
(Adapted, from [1, Paper II, Fig. 1].) 

periodograms, and average. For non-overlapping chunks, this results in a variance reduction by a 
factor equal to 1 / K . 

The method of variance reduction which would seem most natural for the FX correlator is 
a combination of periodogram averaging with time domain tapering. Since the expected value 
of a cross-periodogram estimate is the true cross-spectrum convolved with the spectral window 
\ W ( f ) \ 2 (see [1]), the sidelobes of the spectral window are a source of bias in the neighborhood of 
any sharp spectral feature. At the expense of spectral resolution, one can simultaneously achieve 
variance reduction and bias reduction, via appropriate segmentation, windowing, and overlap. (In 
the literature the method we are using is often referred to as the WOSA method: the method of 
Weighted Overlapped Segment Averaging. It's also sometimes called the Welch Method, having first 
been described at length by Welch [8] in 1967.) When K is large—as it will be, I believe, in all 
VLBA applications—time domain windowing is used more for purposes of bias reduction than for 
variance reduction. 

For an illustration of this spectral bias (which is often called spectral leakage in the literature), 
see Figures 1 and 2. The first figure shows (auto-) spectral estimates computed using different data 
windows. The curve labeled "default periodogram" corresponds to a uniform time domain window— 
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Fig. 18—Comparison of three estimates of spectrum for the data shown in Fig 12 The 
systematic oscillations in the center curve are a result of interactions between the two 

F i g u r e 2 . An extreme example of the problem of spectral bias. A sophisticated data window was used to obtain the 
spectral estimate shown by the lower curve. Almost all of the spectral features are obscured in the upper curve, which 
is a smoothed version of the average of "raw" periodograms (no tapering). (Adapted from [ l , Paper II, Fig. 18].) 

i.e., to no tapering; the other curves correspond to heavier tapering. The default periodogram 
estimates in the "valley" which I have marked by an arrow are biased heavily upward by the relatively 
high sidelobes of the (sine2) spectral window, because of the sharp spectral peaks surrounding the 
valley. An extreme example of this effect is shown in the second figure. 

Also evident from Figure 2 is that workers in other fiel :s are interested in obtaining much 
higher spectral dynamic range than we probably are (note th; l this spectrum, which is plotted on 
a logarithmic scale, covers nearly 16 decades in power!). Thus, many of the spectral windows that 
are described in the literature (probably including Hanning) should not be of much interest to us: 
they sacrifice too much in resolution, in order to achieve extremely high rates of sidelobe decay. 
Nevertheless, D. J. Thompson in [1] comments that 

Very few spectra resulting from physical processes are so uninteresting that the "elimination" of 
tapering is ever advisable. 

Quant ized windows. The currently proposed design for the FX processor uses crude precision 
binary floating-point arithmetic within the FFT modules: 5 bit mantissas and 4 bit exponents 
(counting the sign bits) for data and for intermediate results, with the real and imaginary parts 
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of each complex datum sharing the same exponent. It uses 6 bit mantissas and 4 bit exponents 
to represent the FFT "twiddle factors" (roots of unity). Data sequences at the input to the FFT 
modules can be tapered by a quantized data window represented in floating-point arithmetic with 
5 bit mantissas and 4 bit exponents. (Some numerical simulations performed by John Benson have 
suggested that 8 bit mantissas may be required.) 

One question is whether the standard data windows, represented with this degree of precision, 
retain their gross properties and their overall effectiveness. To answer it, I quantized a few of 
the standard data windows, computed the corresponding spectral windows (the squared magnitude 
of their Fourier transforms), and compared these with the spectral windows corresponding to the 
unquantized data windows. 

A sample result is shown in Figure 3. The unquantized data window is shown at top left, and the 
quantized version at top right. The middle two plots show the inner portions of the corresponding 
spectral windows. I've labeled the abscissae of the plots of the spectral windows in units of 1 /T, 
where T (,for the next few paragraphs only—I don't want to relabel my plots) represents the total 
width, in time, of the data window. (With factor-of-2 zero-padding, the output points of the FX 
processor would be spaced at (the customary) increments of ^f j without zero-padding the spacing 
would be 1/T.)1 The bottom pair of plots shows the far sidelobes of the spectral windows: what's 
interesting to note here is the rate of sidelobe decay and the degree of "hash" in the spectral window 
corresponding to the quantized data window. 

In the Appendix I show a number of other examples. In all cases, the first few sidelobes of the 
spectral windows show very little distortion due to quantization; in particular, the first two sidelobes 
generally agree very closely. By a frequency of 5 / T considerable distortion begins to show up. For 
each window pair the spectral envelopes of the far sidelobes generally are fairly similar, though the 
envelope of the quantized data window generally is more reluctant to fall below about 10"6. 

For comparison, I show in Figure 4 the (sine2) spectral window which corresponds to uniform 
weighting. Its first sidelobe is at a level of « 0.0456 (—13.41 dB). At a frequency increment « 10 /T 
from a strong spectral line the sidelobes would limit the achievable dynamic range to 1000:1, roughly 
speaking. 

Quantization of typical data windows to 5 bit mantissa, 4 bit exponent, appears to do little 
harm except to the far sidelobes of the spectral windows. Since it is easy to keep these below, say, 
10~5 or 10~6, and since we're probably content with spectral dynamic range limits of 104 or so, this 
quantization evidently is not a problem. Many of the typical data windows (Hanning, for example) 
have far higher rates of sidelobe decay than we would require, at considerable expense in spectral 
resolution (see page A - l of the Appendix). For example, the window shown in Figure 3 has a first 
sidelobe level that approximately matches that of the Hanning window, but its main lobe is a bit 
narrower. 

Often, in other applications, it doesn't matter very much if the resolution is decreased a bit 
due to tapering, because one can then just use longer FFT's, but fewer of them, to recover the lost 
resolution. In the case of the FX processor, however, the FFT size is restricted (tentatively, at least) 
to 2048 points. 

Crude-precis ion F F T of a quantized window. I hadn't intended in this memo to investi-
gate the implications of crude-precision arithmetic in the FFT modules of the FX processor, since 
that's a matter distinct from windowing considerations. However, a plot that I showed off at meet-
ings of the VLBA correlator group generated a bit of interest at those meetings, so I'm including it 
here in Figure 5. Figure 5 compares a high-precision FFT (essentially an exact Fourier transform) 
of a quantized data window with a crude-precision (5 bit mantissa) FFT of the same window. The 
crude-precision FFT was computed using a subroutine from John Benson's simulation program on 
the Convex. What is of interest is the "ringing" artifacts evident in the lower right hand panel of 
the Figure. 

*To generate the plots shown in Figure 3 and in the Appendix, I used 2048-point discrete data windows and 16384-
point FFT's. This yielded points spaced at an increment of g y . Factor-of-2 zero-padding is customary because it leads 
to no information loss. The matter of zero-padding—which we have first seen discussed by O'Sullivan (NFR.A Note 
No. 375) and then in VLBA Correlator Memoranda Nos. 66 and 67, where it is dubbed "O'Sullivan zero-padding"—too 
is discussed in detail in a 1967 paper, [9], by Bingham et al. 
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F i g u r e 3 . A typical window. The unquantized data window and the quantized version thereof are shown at top left 
and top right, respectively, and the corresponding spectral windows are shown underneath. Near sidelobes are shown 
in the middle pair of plots, and far sidelobes at the bottom. 
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F i g u r e 4. A uniform data window and the corresponding sine2 spectral window. 
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Overlap. Nuttall [2-4] and Thompson [1] present a number of useful results pertaining to the 
amount of overlap that is required in order to most efficiently estimate Gxy(f). I want in this section 
to summarize some of their results. Further information is available in the published literature, [1] 
and [5]. Appendix B contains abstracts of the three technical reports, [2—4]; as these reports are 
not readily available, I can provide copies on request. 

Let W denote the Fourier transform of the data window w, which we'll assume to be real-valued 
and even. The mean of the cross-spectral estimate Gxy ( / ) is given by the convolution of Gxy with 
the spectral window |W(/) | 2 , 

s {dxy(f)} ~ r Gxy(fi)\w(f - / I)I 2 dfi. 
J — oo 

Then assuming that the width B, say the half-power width, of \W\2 is narrower than the finest detail 
in the cross-spectrum ( £ is of order 1/L) and that w has been normalized so that f ^ |W(/ ) | 2 df = 1, 

€ {Gxy(/)} ~ Gxy(f) f°° \W(n)\2 dp = G x y { f ) . 
J — OO 

For the random variable g ( f ) = Gxy(f) - S |Gry(/)j- ~ Gxy(f) - Gxy(f), one has 

€{\g(f)\2} * Gxx(f)Gyy(f) + ^ L l , (1) 

and 

f { r ( / ) } = g%U) + 1 ) * • » ( « ) ) • (2) 

Here Lw = w*w denotes the equivalent lag-domain window, the autocorrelation of the data window 
(which is also the self-convolution of the window, since w is even). Nuttall's derivation of (1) and (2) 
requires three assumptions: that x(<) and y(t) are jointly Gaussian; that the frequency / of interest 
is not too close to 0, i.e., that it exceeds the resolution bandwidth B; and that width B is narrower 
than the sharpest detail in each of Gxy, Gxx, and Gyy. 

Using the above results one can characterize the stability of g ( f ) in terms of an equivalent 
number of degrees of freedom, given by twice the squared magnitude of the expectation, divided by 
the variance, 

EDF = _2EjZlL_ . 

The number of equivalent degrees of freedom can be written as EDF = |7*y(/) |2£, where 

l x y { f ) = , GxyU) and JC = j?—r——— . 

The variance of the amplitude of the cross-spectral estimate is given (approximately) by 

v{\dxy(f)\} ~ GxxU)Gyy{f)l + b 2 U ) ? ' 

and the variance of the phase estimate by 

K depends on the number K of data segments, the time offset 6 between s e g m e n t s , and the auto-
correlation Lw of the data window. Since the variances depend inversely on K,, the idea now is to 
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maximize K, while avoiding excess computational effort. One might ask: "For fixed K and a given 
choice of data window, what is the maximum attainable number EDFm a x of equivalent degrees of 
freedom?", "For fixed K and a given choice of data window, what amount of overlap would suffice 
to realize, say, 99% or 95% of EDFmax?", "Ditto, in the limit K oo?", or "For a given choice of 
data window and a fixed amount of overlap, say, 50%, what fraction of EDFm a x is attained?". 

Nuttall presents numerous tables which bear on these and related questions. I'll summarize 
some of his results: 

(1) He shows that, except for small time-bandwidth products BT—where, as above, B 
refers to the resolution half-power bandwidth and T to the total duration of the data— 
the same EDF is attainable with the "FX" approach, via appropriate overlap, as with 
the "XF". 

(2) All typical data windows have essentially the same variance reduction capability when 
compared under the same frequency resolution constraints. An approximate rule-of-
thumb is EDFm a x ~ 3 (BT - 1). 

(3) For typical data windows and BT > 4, the fractional overlap that is required in order 
to attain a specified fraction of EDFm a x is essentially constant (as a function of BT). 

(4) For large BT the number K of data segments required to realize EDFm a x is significantly 
greater than the number required to realize, say, 95% or 99% of EDFmax- Typically, 
K « X.lhBT segments are required to attain 99% of EDFm a x . 

(5) A perhaps counter-intuitive result: For finite BT, as the amount of overlap approaches 
100%, EDF reaches a maximum and then decreases slightly. This effect is not evident 
in Figure 6 below, because the plots shown there correspond to the limiting case 
BT oo. 

(6) Nuttall's eaxly report [2], the source of his tabular data, does not present data for 
spectral windows of much practical interest, apart from the Hanning window. For 
that case he shows that the required fractional overlap for 99% of EDFmax is 61%, 
that 92% of EDFm a x is attainable with 50% overlap, and that ~ 100% of EDFm a x is 
attainable with 62.5% overlap. Since we would require, in our application, much less 
extreme tapering than Hanning, I would guess that ~ 95% or more of EDFmax would 
be attainable with 50% overlap. 0.95EDFmax corresponds to a signal-to-noise loss of 
2.6%. 

D. J. Thompson in [1] presents another way of measuring the effectiveness of overlap and 
windowing, and his paper includes a particularly useful set of plots, which I will duplicate here. 
From above, the variance (as a function of the amount of overlap) of a spectral estimate based on 
K subsets of data is proportional to 

If enough data now are added to enable one to calculate K + 1 subsets, a measure of the relative 
gain in information is given by 

As K —*• oo, A Ik approaches 

A 7 o o ( 6 ) = i f-rTrj . 
6 i + 2 

Plots of A/oo, corresponding to a few typical data windows, are shown in Figure 6. The point 
is that one should be far enough to the left on the relevant curve to realize most of potentially 
available relative information gain per new data subset (or segment). As Thompson states it, 
"When the subsets are spaced very closely relative to their length, no information is 'missed' by 
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falling between adjacent subsets, but on the other hand the subsets are highly correlated with each 
other so that the addition of a subset does not decrease the variance very much." For a highly 
concentrated window like the 4tc prolate spheroidal wave function, about 70% overlap is desirable, 
according to this criterion. For the second curve down, one would want about 50-60% overlap, and 
for the third, about 50% would suffice. I have not gone to the effort of generating plots of A 
for other data windows than Thompson's, but one can get a good general impression of where the 
curves corresponding to other data windows might lie by mentally interpolating between curves, 
after reference to the bottom portion of Figure 6. For example, the Hanning window is a less 
highly concentrated data window than the 4ir prolate window, but it is more highly concentrated 
than the "ir compound" window, so one might guess that a bit more than 60% overlap would be 
desirable—this is in accord with Nuttall's tabular data. 
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Fig. 8—Asymptotic relative information gain as a function of subset base offset. 

Fig. 1—Comparison of data windows. 

F i g u r e 6 . In the upper plot are graphs of A Zoo corresponding to the data windows shown in the lower plot. Adapted 
from [1, Paper I, Figs. 1 and 8]. 
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NUSC Report No. 4169 
13 October 1971 

Spectral Estimation by 
Means of Overlapped Fast 

Fourier Transform 
Processing of Windowed 

Data 
Albert H. Nuttall 

ABSTRACT 
An investigation of power-density autospectrum estimation 
by means of overlapped Fast Fourier Transform (FFT) 
processing of windowed data is conducted for four candidate 
spectral windows with good side-lobe behavior. A compari-
son of the four spectral windows is made on the basis of 
equal half-power resolution bandwidths. The criteria for 
comparison are: (1) statistical stability of the spectral 
estimates, (2) leakage (side Tobes) of the spectral windows, 
(3) number of FFTs (number of overlapped pieces) required, 
and (4) size of each FFT required. The dependence of these 
criteria on the amount of overlap is investigated quantitatively. 

Some striking invariances are discovered. Specifically, it 
is shown that the ultimate variance-reduction capabilities 
of the four windows, as measured by the equivalent number of 
degrees of freedom (EDF), are virtually identical under the 
constraint of equal half-power bandwidths. Furthermore, when 
the proper overlap is used for each window, the stability of 
this method of spectral estimation is identical to that of the 
"indirect" correlation approach. Also, the number of FFTs 
required to realize 99 percent (or less) of the maximum EDF 
is virtually independent of the particular window employed. 
The required fractional overlap of the four data windows for 
99 percent (or less) of the maximum EDF is virtually independ-
ent of the product of the available time and the resolution 
bandwidth, although it does depend on the particular window. 
Tables of required overlap are presented. The only tradeoff 
among the four windows is that those wi th better side lobes 
require larger-size FFTs. All of these results are derived 
for a Gaussian random process, under the assumption that the 
resolution bandwidth of the spectral window is smaller than 
the finest detail in the true spectrum. 

Rules of thumb for the maximum EDF and the number of FFTs 
required to realize 99 percent of the maximum EDF are given. 
The possibility of weighting individual spectral estimates 
unequally in order to optimize the EDF is investigated; the 
gain is found to be negligible for cases of practical interest. 

Approved for public release; distribution unlimited. 



NUSC Technical Report 4169-S 
11 July 1975 

Estimation of Cross-
Spectra Via Overlapped 

Fast Fourier Transform 
Processing 

Albert H. Nuttall 

ABSTRACT 

The optimum overlap to be used for estimation of 

cross-spectra via FFT processing of windowed data 

is shown to be identical to that for estimation 

of auto-spectra. In addition, a useful geometric 

interpretation of the random errors in cross-

spectral estimation, and their covariances, is 

furnished. 

Approved for public release; distribution unlimited. 
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Technical Memorandum 771112 
10 June 1977 

On the Variance of 
The Phase Estimate of 

The Cross Spectrum 
And Coherence 

A. H. Nuttall 
ABSTRACT 
The variance of the phase estimate of the cross spectrum and 

coherence is numerically evaluated for values of the true magnitude-

squared coherence, S, equal to 0(.1) .9 and .99, and for the number of 

independent averages, n, equal to 1(1)500. It is found that the approx-

imation (1-S)/(SK), where K = 2n for independent averages, is a good 

one for all S and for K > 10, although the approximation is generally 

optimistic. A useful recursion formula for the probability density 

function of the phase estimate is also derived. The danger of employ-

ing a Gaussian approximation is demonstrated dramatically in a 

numerical example. An extension of the equivalent degrees of 

freedom to complex averages is made and suggested for use in cross-

spectral estimation. 

Approved for public release; distribution unlimited. 



NUSC Report 5529 
3 December 1976 

Probability Distribution of 
Spectral Estimates Obtained Via 

Overlapped FFT Processing of 
Windowed Data 

Albert H. Nuttall 

ABSTRACT 

The characteristic function of spectral estimates 
obtained via overlapped FFT processing of windowed 
data is presented for a random process containing a 
signal tone and Gaussian noise. For the special case 
of noise-alone, the probability distribution of the 
estimate is plotted and compared with an approxima-
tion utilizing only the first two moments and found 
to be in excellent agreement in probability over 
the range (.0001, .9999) for several data windows, 
overlaps, and time-bandwidth products. This result 
means that knowledge of the equivalent degrees of 
freedom of the spectral estimate is adequate for a 
complete probabilistic description, even when the 
overlap results in significant statistical depend-
ence of the component FFT outputs. 

Approved for public release; distribution unlimited. 




