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Station-based fringe rotation using a multi-level approximation to the trigonometric 
functions is an attractive secondary advantage of the FX or spectral correlator algorithm. 
The problems precluding such an operation in a conventional lag correlator axe mentioned 
briefly in VLB A Correlator Memo 60, and some will become evident later in this document. 

Intuitively it is obvious enough that, with sufficiently many levels and sufficiently 
precise specification of the transition points, an arbitrarily good approximation can be 
achieved. This memorandum is aimed at quantifying how good is good enough, and 
considering some specific approximation functions for practical use. 

After a brief initial derivation which serves primarily to introduce the notation used, 
I describe the optimization criterion chosen and the procedure adopted, consider some im-
portant secondary effects, and discuss the characteristics of the optimized approximations. 

DERIVATION 
Let G{t, a) be a periodic, variable-width boxcar function, of period T: 

•Mi otherwise. 
For purposes of this discussion, the width parameter a is restricted to the range [0,1]. The 
complex Fourier series for G(t, a) is 

G(t ,«) = 5 > . ( « * ) e i 2 " " / T ; (2) 
V n 

ffn(a) = U T G{t, a ) e - ^ d t = ^ J ^ . (3) 1 J o Trn 
Construct a variable-duty-cycle, complex Hermitian square wave, from suitably time-

translated combinations of G(t, a): 
H(t, a) = G(t, a) + iG(t - £T, a) - G(t - |T , a) - iG(t - f T, a), (4) 

with Fourier coefficients 
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*„(«) = [l + i e - W - a""™ - i e - ' f H ,„<«) = ( ^ ^ " = 1 + 4 f c 

L J L 0, otherwise. (5) 



Then specify the multi-level rotator function — and its Fourier coefficients — as a 
sum of L such square waves: 

L L 
R ( t ) = r « = J2hn(«*)• ( 6) 

t-i 1=1 
The individual widths on now form the transition points between adjacent levels, and axe 
indexed in decreasing sequence, 

<*i > <*2 > ... > aL; <*l+i = 0. (7) 
This simplifies slightly the expression for the power in the waveform R(t), 

P2 = i [ T \R(t)\2 dt = e r 7 dt = 2 -1)«<. (8) 
1 J° 1 1=1 ^=1 

And normalizing the r n by P j finally 

pn = — = (9) 

where now the restriction of non-zero pn to n = 1 + 4k (VA;) is left implicit. Note that 

L = 1, a i = | P l = l ^ / l sin ^ = 0 . 9 6 0 , (10) 
recovering the well-known result for the conventional 3-level rotator. 

OPTIMIZATION & QUANTIZATION 
Only the fundamental note of R(t) — weighted by r± — accomplishes the desired 

frequency shift. Other harmonics present in R(t) shift the input spectrum to frequencies 
where (at best!) it does not correlate and is lost. (Worse cases axe discussed later.) Thus 
I define the optimal set of a t as that which maximizes the fraction of power in the funda-
mental, i.e., | p i | 2 . I used the IMSL routine ZXMIN, an iterative quasi-Newton multivariate 
extremization procedure, to solve for these optimal on. The easily evaluated least-square 
fit, cos f at = (£ — served as a convenient starting guess. 

The values at resulting from this optimization axe, unfortunately, too good to be true. 
In a practical fringe rotator not only the number of levels, but also the precision with which 
the rotator phase is specified, are limited. Thus the optimal a t must be quantized onto one 
of M equi-spaced points spanning [0,1]. At the time this calculation was programmed, we 
had no canned procedure available which incorporated such constraints directly (although 
evidently the newly-acquired NAG library includes some such). Accordingly, I adopted 
t h e following ad hoc approach. 
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After optimization, each individual parameter a t was shifted temporarily to the near-
est quantization point, and the value of \pi\2 re-evaluated for each case. The parameter 
whose quantization caused the least reduction in \pi\2 was then fixed at the quantized 
value, and removed from the variational problem. The entire optimization/quantization 
sequence was then repeated, with one fewer free parameter, until all the a t were quantized. 
These then determined the final |/?i| 2 reported for the configuration defined by L and M. 

For most efficient utilization of the bits available to specify these parameters, Nph bits 
imply M = 2 i V P h ~ 2 phase bins per quadrant in the procedure described above — since the 
range a E [0,1] covers only one quadrant of phase. And NT{ bits determine L = 2 i V r f _ 1 — 1 
positive levels of the rotator function; there are, of course, an equal number of symmetric 
negative levels, and (unless a \ = 1) a zero level, implicitly included in the calculation. 
(There seems to be no particular advantage in using levels which straddle zero but 
require an extra bit to specify.) 

Results of the optimization procedure just described are summarized in Figure 1, for 
various cases of JV ph and Nrf. For clarity of presentation, the ordinate shows 1 — |/0i| 2, the 
fraction of power lost in unwanted harmonics, on a logarithmic scale. This, in fact, is the 
quantity actually minimized by ZXMIN — but more importantly, is the appropriate scaling 
for station-based fringe rotation where anv loss occurs at both ends of each baseline. Thus 

O * 
the points for the 3-level rotator, iVTf = 2, are all at ~ 7.7%. These functions are unsatis-
factory for station-based fringe rotation for this among other reasons (another is discussed 
later), but are shown for comparison. The general trend in Figure 1 is as expected: the ap-
proximation improves with more levels, or finer quantization of the transition points, but 
extremes of either refinement soon reach diminishing returns. The ideal balance appears 
to be in the range iVph — iVrf = 2 ± 1, implying M/L « 1, 2, or 4. 

FIGURE 1. Optimized / Quantized Multi-Level Fringe Rotator 
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Figure 2 presents rotator functions for four representative cases with iVph — Nrf = 2, 
those indicated in Figure 1 by filled circles. Each plot in the figure shows the real part 
of R(t) over the first quadrant of phase, along with the cosine function which it should 
approximate. (The rest of R(t) is constructed symmetrically via equations (1) and (4)). 
Both the optimal multi-level function (shown dashed) and the final quantized version 
(solid) are plotted. Ticks on the abscissa mark the quantization points. 

Spectra of the same four cases appear in Figure 3, where |/>n| (not its square) is plotted 
against |n|. Both axes are logarithmic, with the origin in the upper left corner, where the 
point plotted for pi (almost) overlaps the axes. Each tick on the ordinate represents one 
decade of magnitude, and each abscissa tick an octave of harmonic order. Since the density 
of harmonics increases exponentially along the abscissa, the following scheme is used to 
accommodate a broad range: in the first four octaves the individual points are shown 
by -I- symbols; harmonics in the second four octaves are grouped to obtain four points 
per octave, with the range of values being shown by the vertical line and the average by 
the location of the horizontal tick; this grouping is continued thereafter, but the group 
size does not grow beyond 16 and intervening harmonics are skipped. These plots will be 
discussed further at the end of the next section. 

WATCH THE BIRDIE 
If the loss of sensitivity due to harmonics of the fringe rotator frequency were the 

only consideration, Figure 1 would suggest that even the 7-level rotator function shown 
in Figure 2 would suffice, reducing the loss to ~ 0.35%. Unfortunately, harmonics can 
inflict worse damage than just loss of sensitivity. Coincidence of harmonics of different 
notes contributes "richness" in music, but in this application is better called "spurious 
correlation". The worst case occurs when both rotators operate at the same frequency 
(i.e., when the baseline natural fringe rate is zero). Then all harmonics coincide just as 
the fundamentals do, and each pair produces shifted spectra which also correlate (up to 
the limit where the shift exceeds the bandwidth). The contribution of spurious correlation 
in this case is ju^t the value 1 — |pi | 2 plotted in Figure 1. Three-level functions would have 
a 7.7% excess correlation, which is another reason they are unsuitable as station-based 
fringe rotators. 

A systematic — and baseline-dependent — effect is significantly worse than a fixed-
ratio sensitivity loss, even at the ~ 0.35% level, especially so since it may be present in 
some baselines for extended periods. (The station rotator frequency changes rapidly at 
almost all times, but two station frequencies may track for a long time.) Walker suggests 
in VLB A Memo 283 that such non-closing errors should be "well under 1 percent", and 
discusses some general considerations in VLBA Memo 388 which imply that a 45-baseline 
array should keep such errors to less than 10~ 4 . The 31-level rotator function shown in 
Figure 2 comes close to meeting this requirement. 

The occurrence of this spurious correlation is entirely predictable, of course,, and 
corrections could be applied to remove the effect. But the equal-frequency case f\ — f i is 
just the worst of many such frequency pairs (—3/i = 5/2, 3/ i = 7/2, . . . ) , which produce 
weaker but more numerous distortions. And we will not be helped much by the well-known 
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1/n rolloff in harmonic strength from a square wave. Inspection of the spectra in Figure 3 
shows an interesting effect of the optimization performed in defining the rotator functions. 
To raise the power in the fundamental, pi, the procedure has systematically reduced the 
amplitude of the low harmonics, which otherwise make the greatest contribution to the 
non-fundamental power. More levels and finer quantization of the transition points both 
contribute to extending this flattened part of the spectrum to higher frequencies before 
the 1/n slope takes over. The result of all this is that there are a large number of low 
harmonics, all with roughly equal amplitude, which can be expected to produce spurious 
correlations too numerous to calculate and correct. Thus we will have to reduce any such 
effect to a harmless level, and fortunately the progressive flattening of the spectrum with 
increasing complexity of the rotator function should be sufficient to do this. 

RECOMMENDATIONS 
Referring again to Figure 1, an 8-bit phase word driving a 6-bit rotator function 

appears to offer adequate protection from spurious correlation effects. The phase word 
is easily accommodated in the current planning for fringe rotators in the FX correlator, 
although the 6-bit function output may be difficult in some implementations. A 5-bit 
function might be acceptable if necessary. Both reduce the station-based rotator sensitivity 
loss to insignificant levels. 

The transition points for the 6- and 5-bit rotator functions are tabulated below for 
reference. An 8-bit phase word is assumed in both cases. The table specifies only the 
real part in the first quadrant, in units of 64 t h s of a quadrant; the two leading bits and 
symmetry relations required to construct the entire function are elementary, of course, but 
are given formally by equations (1) and (4). 

iVph Nn at 

8 6 63 62 61 59 58 57 55 54 53 51 50 49 47 46 44 
41 40 38 36 35 33 31 29 27 25 23 20 17 13 8 

8 5 63 60 57 55 52 49 46 43 40 37 33 29 25 20 13 
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