
VLBA Correlator Memo

Software Architecture for the VLBA Correlator

D. Wells, J. Benson, C. Broad well, J. Horstkotte, J. Romney
National Radio Astronomy Observatory, Charlottesville, Virginia

September 29, 1989

Abstract
The architecture for the tasks, shared data structures and job

scheduling in the VLBA correlator is described. Relations in a com-
mercial database management system describe all aspects of the obser-
vations and data. Job scripts using a table syntax are generated from
the relations. The data struCiui *' '.i *ne real-time system are loaded
from the scripts. Real-time tasks control job processing, tape drive
actions, hardware configuration, model tracking, and archiving. The
archive is written in a near-distribution format, FITS except for block-
ing and error-recovery features; automatically scheduled jobs extract
users' data for conversion to distribution media.

Contents

1 In t roduc t ion 4

2 Architectural Strategies 5
2.1 Database Management System 5
2.2 Tuples-Scripts-Structs 6
2.3 Quantum of Work 8
2.4 Job Scheduling 9
2.5 Automated Processing 10
2.6 Clocks 10
2.7 Archive 12
2.8 Distribution : 15
2.9 Screens 16
2.10 Bar Codes 16
2.11 Concurrency 16
2.12 Error Messages 17

1

2 CONTENTS

3 CCC — Correlator Control Computer 19
3.1 Batch Processes on CCC 19

3.1.1 Log Entry Task 21
3.1.2 Job Generator Task 23

3.2 Interactive Processes on CCC 25

4 T h e Real-Time Complex 27
4.1 The Hardware/Software Configuration 27

4.1.1 About VxWorks 29
4.1.2 Performance Guess-timates 30

4.2 Real-Time Tables and Structures 30
4.2.1 The Queue Table and the Job Base Tables 32
4.2.2 The Description Tables 32
4.2.3 The Data Tables 34
4.2.4 The Active Tables 34

4.3 Real-Time Tasks 34
4.3.1 Job Control Task 37
4.3.2 Scheduler Task 38
4.3.3 Tape Tasks 39
4.3.4 Crossbar Task 40
4.3.5 Station Tasks 42
4.3.6 Job Task 42
4.3.7 Array Tasks 42
4.3.8 Model Task 43
4.3.9 CALC Task 45
4.3.10 Archive Tasks 49

4.3.11 Clock Tasks 50

A Glossary 52

B model_script . tx Example Job Script 55

C QUEUE.TABLE.H Job Queue Header File 62

D TABLES.H Job Tables Header File 63

E TABLES-DESC. H Script Keywords Header File 70

F J0B.DESC.H Job-St ruc ture Header File 77

LIST OF FIGURES 3

G ACTIVE.H Active Base Table Header File 79

H MODEL.H Model Table Header File 80

I Hardware Control Bus Interface 82
1.1 Overview 82
1.2 Mode Definitions 83
1.3 Slave Targets in a Rack 84
1.4 Sub-Targets at Each Slave 84

1.4.1 Playback Interface (PBI) 86
1.4.2 FFT Control Card 87
1.4.3 Mult Control Card (system control card?) 88
1.4.4 Long Term Accumulator (LTA) 88

1.5 HCB Slave Interface Hardware Description 88

J Unresolved Issues & TBDs 90

K Technology Used to P repa re This Document 91

List of Figures
1 Jobs and the Time Variation of Array Membership 23
2 Real-Time Hardware Configuration 28
3 Table Hierarchy in the Real-Time Environment 33
4 Principal Real-Time Tasks 36
5 Crossbar Connections from PBDs to FFT Station Inputs . . 41
6 Fitting Splines to CALC Results 47
7 Hardware Control Bus for One Rack 85
8 Hardware Control Bus Slave Interface 89

List of Tables
1 Items to be Provided by the Array Control System 20
2 Real Time Tasks vs. Real Time Tables 31

4 1 INTRODUCTION

1 Introduction

The software design for the VLBA correlator is presented in this document
in three major sections. Several appendices include further detailed infor-
mation, including various script formats and table definitions.

First, in a comprehensive overview, the architectural strategies are elab-
orated in Section 2. A commercial database management system (DBMS)
and a job generator with associated "batch" tasks comprise the "correlator
control" system which runs in a general-purpose computing environment.
In the real-time system, actual correlator operation is supported by the job
control and scheduler tasks and by their many subordinated tasks, either
dedicated to particular hardware elements or associated with transient jobs.
SQL queries embedded in the job generator code access the DBMS. The job
control task receives a human-readable script from the job generator, and
constructs globally shareable tables accessible to the real-time tasks.

Sections 3 and 4 discuss the most important tasks in the correlator-
control and real-time systems. The level of detail in the descriptions re-
flects the current state of completion of these tasks. The job loader and
model/CALC tasks have been coded and are near final form. The hardware
control bus (described in Appendix I) is already being used in prototype
form with test fixtures for the correlator's printed-circuit boards; the low-
level functions used in this work will evolve into the real-time drivers for
the bus. The remaining tasks are in various stages of planning and im-
plementation; important aspects of each are described in enough detail to
present a functional description of the individual tasks and of the software
architecture design as a whole.

Each individual section is intended to be relatively self-contained, and
redundant expository material has been included where necessary to achieve
this goal, with liberal cross references pointing to additional detail on ma-
jor concepts. The authors have found it necessary to adopt rather precise
language to manage the conceptual diversity and complexity embodied in
this document, and it has not been feasible to cross-reference this terminol-
ogy. Accordingly, a glossary is provided in Appendix A, which the reader is
advised to consult when encountering unfamiliar vocabulary or usage.

5

2 Architectural Strategies
The objective of this chapter is to provide background and justification for
the principles and goals that guide the detailed design of the correlator
software. In some places this strategy discussion becomes more detailed
than would normally be appropriate because the corresponding portions of
the detailed design have not yet been done.

2.1 Database M a n a g e m e n t S y s t e m

VLBA Memo 4691 made the case for a commercial relational database man-
agement system (DBMS) for the VLBA; Memos 4852, 5683 and 5694 have
added weight and detail to the arguments. The DBMS is the foundation of
the software architecture of the correlator, the unifying concept that per-
vades and determines almost everything else.

The DBMS will support the full "relational" calculus (see Memo 469),
the ANSI-standard SQL (Structured Query Language) user interface, with
an "embedded" SQL extension language for application programs coded in
C.

The VLBA Computer Coordination Group (Memo 497s) discussed the
desirability of choosing the VLBA DBMS technology such that it had the
possibility of being selected as an Observatory-wide solution. Recently
client-server architectures in DBMS packages have shown signs of becoming
standardized. A key component of these architectures is the use of SQL as
the client-server interface; the user interface software (the client layer) need
not be made by the same manufacturer as the DBMS server software. The
client layer can even be on separate machines under different OSs, e.g. DOS
or VMS. The vendor-supplied automated mechanisms of a typical DBMS
can move information from one server to another almost transparently. Be-
cause of the long-term potential for Observatory-wide DBMS functions the
correlator utilizes a DBMS which has this "distributed" capability.

1VLBA Memo 469, "The VLBA Database", Jonathan D. Romney, 23 July 1985.
2 VLBA Memo 485, "Selection Criteria for the VLBA Database", Jonathan D. Romney,

9 September 1985.
3VLBA Memo 568, "Relational Databases and VLBA Operations, or, Is the VLBA

ready for MIS?", Martin Ewing, 7 August 1986.
4VLBA Memo 569, "Relational Databases and VLBA Operations, Revisited", Martin

Ewing, 15 August 1986.
5VLBA Memo 497, "Review of 24 Sept. 1985 Meeting", Craig Walker, 25 September

1985.

6 2 ARCHITECTURAL STRATEGIES

The query tools provided by the DBMS vendor will assist in constructing
applications for entering, editing and displaying information in the DBMS.
The application-building tools, often called "4GLs" (Fourth-Generation-
Languages), appear to be likely to facilitate development of such applica-
tions.

The DBMS holds tables of information. The SQL language manipulates
these tables using what is essentially a notation of sets and set operators.
This notation is terse and powerful; most algorithms coded in this notation
take much less text, and therefore much less effort to code and debug, than
if they were written in C (a "third-generation-language") to access the same
information stored as ordinary data files on the disks. It is difficult at this
time to estimate the cost advantage of SQL over C (in programmer-time);
it may be as much as an order-of-magnitude. Not only will the gains be
realized during construction, but they will also accrue over time as decreased
maintenance costs.

Logging information flowing back from the real-time system to the DBMS
will be encoded as SQL UPDATE and INSERT transactions. These can be pro-
cessed by a batch task as "dynamic" embedded-SQL operations. This means
not only that the logging information is a plain ASCII text file, but also that
the batch data-entry/transaction task will not have to contain code, in the
form of SQL commands coded as spr in t f statements, for the endless variety
of transactions which we may wish to invoke. This approach is so attractive
that it may also be advantageous for the VLBA array control system to
output its logs as SQL transactions.

The DBMS need not have particularly high performance; typical trans-
action rates in the correlator system are likely to be measured in units of
transactions-per-minute rather than in transactions-per-second. The dy-
namic SQL transactions discussed in the previous paragraph will need to be
compiled and optimized at execution time, but at the low transaction rates
expected this will probably not create an unusual loading on the DBMS
server.

2.2 Tuples-Scripts-Structs

"Show me your flowcharts and conceal your tables, and I shall
continue to be mystified. Show me your tables, and I won't
usually need your flowcharts; they'll be obvious."6

6F. P. Brooks, Jr., "The Mythical Man-Month (Essays on Software Engineering)",
1975, p." 102, in a section titled "Representation is the Essence of Programming".

2.2 Tuples-Scripts-Structs 7

The relations in the Database Management System will contain complete
descriptions of all aspects of all observations made by the VLBA (and other
stations jointly observing with the VLBA), and the sequences of commands
and parameters for the processing of the data for these observations will
be generated from these relations. It is desirable that correlator processes
receive their marching orders by means of a human-readable script, rather
than by making real-time queries of the DBMS server, which will be running
in the general-purpose environment. It is also desirable that logging output
from the real-time (RT) system pass back to the DBMS on the GP system
in the form of a script.

We are considering the interface between two large subsystems of the
correlator (RT part versus GP part) which will be built by somewhat dif-
ferent people on somewhat different schedules, using somewhat different
technology. The main reason for wanting plain-ASCII scripts for this in-
terface (command input and logging output) is that during development of
the RT system test scripts can be built and used even if the GP system is
not ready to generate scripts, and logging output properties can be verified
before the GP system is ready to accept logging. The GP system will gain
the analogous advantages during its (decoupled) development.

The script input interface will not be used in production for people to
generate or edit jobs for the correlator. Instead, hand-editing will occur in
the DBMS, by changing values in the attribute fields using the front-end
tools that all DBMSs have. The automatic, job generator will then produce
a new job script which will pass to the correlator automatically. •

The script will be a succession of keyword-equals-value pairs, and will
use the syntactic conventions of the array control script mechanism for data
values. The notation will be a concise representation of the contents of the
relevant relations in the DBMS, with the separate relations delimited, and
the tuples within those relations also delimited. The relations and keywords
needed, and the precise notation of the script language, are discussed in
Section 4.2 and a sample script is shown in Appendix B.

The attributes (columns) of the relation (table) have names. Keyword-
equals-value pairs in the script will be generated mechanically (i.e., translit-
erated) from the names and values of the attributes, probably one pair per
line. Each new tuple will be signaled by a tt!row!" command. When the
generator processes a new tuple it will only emit those pairs for which the
value has changed since the last tuple. Note that because a relational DBMS
has system directory (metadata) relations that contain the description of the
attributes of all other relations, and because these descriptive relations can

8 2 ARCHITECTURAL STRATEGIES

also be queried in the standard manner, the generator can be a generalized
utility, knowing nothing about the applications.

The script and the DBMS relations are completely equivalent notations.
Another equivalent notation is the FITS tables extension formats (the IAU-
standard ASCII version or Cotton's "3-D" binary table design). The script
format will be used for the GP/RT interface, while Cotton's (FITS) table
format will be used to store these tables, as well as other tables, in the
archive.

When the script files are processed by the RT system it will generally
be true that the keyword-equals-value pairs of the script will be stored into
instances of C data structures in our application code, with one instance
per tuple. Thus, discussing the schema for the correlator DBMS is nearly
equivalent to discussing the C-structures of our RT application.

Mechanical translation of tuples into script code does not imply that the
two parts of the project must have identical naming conventions. They don't,
because of the availability of the "view" mechanism of relational DBMSs.
A view is a virtual relation, and the attribute names of the relation may
be different from those of the underlying relations from which the virtual
relation is synthesized. This view mechanism also means that the array
control group and correlator group are not obliged to agree completely on
the normalization and naming conventions of their relations, which may be
in different servers. Of course minimization of the entropy of our name-
spaces and architectural concepts is desirable, and so we should attempt
to coordinate our subsystems, but it is also true that, as Frost said, "good
fences [interfaces] make good neighbors".

Every aspect of what the correlator does will be driven by what the
scripts contain, and the scripts will be driven by what the DBMS contains.
Therefore the DBMS schema must ultimately be a representation of every-
thing that the correlator, the array, the operational staff and the end-users
are doing in the observational process. It is in this sense that "the DBMS
is the foundation of the software architecture of the correlator, the unifying
concept that pervades and determines almost everything else".

2.3 Quantum of Work

A fundamental principle of the design of the correlator software is that the
overall system should be as "robust" as possible. Not only should the sys-
tem initiate processing jobs automatically, without any human intervention,
but it should also recover gracefully from a wide variety of events which will

2.4 Job Scheduling 9

occasionally interrupt normal processing. In particular, it should automat-
ically re-initiate processing with as little redundant work as is possible. In
addition, the system should positively verify the integrity of archival data
before raw data tapes are released for re-use.

These desiderata lead to the notion of identifying a "quantum of work".
The output quantum of the correlator will be a physical block, about one-
half megabyte in size, containing data for a single project. As each block is
written a logging message will be generated to record the time of the last
visibility in the block. This logging message will eventually cause the time
to be written into a field in the DBMS tuple associated with the array of the
project. The amount of work represented by the block (the amount which
can be lost in a crash or other interruption) will depend on the number of
baselines, spectral resolution and integration time.

If the power fails, or the operator peremptorily halts processing, or any
other cause halts processing, the last logging message will eventually arrive
back at the DBMS and will update its field. The RT system will generate
another logging message for any job which was in progress at the interruption
in order to mark the overall job as aborted (this message can be generated
after a boot by checking a local "jobs-in-progress" disk file which will survive
the crash). In any case, a time-out rule will apply: any job for which no
logging messages are received to mark it as either complete or aborted will
be considered to be aborted, and will be regenerated. The new script for
an aborted job will specify processing only for the time range not already
processed.

2.4 Job Scheduling

Two principles of scheduling jobs in the correlator are

• observations should be processed as soon as possible after their tapes
become available and

• the computing resources of the correlator should be utilized as fully as
possible.

The real-time job loader task will produce a queue of job structures
which are to be processed. The first principle implies that this queue should
be time-ordered, and that the oldest job should be processed first. The
second principle implies that successive jobs should normally be processed
in time order, .as long as they represent contiguous blocks of observe time,

10 2 ARCHITECTURAL STRATEGIES

because this minimizes tape changing overhead, except that jobs must be
run in parallel whenever doing so will not imply excessive tape changing.
These two desiderata (in time order versus in parallel) are contradictory, and
finding the optimum balance between them is what makes the scheduling
problem of the correlator "interesting".

A job will consist of observations made for one or more projects during
some range of time. Each such project consists of one or more arrays. Each
array is a set of stations observing the same object, for a single project,
with compatible observing parameters, over some range of time; individual
stations may join or leave randomly. The duration of a job will be suffi-
cient to minimize tape change overhead, but short enough to allow the job
scheduling algorithms in the RT system to have some flexibility.

2.5 Automated Processing

A fundamental assumption behind the architectural plan is that the normal
mode will be automated processing of observational data. "Automated" in
this context includes correlation of observations exceeding the correlator's
station or channel capacity by making multiple passes, which will be sub-
mitted automatically to the RT system as separate jobs. In general, input
tapes will be recycled as soon as the archived results have been verified (by
automatic processes). In order to permit special cases to be handled a flag
will be provided to inhibit the recycling of data tapes, so that new parame-
ters can be entered into the DBMS manually to cause new jobs to be queued
for re-processing the data tapes.

2.6 Clocks

The fundamental principle is that clock offsets needed for any regular pro-
cessing job must be known to an acceptable tolerance before that job may
be submitted to the queue of the real-time system. The intent is to avoid
wasted processing time due to improper delay models caused by improper
clock estimates.

If at all possible the correlator system will avoid requiring operator inter-
vention to determine proper clock offsets. The clock predictor batch job will
apply a predictive filter, probably with constraints, to available clock mea-
surements, producing estimates of future offsets and derivatives, and their
errors. From these results the job submission batch process can determine
whether the clock model has acceptable uncertainty for each observation.

2.6 Clocks 11

This fitting process will run at regular intervals.
The clock measurements will come from several sources:

• GPS and/or Loran measurements at some stations

• Real-time fringe checks for VLBA stations

• Calibrator observations from regular processing

• Calibrator observations from special clock jobs

The predictive filter batch job will utilize any and all of these data types
which may be available, with appropriate weighting factors. The job will
insert computed clocks tabulated at regular intervals into the database for
use by the job submission batch job.

What will happen if a station clock "glitches"? The real-time fringe
check observations, and GPS or Loran measurements, will produce offset
estimates sufficient to recognize that a glitch has occurred. These estimates
will be available several days before the associated tapes arrive at the AOC
for regular processing. The clock predictor program will recognize that a
probable glitch has occurred. It will insert predicted clock values with large
error estimates in the database beyond the point of the glitch; this will
inhibit job submission beyond the last good clock measurement. The fitting
program will also (automatically) submit a special clock job for that station
as soon as the required tapes have arrived at the AOC. The special job
will involve the station in question plus one or more other stations with
well-known clocks. The jobs will be relatively cheap to process because only
the calibration observations on the tapes from those stations will need to be
analyzed, and the PBDs will slew with average latencies of about 4 minutes.7

Results from the clock analysis jobs (either special or regular processing)
will come back to the database from the real-time system and will be ana-
lyzed in the next execution of the clock predictor batch job. Note that the
choice of offset to be used during the interval between two calibrator obser-
vations which bracket a glitch may require operator intervention. Indeed,
although it is highly desirable that clock analysis proceed in a "hands-off"
fashion, human intervention may be necessary to make decisions and resolve
ambiguities in a variety of cases.

The clock strategy assumes that the clocks at the VLBA stations will
be generally well-behaved on a time scale of about 24 hours. Calibration

7The tape length and the slew speed of the PBDs will result in end-to-end time of
about 12 minutes.

12 2 ARCHITECTURAL STRATEGIES

observations which are being correlated during regular processing will be
analyzed to determine clocks for all VLBA stations. These offsets will be
entered into the database and used to extrapolate into the future in order to
submit subsequent jobs. Normally only non-VLBA stations with no recent
clock history in the database will need the special clock analysis jobs.

2.7 Archive

The archive will be in a near-distribution format, essentially a multi-source
uv-FITS format. The only differences from the distribution format will be
large block sizes, interleaving of blocks from various observations, and a
redundant-block scheme for error correction. This means that the distri-
bution writer task will have an easy job — the heavy lifting will be done
by the archive task (with the aid of special hardware associated with the
Long-Term-Accumulator). The purpose of these policies is to assure that the
archive format is independent of the software and hardware of the correlator
real-time system in order to assure portability.

The archive data will be completely self-documenting: all values in the
DBMS which might ever be needed in the processing or interpretation of the
data will be recorded in the FITS data structures. The intent of this policy
is to assure that the completeness of the archive format does not depend on
the continued existence of the DBMS, and also to assure portability.

All blocks in the archive will be the same length, with the length chosen
to achieve high packing efficiency on whatever medium is selected; probably
the length will be 576 kB/block (200 FITS logical records of 2880 bytes).
A redundant block scheme will be employed to protect against checksum
errors in the blocks: for every N (say 10) data blocks written an extra
block will be written with the exclusive-OR of the N — 1 preceding blocks.
This will be a defense against unrecoverable read errors in a physical block;
it is expected to be a rare occurrence because archive devices defend the
individual physical blocks with elaborate, robust error-correcting codes.

Each data block in the archive will be a complete, self-contained FITS
file. Sufficient information will be present to reconstruct the catalog of obser-
vations from the archive media alone if necessary. Blocks will be numbered
consecutively on each volume. The VSN (ANSI volume serial number) and
block numbers will be tabulated in the DBMS for each processed observation
for use by the distribution task.

The job generator will submit an archive verification job to the RT sys-
tem for each archive volume which is recorded. Such a job cannot execute

2.7 Archive 13

until its volume has been filled. It will read every bit on the volume, rig-
orously verifying the integrity of the data and its conformance to FITS
syntactic rules as much as possible. Each block which has been verified will
result in an update transaction in the DBMS to mark the block as "done
and verified". Bad archival recordings will be checked to decide whether a
re-run should be submitted, or the operator alerted to an unusual condi-
tion. The release of the input data tapes will be inhibited until verification
is complete.

The desire that the archive should be completely self-contained leads
to the notion that the DBMS relations which represent catalogs of archival
data should also be written into archive volumes. FITS tables extensions
are completely satisfactory for this purpose of course. The issue of whether
old observation catalogs should be retained on the disks of the DBMS server
forever or rather stored in the archive itself (with batch jobs to fetch tables
back to the DBMS) will be considered later in the project.

Another strategic issue is whether the VLBA archive should contain the
maps (post-processing results) in addition to the visibilities produced by the
correlator itself. It appears that by the mid-90's bandwidths available over
the LAN in the AOC, and often even over wide-area networks, will make
it practical to offer an archiving service for post-processing results. The
design of the archive-writer, DBMS schema and distribution service will not
preclude implementation of such a service.

Most discussions of archives these days presume that some sort of robotic
mechanism (a "jukebox") will be used to manipulate archive volumes. The
VLBA correlator archive plan is based on the assumption that an operator
will be available to mount any archive volume within minutes of the posting
of a request at any time, 7 days a week, 24 hours per day. This "human-
jukebox" assumption is the only means by which an archive of nearly unlim-
ited capacity can be constructed and operated within the current budget.

It is not possible to predict at this time what devices will be best for the
archive medium. It is not even possible to predict whether the device should
be optical or magnetic. Preliminary cost estimates indicate that magnetic
media are cheaper if rapid random access is not required (it probably isn't
in this application). Probably one of the magnetic cartridge media (4, 6,
8 or 12 mm width) will prove to be best. It is fascinating that a direct
lineal descendent of Mark II VLBI techniques, the Digidata VHS cassette
technology, appears to be the cheapest archival medium at the present time.
We will defer the procurement of the archive hardware as long as possible
in order to take maximum advantage of hardware evolution.

14 2 ARCHITECTURAL STRATEGIES

Output recording capability of 0.5 MB/s is specified for the VLB A cor-
relator in order to support processing of worst cases requiring high spectral
resolution covering wide fields of view, notably observations of water masers
in Orion A. Therefore, it is desirable that the archive writing devices have
sustained data rates for long blocks of at least 0.5 MB/s. Some of the devices
available at present cannot sustain this rate (e.g., the new Sony DAT drive
appears to be limited to 183 kB/s); "striping" could be used if we choose
one of these devices for some compelling reason. An alternative strategy is
to utilize one or more disk drives as buffer devices, stopping the input tapes
periodically to allow the disks to be dumped to the archive. This scheme can
probably utilize a part of the code which will support clock analysis, which
will analyze files saved on disk in parallel with normal archive-writing.

Various media will have different projected lifetimes. The medium with
the longest lifetime is not necessarily the best choice; the cost of the medium
and the costs of periodic re-recording must be factored into the analysis. His-
tory has taught us that media have sometimes outlived the effective lifetime
of the read-write hardware that they depend on, and this observation casts
grave doubt on the relevance of all lifetime estimates of more than about
15 years. This observation implies that re-recording logic should be imple-
mented in any archive which proposes to maintain its bits longer than about
a decade. The correlator archive system will include a batch task which will
periodically randomly select archive volumes for read-back verification and
will log "soft" errors (note that the internal error correction of the medium
plus the exclusive-OR blocks are expected to protect against "hard" errors,
actual data loss, and that even if they fail the loss of some data will not cause
loss of a whole observation). Statistical analysis of the soft read-back errors
as a function of time will be used to set the time-constant for submission of
jobs to copy volumes to new media. This copy mechanism can also be used
to gradually migrate the data to new media as technology evolves over the
decades. Storage space for archive media should be available for projected
production over about 20 years (the increasing density of recording media
and the technological lifetime of about 10 years will lead to steady-state
size in about this range). The steady-state costs of copying volumes will
probably raise the annual media budget of the correlator by 5-15% (for life-
times ranging from 6-20 years). This whole strategy, which is simply prudent
policy for an eternal archive, is critically dependent on the assumption that
the Observatory management will continue to fund the personnel, media and
technology upgrade cost of the evolving archive forever.

2.8 Distribution 15

2.8 Distribution

The distribution writer will accept batch jobs to extract desired data from
the archive volumes for distribution, either via LAN/WAN or on physical
media (tapes, cassettes, etc.). Such jobs will be submitted in response to
requests submitted by users over various networks interfaced to the correla-
tor. Probably by the mid-90's at the AOC itself the requests will come from
an AIPS task executing in one of the post-processing computers and the
results will be passed to the task over the AOC LAN. Observers who lack
network access or who want physical media will be able to request the tape
output in their original observing requests and batch jobs will be generated
automatically. Facilities will be available, similar to those at the VLA, to
select subsets of a project's data at the cost of additional processing.

Visibilities from more than one array may be interspersed in an archive
volume; each block will be a separate FITS "file", able to stand alone,
apart from other blocks. The distribution writer will generally need to
concatenate related blocks and suppress redundant header and extension-
file information in order to obtain files of convenient size. The optimum
distribution file size has not yet been determined, and may be allowed to
be a user-specified option; sizes of 10 MB or more are plausible. Note that
AIPS is able to accept and effectively concatenate multiple files of visibilities.
The job generator will be able to generate a script which will specify which
blocks (from tuples in the DBMS) should be concatenated into files, and it
can also compute the total number of visibilities (from tuples in the DBMS)
and supply it in the script so that the distribution task can generate a proper
FITS header before concatenating the blocks.

The multi-source tiv-FITS files produced by the distribution task will
be in conformance with the FITS standards, will be compatible with AIPS
task UVLOD, and will be similar in style to those produced by the AIPS task
FITTP.

The job generator in CCC which will submit jobs to the RT system to
produce distribution media from files must enforce NRAO's data-ownership
policy until the files enter the public domain (18 months).

At the present time it is not possible to predict which physical distribu-
tion media will prove to be most popular as a function of time. Probably
we will have to support 6250 bpi nine-track tape as a distribution medium,
even though it is already technically obsolete and will be embarrassingly so
by the mid-90's. Several types of magnetic and optical cartridge drives will
be supported and the mix of devices will evolve over time with the technol-

16 2 ARCHITECTURAL STRATEGIES

ogy. The distribution mechanism must be capable of supporting an evolving
ensemble of multiple media devices.

2.9 Screens

It is desirable that the operator interface of the correlator be very similar
to that of the array operator interface in order to facilitate control of both
systems by the same set of operators. This will be accomplished by utilizing
the "screens" interface package which was developed for the array control
system. The screens package assumes VT-100 terminals; one or more such
terminals will be attached to the the RT complex for status display and
operator input.

2.10 Bar Codes

Each reel of recording tape will have a bar-code sticker bearing a unique
identifying serial number. Bar-code scanners will be located in the mail-
room of the AOC, at each PBD of the correlator and at each recording
tape drive at each VLBA station. When a reel of tape is mounted on any
tape drive the associated bar code wand will be used to scan the bar code
sticker on the reel. When a tape is shipped from or received at the AOC
the code will be scanned again. It may even be useful to have wands at the
"mailroom" of each VLBA station to scan tapes in and out of the stations.
The intent is that the VLBA DBMS will show the status (erased-at-AOC,
erased-in-transit-to-station, recorded-at-station, recorded-in-transit-to-AOC,
recorded-at-AOC, etc.) of every reel of tape owned by the VLBA, at all times.
DBMS queries on this status information are sure to be a regular operational
activity. Queries on "recorded-at-AOC" are a condition for the submission
of jobs to the correlator, and a tape cannot transition to "erased-at-AOC"
status until processed results in the archive have been verified.

Checking bar codes at PBDs is redundant: the station/recorder codes
and times recorded in the tape frame headers are sufficient to identify the reel
of recording tape. But the bar codes are a valuable end-to-end consistency
check.

2.11 Concurrency

It is likely that the correlator will evolve during its lifetime. Some new
astronomical problem may be presented that will produce higher computa-
tional loadings in the real-time system. New media with higher data rates

2.12 Error Messages 17

are likely to appear, and be attached to the correlator. These thoughts
imply the strategic principle that not only should the correlator real-time
architecture avoid CPU dependence (so that we can use faster CPUs in fu-
ture) but it should also demonstrate concurrent RT CPUs (so we can add
more CPUs at will). Another strategic principle that is implied is that the
architecture should also demonstrate concurrent RT operations across more
than one VME crate (so that we can avoid bandwidth limitations due to
contention on the VME backplane by adding more crates at will).

VxWorks (see Section 4.1.1) has already been ported to several different
architectures. A notable example is the "SPARC" RISC (Reduced Instruc-
tion Set Computer) architecture; another example is the Motorola 88000
RISC CPU, a port recently said to be in progress. This continuing effort to
port to the latest fast CPUs assures that we could gain speed by CPU swap
in the future.

The ability of the VxWorks RT OS to support concurrent RT tasks is
a key component of this strategy. It gives us the freedom to allocate RT
tasks across multiple CPUs and even to invoke multiple instances of tasks
in multiple CPUs to increase aggregate performance. The latter concept
implies that the number-crunching power of a classical array processor can
probably be effectively duplicated by adding more VME-module CPUs and
invoking concurrent processes in them to use their aggregate FP coprocessor
power. Such concurrent number-crunching could be used to implement the
option for a time-domain filter at the output of the LTA.

The availability of VME bus repeaters means that CPUs in multiple
VME crates can access each other's memories while minimizing impact on
the independent, concurrent backplane bandwidths available in the separate
crates.

2.12 Error Messages

"...I still don't know what the paradigm should be for debugging
a distributed and concurrent program... I mean, when you've got
an application running across a number of machines, how should
you think about it? When errors messages come from deep in
the bowels of the system, asynchronously, how are you going to
know what they mean?"8

The question asked in the quote above will be relevant in the correlator

"Bill Joy, in ah interview in Unix Review, April 1988, p.67.

18 2 ARCHITECTURAL STRATEGIES

when we axe running concurrent processes in several CPUs and crates. Er-
ror messages will stream to a common error log. With several CPUs and
numerous processes executing at various priorities how will we untangle the
sequencing of (correlated) error messages? We will establish a 1 kHz clock
which will be synchronous across the RT complex. This can be done by
establishing a high priority interrupt at that frequency in one CPU and a
counter variable. The variable will be visible to other CPUs, and tasks in
all CPUs will use the variable to time-tag error messages.

Numerous messages are likely to arise in the correlator with so many
tasks interacting with so much hardware in such a sophisticated way. These
messages will need to be displayed on a terminal attached to the real-time
complex itself, and will also need to be passed to CCC to be appended to
an error-message relation in the DBMS. The messages will have a format
with various fields — time stamp (to 1 ms), originating "job" (if relevant),
originating task and source-line-number, an error level code, and the message
text (perhaps containing other parameters). The time stamp and error level
will be used to sort messages in the real-time display (highest levels to the
top, most recent cases at top of group of messages of same level, similar
to the one at the operator console of the VLA). The stamp and level will
also be used to delete older messages from the DBMS error log when some
numerical combination of age and level exceeds a specified threshold.

It may make sense to combine multiple error messages from the same
subroutine/source-line/job combination into messages like "19 messages of
the preceding type were detected during last 4 minutes".

Periodic summary reports derived from the error logs will be prepared
by a CCC batch process and E-mailed to appropriate operations personnel.

19

3 CCC — Correlator Control Computer
CCC9, a Sun-3/280S with a 25 MHz Motorola 68020 CPU plus a 68881 FP
coprocessor, is the server for the "CX.NRA0.EDU" Yellow Pages and Inter-
net domains. Its MIPS rating is about 3.5 (about 3.5 x a VAX-11/780).
Currently it has 16 MB of RAM and one 892 MB SMD-style disk drive;
probably it will have a second drive by the time it reaches the AOC. It has
a high-resolution monitor (1600 x 1280), keyboard and mouse. It also has
two terminal ports and a SCSI (Small Computer Systems Interface) QIC-24
cartridge tape drive. A unique peripheral is the IPC (Integrated Personal
Computer), a PC-AT on a VME card pltls a dual-floppy drive which supports
DOS-in-a-window on any workstation in the CX complex (certain engineer-
ing and project management tools used heavily in the correlator project are
DOS applications). CCC has two Ethernet controllers; it supports a private
thin Ethernet for the correlator laboratory and gates it to NRAO's Edge-
mont Road building LAN. The real-time complex is attached to this private
Ethernet. CCC is a file server—it acts as an NFS (Network File System)
server to enable client workstations and real-time CPUs to mount its disk
partitions. The IPC plus several PCs used by the correlator project utilize
the PC-NFS client software to enable them to also mount and share access
to CCC's disk partitions.

CCC will be the server for the DBMS, "Ingres" from Relational Tech-
nology. The DBMS server on CCC will support multiple client interfaces
on the workstations of the CX complex, and will also be able to interconnect
with other DBMS servers and their clients (i.e., it will be a "distributed"
DBMS).

3.1 B a t c h Processes on C C C

CCC will utilize the Unix job-scheduling commands ("cron", "at") to cause
the periodic execution of a large number of Unix processes which will ac-
count for the majority of the CPU time on CCC. Throughout the strategy
discussions in Sections 2.x there are references to these batch processes.

Several processes will be concerned with the transfer of various pieces of
data from the the array control computer (ACC10) to CCC for entry into the
DBMS. A list of various types of records to be transferred is given in Table 1.
Although the table applies specifically only to VLBA observations, similar

9named ccc.cx.nrao.edu.
J 0 a Sun-3/260,-named vlbacc.aoc.nrao.edu.

20 3 CCC — CORRELATOR CONTROL COMPUTER

• For the VLBA as a whole:

1. List of all scheduled stations whose data will be correlated.
2. List of valid project codes and attributes.

• For each station to be correlated:

1. Log of observing events, including null observations
and all observational parameters.

2. Log of tape events (bar-codes).
3. Amplitude- and phase-calibration measurements.
4. Bad data flags.
5. Weather records.
6. Clock offsets from GPS & fringe checks (required daily).

Table 1: Items to be Provided by the Array Control System

3.1 Batch Processes on CCC 21

information will be required for joint observations by "global" arrays, and for
any external arrays which may be correlated. These data transfer processes
may have to involve some format conversions. It would be better for the
data to arrive as SQL INSERT statements than as a flat text table; even
better, at least within the VLBA, would be to fetch it using the distributed
DBMS mechanisms from relations in a server in ACC.

A major duty for CCC is the preparation of job scripts for the real time
system. The important log-entry and job-generation processes are described
in some detail in Sections 3.1.1 and 3.1.2 below.

Another major duty is the analysis of clock offset data and prediction
of future offsets; this was discussed earlier in Section 2.6. Batch processes
must enter real-time fringe check results from the array control system,
must execute a predictive filter batch process, and must enter clock analysis
results arriving from the RT complex.

Section 2.12 on error-message strategy described how a combination of
the age and priority of error messages in the DBMS on CCC will be used
to delete older, lower priority messages. It also suggested a batch process
to collapse voluminous error logs to a smaller size by combining redundant
messages.

Another earlier section (2.3) described how the archive task will generate
a logging message which will record the time of each output block that is
written. A batch process on CCC will check periodically check for jobs
which aborted or which failed some portion of their verification job; these
jobs must be resubmitted. Finally, yet another batch process will detect
when all observations from a given input tape have been processed, and will
then release that tape to be erased and shipped to another station.

Batch jobs will generate E-mail messages to users to inform them of
completion of the processing of their data, and of its location in the archive.

3.1.1 Log Entry Task

The station control systems will record the beginning and end of each obser-
vation, and these log records will arrive at the correlator through the VLBA
communications system, passing through ACC on their way to CCC (see
Table 1). The Log Entry task will insert the records into the appropriate
relations in the DBMS. At this point each station which is participating in
a given observation will be represented by its own record in the observation
relation. Various data-range and consistency checks will be performed on
the input data.

22 3 CCC — CORRELATOR CONTROL COMPUTER

The algorithms which will automatically recognize and schedule the pro-
cessing of observations depend on three assumptions being satisfied:

1. a complete chronology of station schedules will be available,

2. the observation records from each station will give a complete chronol-
ogy of the state of that station for all times, including periods when it
is slewing or idle or is down for some reason, and

3. a complete list of valid project codes will be available.

The first item enables us to know whether our data are complete, i.e.,
whether we have observation chronology data from all stations which need
to be correlated during some range of time. The third item allows a consis-
tency check of the project codes which will be included in the observation
chronology. Use of stop as well as start times in the chronology will enable
us to know that the chronology is complete, and is also a consistency check.
These consistency checks are a desirable redundancy.

Whenever a station is not recording supposedly valid signal on a pro-
gram source its control computer should record a log record indicating that
it observed the "null source" from the ending time of the last valid program
source observation until the beginning time of the next source observation.
When the computer crashes it must generate such a null-source observation
record when it comes up again (which implies that it must note what it is
doing plus the current time in a non-volatile place at regular intervals, say
once a minute), in order to assure the continuous coverage of the chronol-
ogy. Multiple contiguous null-source observation records are acceptable, of
course.

The preceding discussion applies in particular to VLBA stations, but
similar arrangements will have to be negotiated with non-VLB A stations
involved in joint observations.

Observation logging records will arrive in arbitrary order from the vari-
ous stations, and it is always possible that they may be lost or temporarily
delayed in transmission, or be duplicated. The Log Entry task will look
for "holes" in the time coverage of the logs (due to missing or corrupted
records). A separate test will detect duplicate logging records (which may
easily arise in the transfers between various computers), and will suppress
the redundant copies. Either case is an indication of failures of logging
and/or communications algorithms and will inhibit job submission until it
is. corrected.

3.1 Batch Processes on CCC 23

nation*
1
1 ——»»
2 •

4 —
5 »
6 »

a. no changes

two jobs

time

Figure 1: Jobs and the Time Variation of Array Membership

The Log Entry task will also enter other logging information arriving
from the VLBA array control system. In particular, the tape chronology
will be entered, with various data integrity and consistency checks being
applied.

3.1.2 Job Generator Task

If we draw station timelines and construct a polygonal outline around an
array, the outline will have "jagged" ends as stations progressively join (or
leave) the array due to local horizons, "different slew times, and, possibly,
arbitrary user scheduling (see Figure 1). Arbitrary patterns of change of
stations from project to project and array to array are allowed. Case "c"
in Figure 1 shows the worst case: stations leaving one array for another at
random, and then returning later.

Assume that we have determined that a contiguous observation chronol-
ogy is available for all stations that observed for a certain range of time.
A list of project codes will be SELECTed (with SQL) from the chronology.
For each project a list of unique combinations of source and observing par
rameters will be selected.11 For each combination an array will be declared,

11A significant technical difficulty is the "Mark III Hybrid Mode", in which the VLBA
plus other stations will operate as an inhomogeneous array, with not all bandpasses in
common. This will complicate the recognition of related observations; precise procedures
have not yet been worked out. The authors speculate that the problem of recognizing
common bandpasses will prove to be analogous to the problem of automatically recognizing
arrays, and that a similar algorithm may be feasible. Two other technical difficulties
are Doppler tracking, with different frequencies at different stations of the same array,

24 3 CCC — CORRELATOR CONTROL COMPUTER

and a unique code number assigned, in an array relation in the DBMS, and
in the observation chronology tuples. For each array a list of stations that
observed will be selected, and will be tabulated in a relation. The time du-
ration of each array will be from the earliest time to the latest time in the
observation chronology for all stations determined to be in the array.

The Job Generator task selects arrays for which jobs have not been
submitted and for which all of the tapes needed for the time ranges are
available. A job consists of one or more arrays, belonging to one or more
observing projects, observing for a range of time. A sequence of SQL SELECT
commands will extract the set of tables which describe such a job.

For each array, a list of other arrays which include common stations
in the time range will be selected. If this list is empty (i.e., case "a" in
Figure 1), a unique job code number will be assigned; otherwise, the job
code number of the first array of the list will be assigned. At the end of the
process a count of the job code numbers will indicate whether arrays fall into
two disjoint sets (analogous to case "a"); such cases can be submitted as two
distinct jobs in order to increase the flexibility of scheduling the processing
in the correlator.

If the duration of a job is greater than some specified limit (perhaps six
hours), it must be split into two jobs. Arrays in the second half of the time
range will be given a new unique job code.

The automatic array recognition algorithms discussed in previous para-
graphs produce tables (relations) of jobs and arrays, and of stations which
are in those arrays. The station chronologies are also tables. A job is these
tables. Each job will be converted to the script syntax which the Job Loader
Task in the real-time system expects. The conversion can be done by an
application-independent utility which can work from nothing more than the
names of the relations to be translated, using the attribute names and for-
mats specified in the DBMS schema. If a relation contains columns which
should not be written to the script a "view" (virtual relation) will be defined
which does not contain these columns.

The script files will be written into an agreed directory on CCC with
some agreed name rule, and the RT Job Loader Task will access them via
an NFS mount of the CCC directory. The job queue in memory will be
generated from these disk files. As long as a job has not been initiated in
the RT system its disk file can remain in the CCC directory so that it can be

and pointing offsets at different stations; presumably the array recognition algorithm can
invoke the source name plus some tolerances to resolve these ambiguities.

3.2 Interactive Processes on CCC 25

reloaded after a crash. But once a job has begun to execute its associated
disk file must be removed. A logging message will be sent to mark the job
in the DBMS as being in progress. This message will be time-tagged in
the DBMS; a job file will be re-generated by CCC if the time-tag is not
overridden by a job-completion within about 24 hours.

Note that the correlator must be able to process observations whose ar-
rays contain more stations than the number of correlator station inputs, not
only during the construction phase when the number of station inputs will
be increasing, but also to permit processing of arrays combining the VLBA
with numerous other stations. Thus the Job Generator must automatically
generate multiple jobs in order to make multiple passes on the input tapes
so as to get visibilities for all — or only the most valuable — baselines.
Multiple jobs will also be necessary for cases where more channels or more
phase centers are needed than the correlator supports.

3.2 Interactive Processes on C C C

Although most CPU time on CCC will be consumed by batch processes
executing embedded SQL statements on the DBMS server, there will be a
variety of interactive facilities available to operators and users.

Operators will have windows in which warning messages will be posted
("data tape in transit more than 6 days", "observation inconsistent with
array assignments", "archive volume read-back failure", "low blank tape
stockpile at Brewster", etc.). They will also need to execute various queries
to check status of jobs, tapes, etc., as reflected in the DBMS contents.
The latter will generally be "canned" queries; it is probable that they will
be invoked by menu items in a "screen". To speed complex queries batch
jobs can periodically perform such queries and cache the results. Common
operations which modify the database can also be coded into applications
using the screen interface. Alternatively, it may be better to use the forms
interface tools of the DBMS to produce such applications. Because the
correlator is being designed to be totally automated very little thought has
gone into this whole class of interactive operations so far; they will be devised
as needed during the course of the project (obviously they will be most
needed during the development phase of the project to generate test cases
and work around bugs).

In principle the users should have no need to communicate with the
correlator because the correlator will produce data for them on the basis of
their original observing requests, which will include processing parameters.

26 3 CCC — CORRELATOR CONTROL COMPUTER

However, network access will be feasible, and it is plausible to suppose that
observers and array management might be able to perform some of the
following functions:

• Enter proposals using a proposal-entry application (perhaps similar to
the "MIPS" facility which supports ROSAT?).

• Enter proposal reviews.

• Enter detailed observation information.

• Enter station scheduling.

• Enter valid project codes.

• Modify processing parameters before the Job Generator process runs.

• Query the status of processing of jobs.

• Request production of distribution media.

• Search archive catalogs for observations of interest.

Because the DBMS will contain a complete description of all VLBA obser-
vations, it will be effectively equivalent to the array scheduling assignment
plus the detailed observing commands which are given to the array control
system by the observer. In which direction should the information flow —
from the DBMS to the array, or from the array to the DBMS? And what
tools will be provided to aid observers in generating the detailed observ-
ing commands? Should such tools interface to the DBMS? These questions
cannot be answered satisfactorily until the project has more experience with
the DBMS and the schema design is at least partially available.

27

4 The Real-Time Complex
4.1 T h e Hardware /Sof tware Configuration

The real-time complex consists of two M6U"-height VME crates (Figure 2).
One crate contains two Motorola MVME147 CPUs. Each of these is two
VME slots wide and contains a 25 MHz 68030 CPU and a 68882 FP co-
processor, 8 MB of RAM, SCSI channel controller, Ether controller, two
serial ports and miscellaneous other devices. These CPUs have about 5-
5.5 MIPS of speed. Each CPU will have a SCSI disk drive, probably with
about 300 MB each; the on-board SCSI controller does not impact VME
backplane bandwidth.

A special CPU will be present in the crate with the two 147 CPUs and
will be the channel controller for communication with the correlator racks.
This device is discussed in Appendix I (Hardware Control Bus Interface)
and appears in Figure 2.

Two DMA channel controllers will also be present in the crate, and
will interface to the LTA (Section 4.3.10) and to the archive devices (see
Figure 2). They will read into and write from the memory of the second 147
CPU. That CPU's own SCSI controller can transfer portions of its RAM
to and from its SCSI disk drive simultaneously. Multiple autonomous I/O
channel controllers operating concurrently are needed in order to support
multiple data flows each up to 0.5 MB/sec between the various devices, while
the CPUs are performing various computations.

An MVME331 serial-line controller plus MVME705A transition module
will support an MCB (Monitor & Control Bus) connection to the 24 PBDs;
this will be used by the 24 tape tasks. Each PBI will have an RS-232 serial
connection to its associated PBD which will be used for the tape-speed servo
loop. Presumably commands arriving simultaneously on the two inputs of
the tape controllers will be processed sequentially.

The second VME crate will contain a Motorola MVME130 CPU, which
uses a 68020 chip with about 2 MIPS integer speed and a 68881 FP copro-
cessor. Several dual SCSI channel controllers will enable numerous archive
and distribution devices to operate simultaneously. Because the archive is
in nearly the distribution format, and has large block sizes, the MVME130
CPU will not have to do much actual work and may be lightly loaded even
with several concurrent DMA operations in progress.

Orq £ >i a
to
S3

3 m
W
p *> CL
S P

O o ts
n

RT1.BLK

FUNCTIONS:
CAL PROC
ARCHIVE WRITER
SYSTEM CTRL

ARCHIVE
DEVICE

ARCHIVE
DEVICE

VME RT CHASSIS

HDWR 32 BIT
CTRL DMA MVME331
BUS SERIAL
INTF LTA
(HCB) INTF

S E C 1 s H I F
68030
68882
8MB
25MHz

MVME147

MCB
(MULTI-DROP)

VME CHASSIS

32 BIT VME BUS

S E
C T s H
I R
68030
68882
8MB
2SMHz

MVME147

J
ETHERNET TO CCC

ETHR
SYS1131 EXISTING
SYSTEM
WITH ETHERNET AND
DUAL SCSI ADDED

-OR S
MVME147 CARD
PLUS SCSI I

ARCHIVE
DEVICE

ARCHIVE
DEVICE

(SCSI SHOWN AS POSSIBLITY)

TAPE TRANSLATOR
PLAY BACK DRIVES

STze A
n m

Document Number RT1.BLK : June 2. 19HS5KeeF
TKEV

IsT

to
00

4X

I
ft ft >
t—'

ft
o 0
1
s

4.1 The Hardware/Software Configuration 29

4.1.1 About VxWorks

The correlator will use the VxWorks12 real-time "kernel" as its RT operating
system. VxWorks is not intended to be a complete OS; it is not intended to
support timesharing (only one login at a time) and is not intended to exe-
cute a compiler. It is notable for containing a rich networking environment,
permitting remote logins, file transfer, Berkeley socket calls, remote pro-
cedure calls and NFS-client mounts. It supports both Ethernet and VME
backplane as network media. The workstations of the CX complex comple-
ment VxWorks and the real-time CPUs to form a complete RT development
environment.

VxWorks claims to support up to about 250 real-time processes. The
proposed correlator software architecture depends critically on the assump-
tion that it will be practical to dynamically (at will) create and destroy up to
about 100 real-time tasks. This assumption simplifies much of the logic by
allowing, for example, each of 24 PBDs and each of 20 stations to have its
own task, each job in the queue (even jobs which are waiting for a previous
job to complete) to have its own task, plus tasks for delay-model calcula-
tions and observation control.13 Because we will have tasks spread across
several CPUs, the architecture assumes that invocation of remote processes
really does work in VxWorks. The two assumptions mentioned here have
not yet been verified experimentally by us (although we have no reason to
doubt the claims).

VxWorks does not support memory mapping. All real-time code and all
variables declared outside C-functions are shared across all tasks (i.e., there
is only one name space). This is both a blessing and a curse: one gets the
effect of shared libraries and shared COMMON blocks automatically, but
private global variables in a package of functions are risky, especially if the
functions can be invoked more than once. The latter is a real possibility
— any function can be spawned as a task (with arguments passed) and a
function can be invoked more than once (usually with different arguments,
such as the PBD and station tasks). The answer to this problem is to define
a structure containing the shared variables, define a single shared pointer
variable, allocate memory for an instance of the structure for each instance
of the task and set the pointer appropriately for each instance. The multiple
pointer values are kept distinct by declaring the pointer to a "task-variable"
for the tasks so that it will become a part of the context of the tasks.

12 VxWorks™ Software was developed by Wind River Systems, Inc., Emeryville, CA.
13at least 24 +-20 + (5 x 4) = 64 processes are expected.

30 4 THE REAL-TIME COMPLEX

Almost all RT code will be coded in C, initially in the K&R dialect
and eventually in ANSI C. Some imported modules (notably CALC, see
Section 4.3.9) will be in Fortran.

4.1.2 Performance Guess-timates

The CPUs and I/O channels of the correlator RT system are much faster
than the RT systems used previously at NRAO; they are also more compli-
cated. It is difficult to extrapolate their performance from prior experience.
We hope to make a variety of measurements in the months to come, but
must make do with estimates for now, estimates which may be uncertain by
a factor of two.

There will be two CPUs, executing at about 5 million instructions per
second. They can probably make a VxWorks context switch from one task
to another in about 50 fis. Typical basic I/O operations cost perhaps 200 in-
structions (40 fis) in a RT OS like VxWorks; therefore we expect that each
CPU can respond to an interrupt frequency up to about 10 kHz, doing some
useful work.

Latency on a remote procedure call from one CPU to the other over the
backplane will probably be less than 500 fis; it would be nice if it turns out
to be as small as 200 /xs.

Backplane bandwidths are difficult to predict. The theoretical limit of a
VME bus is 40 MB/sec, but it is rare to sustain more than about 10 MB/sec
in practice. This is probably enough for plausible enhancements of the
correlator, because the current estimate for the ultimate limit of LTA output
rate is about 2.8 MB/sec and we only need four times that rate even if we
buffer to and from a disk system on the way to the archive devices.

4.2 Real -Time Tables and Structures

The real-time software reads control data through shared data tables that are
globally accessible to all tasks in the system. The data tables are arranged
in a hierarchical order, and are connected by pointer variables in each table
that point to the next group of tables further down the hierarchical tree.
A master table is locatable via a global pointer variable that contains the
address of the first element of that table. By following a linked list of
pointers, any table in the system can be accessed quickly and simply. The
table system and the real-time tasks are cross referenced in Table 2.

The real-time data tables for a single correlator job axe constructed and

4.2 Real-Time Tables and Structures 31

Real time tables
Tasks 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
array r r r r r r r
clock r r rw
cross r r r
i n i t .active w c
init_model r r w r r r r cw
init_queue c
job rw r r r
j ob .control r r r
job-loader w cw cw cw cw cw cw cw cw cw cw cw cw
LTA r r r r r r r r r
model r r r r r r r r r r r r r r w
sched rw r r r
stat ion r r r r r
tape r r r r r

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Keys:

c create
r read
w write

Tables:
1 queue .table
2 job.table
3 act ive_base_t able
4 channels
5 correl
6 formatter
7 clocks
8 constants
9 jobJieader

Tables:
10 observations
11 sources
12 stations
13 tapes
14 UT1
15 polar
16 solar
17 constants
18 model

Note: There are some minor inconsistencies between the names of
tasks and tables given here and as used in the text; the names in
this table represent work-in-progress, actual code as built.

Table 2: Real Time Tasks vs. Real Time Tables

32 4 THE REAL-TIME COMPLEX

loaded by the Job Loader Task, which reads a correlator script file on a
VME disk, and directs the contents into the appropriate data tables. The
Job Loader Task essentially copies the script file into the real-time tables
with no modifications. It also loads addresses into pointer variables that
link the data tables for that particular correlator job.

4.2.1 The Queue Table and the Job Base Tables

The table at the highest level in the hierarchy is the Queue Table. A pointer
variable, ttqueue_base_ptr", contains the address of the first element in the
Queue Table, and it is the only globally common variable in the tables sys-
tem (in the VxWorks symbols table). The Queue Table contains a row for
each correlator job that is active (being correlated) or waiting its turn in the
job queue. The correlator operators will be able to observe and manipulate
the job order in the queue (table) through the screens package. The con-
tents of the Queue Table are defined in the include file QUEUE_TABLE. H (see
Appendix C). Three of the elements in each row are particularly important:
ujob_index", "job_ptr" and "active_ptr". The wjob_index" is an integer
number that uniquely identifies each job in the Queue Table. The job index
number provides a link from any task in the system to that job's entry in
the Queue Table.

The Queue Table pointers, w j ob.ptr" and "active_ptr", provide links
to the two base tables that in turn connect to all of the various data and
control tables associated with a particular job. The two base tables axe the
Job Table and the Active Base Table (see Figure 3). The Job Table points
to the data tables which contain essentially literal copies of the script file
tables. There is one row in the Job Table for each data table. The Job
Table structure is defined in TABLES.H (see Appendix D) and the Active
Base Table structure is defined in ACTIVE.H (see Appendix G).

4.2.2 The Description Tables

The Job Table row that corresponds to each data table also contains a
pointer to a description table. The description tables exactly describe the
individual data table formats. There is a separate description table for each
type of data table. The description tables are declared in TABLESJ)ESC. H
(Appendix E). A single set of description tables axe used by all jobs. The
description tables contain one row for each script file keyword: the keyword
string, its data type and position offset in its data table row. The description

4.2 Real-Time Tables and Structures 33

one row
per job

TABLES JI

job.table

queuetable QUEUEJTABLRH
each row:
job id number, job priority,
job_uble pointer,
«ctivc_b«e_ublc painter

DATA TABLES
(in TABLES.H)

channels

stations

obseivatioas

pointer links

one row per
' data table
each row:

table name,
table size,
table per

ACTIVEJI

. pointer ,
links

active_base_table

ACTIVE TABLES

modeljable: 0

. one row per
active table

each row:
table name,
table size,
table per

MODEL.H

modelublc: 1 MODEL.H

logs

Figure 3: Table Hierarchy in the Real-Time Environment

34 4 THE REAL-TIME COMPLEX

tables allow easy and safe modification of existing data table formats, and
the creation of new ones. The Job Loader Task does not refer to data
table names or keywords by name. Rather, script file keywords are matched
against strings in the description tables and values are stored via pointer
directions.

4.2.3 The Data Tables

There are currently over a dozen data tables associated with each correlator
job. They contain values loaded directly from a single script file. The data
tables are described in the include file TABLES.H in Appendix D along with
a sample script file (Appendix B). Each table is allowed a variable number
of rows depending on the number of rows in the corresponding script file
table. A row count is kept for each table in the Job Table. Two tables have
only one row: the Physical Constants Table and the Job Header Table.

There is a one to one mapping of the script file parameters into the
data table elements. In fact, the structure member names are the same as
the script file keywords. The row elements are zeroed or blanked when the
tables are created. While the script file contents are being transferred into
the tables, unspecified elements are given the value of the same element in
the previous row (for the first row the "previous row" is filled with nulls).

4.2.4 The Active Tables

The active tables are in a separate hierarchy because they are fundamentally
different from the data tables. They may be created and destroyed at any
time during the lifetime of their controlling job, their size is not fixed (nor
necessarily known in advance), and new rows may be added at arbitrary
times in the job processing. Some active tables will contain row pointers that
link the rows in the individual tables. For example, this will be necessary in
the Logs Table where its ultimate extent cannot be known at the beginning
of the job processing cycle.

4.3 Real -Time Tasks

When the correlator real-time system is booted it will initiate the main Job
Control Task which will run forever. The Job Control Task will then initiate
an instance of the Tape Task (Section 4.3.3) for each PBD, the Crossbar
Task (Section 4.3.4) which manages the crossbar switch, and an instance
of the Station Task (Section 4.3.5) for each station input of the correlator

4.3 Real-Time Tasks 35

(eight FFT engines per input). The Job Control Task then initializes the
basic structure of pointers for the job queue and spawns the Scheduler Task
whose duty is to load and arrange the queue into a schedule which the Job
Control Task will follow. The Job Loader Task reads scripts into the job
queue structures (see Section 4.2). The Scheduler Task then manipulates
these structures using the strategies which were discussed in Section 2.4.

The Job Control Task initiates the next job in the queue at the time
specified in the queue (the time is chosen by the Scheduler Task). Jobs are
initiated in advance of the time they will execute in order that they may
prepare delay model calculations (Sections 4.3.8 and 4.3.9) and acquire their
data tapes.

The Job Control Task initiates a job by spawning an instance of the Job
Task, which then initiates instances of other tasks to perform the work of the
job. The relationships of the various tasks to each other are shown schemat-
ically in Figure 4. The Job Task spawns the Model Task (Section 4.3.8)
which, in turn, spawns the CALC Task (Section 4.3.9). The Job Task also
spawns an instance of the Array Task (Section 4.3.7) for each array in the
job. The Array Task interacts with the Tape, Crossbar and Station Tasks
to acquire the data tapes for the job and connect them to the station inputs
of the correlator. The Job Task also spawns an instance of the Archive Task
(Section 4.3.10) for each project in the job. The Array Tasks interact with
the Archive Task for their project in order to control the averaging of visi-
bilities in the LTA, to maintain the index vectors for the LTA and to write
the project's visibilities to the archive.

More than one job may be in execution at one time, and each such job will
have its own instances of the Array, Model and Archive Tasks. Instances of
the Array and Archive Tasks contend with their other instances for access to
devices and resources. Such contention involves "critical regions" of control
which are interlocked with semaphores.

When the previous job ends and the necessary tapes are mounted and
positioned, each Array Task will request a crossbar reconfiguration for its
tapes and when all of these are completed the Station Tasks can order a
register bank switch in the correlator. The Array Task will also alert the
Archive Task associated with it so that the index vectors and integration
times can be set appropriately, and the archive output buffers initialized.
When all of these operations have completed successfully the correlator can
resume processing signals.

The general strategy of the tasks will be that each will strive toward one
of more goals, each will present various status signals for the other tasks to

36 4 THE REAL-TIME COMPLEX

RAM RAM Archive
•disk?

Archive

array archive clock

task task * task

tape-mount
requests
to operator

job scripts,

SELECTed Cram DBMS

an CCC.

V
clock
offsets
to DBMS
on CCC

= main data flow
— - = taskinitji/w-ctrl

= info-flow pointers

Figure 4: Principal Real-Time Tasks

4.3 Real-Time Tasks 37

monitor, and each will monitor those signals and progress toward the goals
as combinations of signals permit. The various tasks will execute at various
priority levels. They will awaken periodically to monitor their signals, and
generally they will also awaken each other whenever signals are changed.

A variety of registers in the correlator must be loaded by the Station
Tasks to set the processing parameters. Some registers and RAMs need only
be loaded at startup time and it may be appropriate for an initialization task
to do this job.

As processing proceeds new Array Tasks are spawned by the Job Tasks
and old Array Tasks terminate. When a job (a set of Array Tasks) completes,
its Job Task will terminate after some cleanup work. But, in general, the
Array Tasks associated with some other Job Task will then acquire the
correlator resources that are freed by the termination.

Thus, a variety of tasks will be created and destroyed continuously during
job processing. Only the Job Control, Scheduler, Crossbar, Station and Tape
Tasks will live forever.

Operators will interact with the Job Control Task to adjust the priorities
of jobs in the queue, terminate jobs which are in execution, query status of
jobs, etc. The Array Tasks (Section 4.3.7) will post messages to the operators
about tapes that they would like to have mounted.

Probably the Tape, Crossbar and Station tasks will operate in the first
MVME147 CPU in the first VME crate, the Archive and Clock Tasks will
operate in the second MVME147 CPU in the first crate, and the distribution
and verification tasks will execute in the MVME130 CPU in the second crate.
See Section 4.1 for hardware details.

4.3.1 Job Control Task

The Job Control Task spawns the Job Task to process a job, which is a
linked list of C-structures which the Job Loader Task has produced, in turn,
from a set of table descriptions produced by the Job Generator in CCC from
SQL SELECTS on the DBMS. The job queue contains a list of pointers to
the jobs (linked lists). For each job the queue structure also carries the time
at which the job should be initiated. The queue structure will always be
sorted in time order. The Job Control Task only needs to watch the clock
and start the first job in the queue at the proper time.

Special categories of jobs may be defined, and there may be commands
available to the operator to control whether these categories can initiate.
The principal example of this will be clock jobs (see section 4.3.11). Such

38 4 THE REAL-TIME COMPLEX

jobs may require operator intervention and the operational staff may want
to run them only when certain operators are on duty, or only at certain
hours of the day.

4.3.2 Scheduler Task

The Scheduler Task decides what starting time to assign for the jobs in
the queue, and it maintains the queue in time order. Access to the queue
structure by the Job Loader, Job Control and Scheduler Tasks will be inter-
locked by a semaphore. The Scheduler Task will execute at lower priority
and, in general, it will be making most of its decisions far in advance (tens
of minutes to hours) of the job starting times that it specifies.

If the correlator has enough resources (station inputs) to process multiple
arrays it will be the duty of the Scheduler Task to find work in the queue
to utilize the resources as fully as possible (see Section 2.4). That is, it
should command the initiation of two or more jobs. The constraints and
optimization criteria for this problem are complex, and poorly understood
at this time, if a perfect solution is desired. It does appear that searching for
optimum solutions will always involve examination of only a modest number
of sequences of jobs arranged in order of observe time, not the n! possible
permutations of the jobs, and that therefore a simple approximation to the
optimum solution will achieve a reasonably high efficiency.

Probably the first versions of the Scheduler Task will implement simple
brute force approaches to the scheduling problem, and the algorithms can
then gradually become more sophisticated. Because of the interest of this
problem we will sketch some preliminary ideas for several of the needed
algorithms here.

The Scheduler Task can first sort the queue of jobs into order of observa-
tion. Generally the oldest job should be scheduled for immediate initiation.
If the next job in the queue follows it immediately in original observing time,
with many tapes in common, it should be scheduled for initiation somewhat
before the predicted termination of the first job. "Somewhat before" means
long enough to carry out necessary initializations.

The hard problem is to decide what other job(s) should be initiated in
parallel with the first set of jobs that are handling the oldest unprocessed
observations. In general, we want to schedule parallel execution of a job
which has no tapes in common with currently executing jobs and their im-
mediate successors. This can occur either because of two unrelated time
sequences in the job queue or because a sequence extends over a time range

4.3 Real-Time Tasks 39

longer than about 1.5 tape durations.
A particularly important concept is the "width" of each job — the max-

imum number of correlator station inputs which the job will need. A job
can only be initiated (scheduled) if the width is less than the number of
uncommitted station inputs. For example, the Scheduler Task might choose
the "widest" job which can be initiated in parallel and which will not con-
flict with the tape needs of the previously scheduled jobs for at least 1.5
tape durations, and whose execution will not extend beyond the predicted
termination of the current jobs. The purpose of the latter rule is to assure
that the oldest job can always be initiated (assuming, of course, that its
width does not exceed the maximum width of the correlator).

A variety of constraint rules apply in this scheduling process. It is most
likely that the Scheduler Task can simply explore the possibilities by ex-
haustive search, because it has plenty of time and CPU speed at its disposal
(at low priority) and because the number of jobs to test is modest enough.
If search speed proves to be a problem the solution will probably be a rule-
based engine approach, probably using neural-net techniques. An interesting
technical question is whether the problem should be solved ab initio when-
ever a new job appears in the queue, or can the schedule be revised at lower
cost to introduce the new job.

4.3.3 Tape Tasks

The Tape Tasks will be initiated by the Job Control Task at boot time, with
one instance per PBD-PBI pair; there are 24 such pairs. Each Tape Task
acts as an agent (a server) for an Array Task when the PBD is acquired by
that array.

Each Tape Task watches its PBD and PBI to detect any anomalies of
operation. It also listens to the associated barcode reader. When a barcode
input occurs the assumption is that a reel of tape is properly threaded and
ready to be loaded. The task will load the tape and attempt to read some
signal from the tape in order to determine the station, recorder and original
time of the recording. The barcode input will indicate the VSN of the reel.

At this point the Tape Task will examine the job structures to determine
if any job is requesting its reel of tape. If a match is found, the task will
attach itself to that job. Operators may mount requested tapes in any order
and on any drive and the Tape Tasks will automatically assign the tapes to
the jobs, without any manual intervention.

The Array. Task of the job will be requesting data for a certain time.

40 4 THE REAL-TIME COMPLEX

Each Tape Task will slew its tape to the proper time and will prepare to
deliver data to the correlator.

The Tape Task will help with servoing the tape to track the delay model
(a local servo loop will tightly couple the PBI to the PBD). It will continually
monitor the status of the PBD and will monitor and log tape errors.

When a tape is no longer needed by an Array Task, its Tape Task will
look for a new array to which it may attach. It will often be true that
another array is waiting — the next consecutive observation in the job —
and that that array will want the tape to continue from its current location.
It may even be possible that the tape can be kept in motion during this
transition from one array to another.

Eventually the Tape Task will find no array for its reel of tape. The
task will rewind its reel, but will not unload it until absolutely necessary
(or upon operator command, of course). The intent of the strategy is to
minimize dismount/mount actions by the operator. Whenever some array
wants a tape that is not currently mounted on some PBD, there must be at
least one PBD available if at all possible. The Tape Tasks will all monitor
the request list and will note when an idle drive needs to be freed. One of
them will rewind and unload its reel and resume waiting for another barcode
input to signify the mounting of a new reel on its PBD.

The Tape Tasks will share the common MCB interface to the PBDs.
Probably colored lights will be mounted on the PBDs to signify their status
(assigned, mounted, free) as an. aid for the operators.

4.3.4 Crossbar Task

The crossbar has a set of connections to the station (FFT) inputs which
form an elegant pattern (Figure 5). The purpose of this pattern is to create
a variety of opportunities for PBDs to be available for mounting new reels
of tape. When an Array Task detects a new combination of PBDs in its
array it will alert the Crossbar Task. The Crossbar Task will display a
"please-pause" status, and soon all Array Tasks will pause (at the end of
a current integration), at which point the Crossbar Task will work its way
down the current PBDs and will assign station inputs to them. It will note
the assignments in their array tables. Such a reconfiguration will be required
at most tape changes.

Note that the crossbar station input assignments control where in the
LTA the data for the various baselines will appear. Tapes will be mounted
on PBDs in random order, with tapes from various arrays intermingled.

Real-Time Tasks

Figure 5: Crossbar Connections from PBDs to FFT Station Inputs

42 4 THE REAL-TIME COMPLEX

The Archive Task (Section 4.3.10) will be able to determine which LTA cells
contain the data for its baselines.

4.3.5 Station Tasks

The Station Task controls all of the hardware associated with one station
input of the correlator. There are 20 such station inputs, each eight chan-
nels deep, connectable in various configurations to the eight hardware FFT
engines with associated delay and phase model generators. Station Tasks
are initiated by the Job Control Task at boot time.

A station input is connected to a PBI-PBD pair by the crossbar. The
PBD has a tape with data from some station. The station is a member of
some array. The array observed for some project. By following the chain
of pointers, which will generally change at every tape change (and thus
require a crossbar reconfiguration), a Station Task can find the observing
and processing parameters for its current station, array, project and job.

The Station Tasks begin preparing for the next source as soon as the
current source is in progress; this enables new register settings to be pre-
pared in advance of need. Access to the registers of the correlator will be
interlocked with semaphores. Such registers will be organized in dual banks,
thus permitting preloading. It may be expedient for the Station Task to "re-
member" previous settings of its station input so that it can transmit only
changes to the registers.

4.3.6 Job Task

Instances of the Job Task are spawned by the Job Control Task. The Job
Task begins execution in order to perform various initialization operations
before it and its minions can acquire tapes and process signals. The Job
Task spawns the Array and Archive Tasks.

4.3.7 Array Tasks

The duties of the Array Task are to procure signals from the stations of its
array at the specified time and to coordinate with the Archive Task for its
project to get the visibilities of its array written to the archive. It determines
which reels of tape it needs in order to obtain the desired signals. These
reel serial numbers constitute an "advertisement", and a Tape Task will
eventually recognize that its reel of tape will satisfy the request. The Tape
Task will be able to supply the station tape recorder code which it has read

4.3 Real-Time Tasks 43

from the tape, and the Array Task can verify this against the tape logging
information which the array control system has supplied (Table 1).

The Array Task checks to determine whether all of its Station tasks have
Tape Tasks attached to them. Until they do it will display a status which
will inhibit processing. Note that an Array Task begins before the time
when it is really processing data, and that this is the means for requesting
the pre-mounting of tapes. The task will post the desired data tape VSNs
on a display as a request to the operator to mount the reels, and will remove
the requests as reels are mounted and the associated Tape Tasks attach to
the array. The operator can mount the tapes in any order on any available
PBD.

The Array Task will interact with the Crossbar Task to request a crossbar
reconfiguration at the earliest opportunity if one is needed. When all tapes
are ready, the crossbar configuration is set, the Station Tasks are ready and
the Archive Task is ready, the Array Task can set the "ready" status; the
correlator will process the signals and write results to the archive.

4.3.8 Model Task

The Model Task generates a Model Table (see MODEL .H in Appendix H) that
contains six-term polynomial expansions of group and phase delays for each
station and frequency channel at 2-minute intervals. The table contents are
transferred by the Station Tasks into the delay and phase tracking firmware
as the correlator job executes (that is, as data are actually correlated). The
Model Task creates a table that is bounded by a specified observing time
range. The time range can encompass the entire correlator job, or if desired,
it can be a short as several minutes.

The Init Model Task is activated shortly before the correlator job begins.
Init Model allocates blocks of memory for one or more Model tables, and
inserts their base addresses into the Active Base Table. We will most likely
have two separate Model tables per job. This will allow double buffering
of time blocks of model data for input to the correlator hardware. Model
tables that span one hour will be most convenient. While the correlator is
using the data in one table, the Model Task will fill the other.

Since the Model Task is run in advance of correlation, it can build the
Model Table by multiple passes of several different functions. This is a
safer approach than building a complicated model point-by-point seconds
before it is required by the correlator phase generators. By constructing
the complete delay model in advance, we are able to do some checking and

44 4 THE REAL-TIME COMPLEX

raise flags if problems are found. This is worthwhile. The VLBA correlator
model is fairly complex.

The Model Task calls a succession of functions that fill various elements
in the Model Table. First, an empty table is formatted in the memory block
previously allocated by Init Model. Delay solution rows are constructed
based on the number of stations and baseband channels listed in the job
data tables. The Model Table time range was specified as an input to
Init Model. There is one model row every 2 minutes (on the even UTC
minute) for each baseband channel at each station. Actually, the row time
is that of the next 4.096 ms correlator interrupt after the even 2.0 minutes
UTC. The Model Task creates four additional rows that precede each source
observation, and four rows that follow the end of each observation. These
extra solutions allow accurate polynomial fits at the beginning and end of
the observing runs. The newly created rows will contain the date (MJD),
time (UTC), the station name, the source name and the baseband channel
id. The flag words are also set. At this point the task compresses the table
in station-baseband-time order. This eliminates the redundant rows that
will occur for repetitive sequences of very short observing runs.

Once the Model Table is formatted, the group delays and group delay
rates can be calculated and entered. The delay calculations are performed
by the CALC Task (Section 4.3.9). After initializing itself one time, the CALC
Task is able to calculate delays for any stations and sources at any time in
any order. It is very simple then to spawn a CALC process for each row in
the table one after another. The information already in the rows is sufficient
to direct the CALC Task.

After the CALC Task has filled all of the group delay/rate elements, the
Model Task will calculate the phase delay/rate values for each row. In
the absence of any dispersive model components, the phase delays may be
produced simply from the group delays and channel observing frequencies.

The six-term polynomial expansion is derived from a series of consecutive
delay and delay rate pairs for one baseband/station. The spline fit algorithm
is described in Section 4.3.9. Because the table has been sorted and com-
pressed, the polynomial fitting can proceed in a straightforward manner.
Separate polynomial solutions are obtained for the group and phase delays,
and for the group and phase delay rates.

As its last step, the Model Task checks the completed table, particularly
looking for error flags. If everything is in order, the "model completed" flag
in the job queue table is set to the affirmative and the task terminates.

* As*the correlator job progresses, its Model Table is read by the phase and

4.3 Real-Time Tasks 45

group delay tracking firmware. The table is also read by the archive writer,
and essentially copied into the data archive. The polynomials in the Model
Table carry the model accountability into the archive itself. The Archive
Task will convert the Model Table into a FITS-formatted AIPS calibration
table. The polynomial coefficients will in this way accompany the visibility
data into AIPS.

The Model/CALC Tasks and the Model Table will require a substantial
fraction of the time and memory of one MVME147. A model table row is 200
bytes in length. Since the correlator has 160 input channels, 32 kB of storage
are required for each 2-minute model interval. One hour of full correlator
operation will need about one MB for the Model Table, so two (double-
buffered) tables will require about two Megabytes. CALC takes just under
150 ms to run on the MVME147. But since the CALC group delay solutions
currently are non-dispersive, twenty CALC runs will drive the models for 160
correlator inputs. That is, approximately three CPU seconds are required
by CALC for one 2-minute model interval. This is a fairly light load on the
real-time system.

4.3.9 CALC Task

The CALC Task produces the VLBA interferometry model used by the cor-
relator for group and phase delay tracking. CALC was written and is main-
tained by the VLBI group working in the NASA Crustal Dynamics Project
at Goddard Space Flight Center. It is part of their VLBI data reduction
software package that supports geodetic and astrometric observations. The
CALC model is considered to be as reliable and well understood as any so-
phisticated interferometry model code in existence.

It is relatively straightforward for us to use CALC as the correlator model
generator. CALC is written in basic Fortran and requires only a few mod-
est modifications to run under VxWorks. The modifications will be done
entirely by a preprocessor. The preprocessor itself will thus maintain an ac-
countability of our modifications. The modifications do not affect the CALC
solutions, rather they are concerned with Fortran I/O, include statement
formats, and block data naming conventions. The CALC preprocessor will
also allow us to upgrade our version quickly as new versions of CALC are
released by the GSFC group.

CALC will be used in a station-based manner. Station A in each CALC
baseline will always be the origin of the geocentric coordinate system. Group
delays are calculated at the arrival time of the same wavefront at both

46 4 THE REAL-TIME COMPLEX

stations in the baseline. That is, the baseline diurnal aberration is included
in the CALC model. Since we place station A at the earth center, the station
to earth-center delays are all calculated for the same wavefront.

The current version of CALC (version 6.0) is completely non-dispersive.
The solar corona model in version 4.0 has been dropped, and there is no
ionospheric model. We will probably add dispersive models to the CALC
Task as the VLBA project develops.

CALC will retrieve all of its input parameters from the Data Tables via
a set of interface functions. It obtains values through subroutine calls that
are identical to its calls to the GSFC VLBI Database. The highest level
interface subroutines are Fortran. They in turn call C functions that access
the data tables. The values returned from the C functions are checked within
range limits before being passed into CALC. Some conversion of units will
be necessary, but other than that, no CALC input values are arithmetically
derived in the interface from data table values, and no CALC parameters
are hard coded into the Fortran interface. The parameters in the script file
and hence in the data tables axe exactly what CALC uses. Mathematical
constants used for unit conversions are taken from the CALC common block
CMATH.

The correlator hardware requires that group and phase delay models be
expressed as polynomials with enough precision to replicate CALC solutions
at any time point within the 2-minute CALC interval. After much experimen-
tation, we have found that a 10-point quintic spline fit to the CALC solutions
satisfies our accuracy requirements. We will use the double precision Fortran
subroutine QUINDF14. QUINDF uses the CALC delays and delay rates as input,
and produces a six term polynomial solution; one solution for every CALC
entry in QUINDF's input window. The solutions near the center of the input
window are substantially better than those near the edges. Since QUINDF
runs very fast (in comparison to CALC), we will use only the polynomial
solution at the center of the input window, and step the window along the
sequence of CALC delays one delay at a time. A few extra CALC solutions will
precede and follow each observation thereby enabling QUINDF to get equally
good fits near the beginning and end of each source observation.

The six term polynomial coefficients will be loaded into the Model table.
One polynomial will accompany each CALC solution in the table,

r = ao + a\t + a,2t2 + a^t3 + a^tA + as t5

14 ACM Transactions on Mathematical Software, vol. 9, page 258.

4.3 Real-Time Tasks 47

oood. time (4 millisrr intervals)

Figure 6: Fitting Splines to CALC Results

The correlator group and phase delay tracking generators read the poly-
nomial table and calculate group and phase delays and delay rates at 4.096 ms
intervals. The delay/delay rate pairs initialize number-controlled oscillators
whose outputs drive the phase and delay tracking in the correlator hard-
ware. Since the true delay profile is fundamentally a sinusoid with a 24 hour
period, the sign of the delay curvature remains the same for hours at a time.
The segmented linear delays derived from the spline polynomials deviate
from the true delay and produce systematic group and phase delay errors
in the correlator output (see figure 6-a). For the delay calculations that are
increasingly frequent, the systematic errors will decrease. Evaluating the
polynomials at 4 ms intervals reduces the systematic phase delay errors to
below one turn of phase at 100 GHz on the earth radius baseline.

However, we have found a simple algorithm that adjusts the polynomial
coefficients and essentially eliminates systematic phase delay errors. It is

48 4 THE REAL-TIME COMPLEX

straightforward to calculate the difference between the model delay and a
chord connecting the 4 ms update points. The mid-point difference (dy) is
shown in figure 6-b. We use dy/2 to offset the phase delay calculated at the
4 ms points, and the slope of the chord is passed as the delay rate. This
algorithm is incorporated into the original polynomial coefficients, thereby
producing a new set of polynomial coefficients. The adjusted delay and delay
rates shown in figure 6-c are then directly derived from the the polynomial
with the "throw-back" terms. The new polynomial is shown in terms of the
model generator interval At (4.096 ms),

t ' = a'Q + a[t + a'2t2 + a'3t3 + a'4t4 + a'5t5,

where the modified coefficients are

a'0 = a0- 8/64a2A*2 - 12/64a3A<3 - 14/64a4A*4 - 15/64a5A*5

ai = ai - 24/64a3At2 - 48/64a4A*3 - 70/64a5At4

a2 = a2 - 48/64a4At2 - 120/64a5At3

a'3 = a3 - 80/64a5At2

a4 = a4

a'5 = as

The adjusted polynomial replaces the original spline fit polynomial in
the Model Table.

The delay rate polynomial is derived by expanding the slope of the chords
shown in figure 6-b, such that

f = b0 + &i* + b2t2 + b3t3 + b4t4,

where

bo = a\ + a'2 At + a'3At2 + a'4At3 + a'5 At4

b\ = 2 a'2 + 3a'3At + 4a^A*2 + 5a'5At3

b2 = 3 a3 + 6<At + 10a'5A*2

= 4a'A + lOagAt
64 = 5 a'5

The time variable, t, for both polynomials is a count of 4.096 ms in-
terrupts. That is, t ranges from 0 to 29296. When t = 0, the UTC time
is the time of the next 4.096 ms interrupt immediately following the even
2 minutes UTC.

4.3 Real-Time Tasks 49

4.3.10 Archive Tasks

Visibilities for baselines and channels are summed in cells in the LTA. The
Archive Task will determine which cells contain its data and will prepare a
suitable index vector, which it will load into the LTA. At the end of each
integration cycle the LTA switches banks to allow the task to read out the
data for each array that it manages.

The precise details of the index vector mechanism of the LTA are still
under discussion. At present it appears that the "index vector" will really
be a list of stations (an array) and observing modes, and that the LTA
hardware will compute the index vector in real time to sum the STA into
the LTA. Likewise, the hardware will assist in "gathering" data for each
array, as described by a list of stations and the mode, and transmitting the
data into the RT system through a DMA (direct memory access) channel
controller.

There will be an instance of the Archive Task for each project of each job.
The Archive Task will maintain a set of buffers for its project. It will transfer
the current integration into one of its buffers by using its index vector and
the DMA controller. It will contend with other instances of the Archive Task
for use of the DMA controller, with access interlocked by a semaphore. This
procedure will rearrange the visibilities into any desired order. Successive
integration cycles can be transferred into successive portions of the buffer.

When a buffer is full it will be written to the archive device; to do this
the Archive Tasks will contend for access to the device, interlocked with
a semaphore. While the contention and I/O are in progress the task will
switch to another buffer and will continue transferring visibilities from the
LTA.

Each block written to the archive will be quite large, about 500 kB, and
will have a complete FITS header, which the Archive Task will construct in
the buffer during the integration cycle, plus various FITS extension records.

The effect of these tactics is that the separate Archive Tasks for each job
will separately extract and concatenate their visibilities, doing so with their
own integration periods. They will write large blocks of these visibilities to
the archive in nearly distribution format.

A technical point is that the information transferred from the LTA by
use of the index vector should land in the buffer with appropriate weights
attached to the visibilities, in order to minimize the computing work needed
in the Archive Task. Also, space in the data structure will be provided to
hold the baseline codes; this will be handled automatically by the index

50 4 THE REAL-TIME COMPLEX

vector mechanism.
Another technical point is that the DMA transmissions must be in short

bursts to permit experiments with short integration times to transfer their
results concurrently with the transfers for large spectral line experiments.

It may be appropriate to buffer the visibility data into even larger sets
of multiple blocks. If so, the SCSI disk attached to the CPU containing
the Archive Task can be used to hold the data temporarily. This may be
especially useful if the archive device has a long start-stop time, which would
favor dumping data from the disk in large bursts.

There has been discussion of the need for a digital filter to be applied
to the output visibilities in certain cases. Such a filter would be under the
control of the Archive Task.

The real-time hardware configuration (Figure 2) implies that DMA band-
width used to transfer visibilities from the LTA to the RT RAM will contend
with DMA bandwidth used to write the archive medium. If either interface
is SCSI then the built-in SCSI channel of the MVME147 CPU can be used
to avoid the contention.

Note that clock analysis jobs will work from disk, and so the Archive
Task must be able to write visibilities to disk as well as to tape.

4.3.11 Clock Tasks

The Clock Task runs in the real-time system and searches for fringes from
selected calibrator source observations as they are correlated. The fringe
search and fitting algorithms produce station-based delay and delay rate
residuals (with error bars) that are fed back into the DBMS, processed and
entered as clock offset corrections in subsequent script files.

There will be two modes of operation of the Clock Task. The "routine"
mode in which fringe searching will proceed for all stations (per array) si-
multaneously, and the "wide-search" mode used to search for "lost" clocks.
Both modes will use the same software modules. The "wide-search" mode
will search fewer baselines in exchange for more spectral channels.

A typical "wide-search" on a single baseline might be 32 time points
(1 sec each) by 1024 spectral channels. The execution time would be roughly
10 sec (on a MVME147). This is quite adequate since searching for lost
clocks will be a procedure that is controlled manually by the operators and
requires iterative re-correlation at stepped clock offsets. A 10 sec pause for
the 2-d FFT is an acceptably brief period in the overall process of "wide-
searching".

4.3 Real-Time Tasks 51

The input data will come from the LTA at roughly 6 kB/sec for the
"routine" calibrator mode (190 baselines, 8 channels, 2 sec integrations),
and as high as 16 kB/sec/baseline for the "wide-search" mode (1 baseline,
1024 channels, 1 sec integration). The Archive tasks will write the input
data to a hard disk.

The Clock Task is located in one of the VME systems, probably sharing
a CPU with the Archive Task. Separate instances of the Clock Task will be
spawned by Archive tasks whenever they have clock measurement data on
disk, ready to analyze. The Clock Tasks will execute at reduced priority.

The fringe search algorithm is based on the traditional FFT search com-
monly found in VLBI fringe fitting programs. Time sequences of data are
transformed into fringe frequency spectra, and the cross-correlation spectra
are transformed into delay lags. We will probably pad the transforms by a
factor of 2 in the time axis and a factor of 4 in frequency.

Global fringe fitting in the real-time system is an option that is currently
under discussion. The global least-squares fit algorithm in AIPS can be made
to work in a non-AIPS environment, but it may be a needless complication.
The clock calibration sources will be strong and have fairly simple structure.
A more rudimentary fitting algorithm will probably be quicker, safer and
sufficient.

Failure to obtain a satisfactory clock solution in routine processing will
result in an operator warning message, and recycling of data tapes will be
inhibited. Such an occurrence will indicate a violation of the fundamental
assumptions that the clock delays of the VLBA are well-behaved and that
the real-time fringe checks will detect all glitches in advance. The clock data
file on the hard disk will be retained on the hard disk to permit an analysis
of the cause of the failure of fringe fitting.

52 A GLOSSARY

A Glossary
The correlator project uses both standard VLBA jargon and its own spe-
cialized vocabulary. The following entries include as well some relational
database management terminology which is used throughout this document.

archive. Eternal repository of correlator output data, containing all infor-
mation necessary for any subsequent processing or interpretation.

a r ray . Set of one or more stations observing simultaneously and with iden-
tical (or compatible) instrumental settings, .over a specific, not neces-
sarily contiguous, range of time. Arrays are the atoms in the process
of correlator scheduling; one or more comprise a project at the next
level of structure.

attribute. Relational DBMS jargon for a collection of similar data elements
representing different instances or tuples; conceptually, a "column" of
a relation, or more traditionally, a particular "field" in every "record"
in a file.

baseline. Geometrically, the vector connecting a pair of stations; by exten-
sion, the cross-power spectrum obtained by cross-correlation of data
from these stations.

CCC — correlator control computer. Somewhat outdated acronym in-
herited from early correlator plans, referring to the general-purpose
computing environment (currently diskless Sun workstations with a
single file server) running the Unix(-like) operating system.

channel. Single band of RF frequencies, in a single hand of circular polar-
ization, converted in station electronics to IF and then to baseband,
digitized, and recorded. Equivalent to an "IF" at the VLA.

clock. Atomic frequency standard at a station; by extension, the time in-
formation obtained by counting cycles of this frequency and recorded
with sampled data; also, somewhat ambiguously, the offset between
this station atomic time and UTC.

correlator t ime. Time as defined by the correlator's fundamental 32-MHz
clock signal. The correlator hardware operates on several fixed cycles
in these units, which correspond to equivalent or longer intervals of

53

observe time via the speedup factor. Absolute correlator time, presum-
ably coincident with local civil time, can be used to schedule events in
the real-time control system.

c rossbar . 24-in to 20-out station configuration switch, 8 channels deep, in-
terconnecting PBIs to FFT inputs. The name is slightly misleading,
implying full matrix switching; only a sparse, quasi-diagonal subset is
actually implemented, selecting among four inputs for each output.

F F T — Fourier transform section. 'F ' hardware of the 'FX' correlator.
Receives data from the PBIs via the crossbar, into .20 station inputs,
each 8 channels deep. Besides the fundamental FFT operation, also
implements fringe phase and fine (i.e., fractional sample) delay track-
ing. Each of 20 outputs is again 8 channels deep.

j ob . Set of one or more project groups, combined to optimize correlator
scheduling. Jobs are the elements manipulated in the real-time sys-
tem's queue by the scheduler.

LTA — long-term accumulator. Integrates baseline spectra to limit rate
of data transmitted to the Archive.

M A C — cross-multiplier/accumulator section. 'X' hardware of the
'FX' correlator. 20-by-20 upper-triangular matrix, 8 channels deep,
with inputs hard-wired from the FFT. Performs pairwise cross-multi-
plication of two input station spectra at each matrix position, and
short-term accumulation of the resulting 210 baseline auto- or cross-
power spectra. Special polarization mode also processes mixed hands
from adjacent channel inputs.

M C B — monitor-&-control bus. VLBA communications standard for
local control of all VLBA station equipment; used in the correlator for
direct control of PBDs from the RT system.

observe t ime. "Real" time as it passes at an observing station, marked
by the sample clock and time digits recorded there. Absolute observe
time is a good approximation to UTC, differing by the station clock
offset. Relative intervals of observe time correspond to equivalent or
shorter durations of correlator time via the speedup factor.

54 A GLOSSARY

P B D — playback dr ive . VLBI data input to correlator; only remaining
element of former Data Playback System (DPS). The correlator's final
complement is expected to be 24 PBDs.

P B I — playback in ter face . Recovers recorded samples from PBD sig-
nals. Formally part of VLBA Data Recording and Playback subsys-
tem, but integrated into correlator for design efficiency. Each of 24
PBIs is dedicated to a partner PBD, and delivers up to 8 channels of
32-Msmp/s data to the correlator proper through the crossbar. Also
implements coarse (i.e., integral sample) delay tracking.

p r o j e c t . Set of one or more array observations arising from a single scientific
proposal. VLBA scheduling requirements may necessitate subdividing
a proposal into several projects. One or more projects are integrated
into a job during correlator scheduling.

queue . Set of jobs available for initiation by the real-time scheduler.

re la t ion . Relational DBMS jargon for a "table" linking tuples of attributes.
Relations should be normalized, meaning roughly that tuples should
be unique in all attributes, without redundant entries.

R T — rea l - t ime c o m p u t e r sys t em. System of single-board 680x0-based
VME computers (mainly MVME147 modules), running the VxWorks
real-time operating system.

sc r ip t . Intermediate data format, used to transmit the results of database
queries to the correlator control system. Encoded in printing ASCII
characters, human-readable and (if necessary) editable.

s p e e d u p . Factor (= 1, 2, or 4) by which observe time is accelerated when
played back at higher speed.

s t a t ion . Fundamentally, a radio telescope at some location, either one of
the 10 VLBA sites or elsewhere; by extension, often used to refer to
data originating at a station along its entire path through the corre-
lator, in particular through the FFT, MAC, and LTA sections.

t u p l e . Relational DBMS jargon for a collection of logically related but dis-
similar data elements representing different attributes; conceptually,
a "row" of a relation, or more traditionally, one of many identically-
formatted "records" in a file.

55

B model_script . tx Example Job Script

- r — r — r — 1 jbenson vlb 97799 Sep 26 11:06 s.model.script.tx
in directory /home/ccc/vlb/fxcorr/src/code/SCCS

!* Model script file for VLBA Correlator Job *!
!* 3 stations, 8 baseband channels, 2 minute scans *!
!* 30 July 1989 — JMB *!

! * Job Control Card *!
•table 'job'!
jobid = 11021 program = 'VW23G'
n.drives = 3 n_chans = 8 n_fft_pts = 512 n.stns = 3 fft_factor
date_start = 80Sep22 start = 12h00m00.0s
date.stop = 80Sep22 stop - 12h30m00.0s

!row!
!endtable!

! * Observations Table *!
Stable 'observations'!
date = 80Sep22 start = 12h00m00.0s stop
name = 'HY* array.id = 100 !row!
date = 80Sep22 start = 12h02m00.0s stop
name = 'HY' array_id = 100 !row!
date = 80Sep22 start » 12h04m00.0s stop
name = 'HY* array.id = 100 !row!
date = 80Sep22 start = 12h00m00.0s stop
name ='MPI' array.id = 100 !row!
date = 80Sep22 start = 12h02m00.0s stop
name s'MPI* array.id = 100 !row!
date - 80Sep22 start • 12h04m00.0s stop
name s'MPI* array.id = 100 !row!
date • 80Sep22 start = 12h00m00.0s stop
name s'GB* array.id = 100 !row!
date « 80Sep22 start s 12h02m00.0s stop
name s'GB'- array.id = 100 !row!

= 12h02m00.ps

= 12h04m00.0s

= 12h06m00.0s

= 12h02m00.0s

= 12h04m00.0s

= 12h06m00.0s

= 12h02m00.0s

= 12h04m00.0s

source ='BLLAC

source VIRGO

source ^'BLLAC

source =,BLLAC

source =*VIRGO

source ='BLLAC

source =*BLLAC

source ='VIRGO

56 B MODEL-SCRIPT. TX EXAMPLE JOB SCRIPT

date « 80Sep22 start = 12h04m00.0s stop • 12h06m00.0s source ='BLLAC
name ='GB' array.id = 100 !row!

!endtable!

!* Correlator configuration *!
!table 'correl'!
name = 'all' date = 80Sep22 time = OOhOOmOO.Os
fftsize = 512 interleav = 0 overlap » 1 interpol
filter = 0 window = 'uniform*
time.avg = 2.0 spect.avg = 2
time.avg = 2.0

!endtable!

!* Sampler/Formatter/Recorder *!
!table 'formatter'!
name = 'all* date = 80Sep22 time = OOhOOmOO.Os
sample.rate = 32.0e+6 sample.mode = '4-level' format = 'VLBA'
formatter.mode = 2.0 barrel.swx = 'on*
track.swx = 'off1 write.speed = 90

!row!
!endtable!

!* Baseband Channels and Frequencies *!
Stable 'channels'!

name = 'all' date = 80Sep22 time = 12h00m00.0s
bbconv = 1 fe = 6cm ifchan = A net.side = +1 sky.freq

bbfilter = 4N fchanu = 1 fchanl = 0
bbconv = 2 fe = 6cm ifchan = A net.side = +1 sky.freq

bbfilter = 4M fchanu = 2 fchanl = 0
bbconv = 3 fe = 6cm ifchan = C net.side = +1 sky.freq

bbfilter = 4M fchanu = 3 fchanl = 0
bbconv • 4 fe • 6cm ifchan = C net.side = +1 sky.freq

bbfilter = 4M fchanu = 4 fchanl = 0
bbconv = 5 fe = 6cm ifchan = A net.side = +1 sky.freq

bbfilter = 4M fchanu = 5 fchanl = 0
- bbconv = 6 fe = 6cm ifchan = A net.side = +1 sky.freq

= 1

!row!
!row!

= 4.994990e+9
!row!

= 4.998990e+9
!row!

= 4.994990e+9
!row!

= 4.998990e+9
!row!

= 5.002990e+9
!row!

= 5.006990e+9

57

bbfilter = 4M fchanu * 6 fchanl = = 0 !row!
bbconv = 7 fe = 6cm ifchan = C net.side = +1 sky.freq = 5.002990e+9

bbfilter • 4M fchanu = = 7 fchanl : = 0 !row!
bbconv = 8 fe = 6cm ifchan = C net.side = +1 sky.freq = 5.006990e+9

bbfilter = 4M fchanu = = 8 fchanl : = 0 !row!

name = 'all' date * = 80Sep22 time = 12h02m00 .Os
bbconv = 1 fe = 6cm ifchan = A net.side = +1 sky.freq = 4.994990e+9

bbfilter • 16M fchanu = 1 fchanl = i 0 !row!
bbconv = 2 f e - 6cm ifchan = C net.side = +1 sky.freq = 5.010990e+9

bbfilter = 16M fchanu = 2 fchanl = i [> !row!
bbconv = 3 fchanu = 0 fchanl = i 0 !row!
bbconv = 4 fchanu = 0 fchanl = i D !row!
bbconv = 5 fchanu = 0 fchanl = i 0 !row!
bbconv = 6 fchanu = 0 fchanl = i D !row!
bbconv s 7 fchanu = 0 fchanl = i 0 !row!
bbconv = 8 fchanu = 0 fchanl = i 0 !row!

name = 'all* date = : 80Sep22 time = 12h04m00 .Os
bbconv = 1 fe = 6cm ifchan = A net.side = +1 sky.freq = 4.994990e+9

bbfilter « 4M fchanu = = 1 fchanl = = 0 !row!
bbconv = 2 fe - 6cm ifchan = A net.side = +1 sky.freq = 4.998990e+9

bbfilter • 4M fchanu = = 2 fchanl : = 0 !row!
bbconv = 3 fe = 6cm ifchan = C net.side = +1 sky.freq = 4.994990e+9

bbfilter • 4M fchanu = = 3 fchanl = = 0 !row!
bbconv = 4 fe = 6cm ifchan = C net.side = +1 sky.freq = 4.998990e+9

bbfilter = 4M fchanu = = 4 fchanl : = 0 !row!
bbconv = 5 fe = 6cm ifchan = A net.side = +1 sky.freq = 5.002990e+9

bbfilter = 4M fchanu = = 5 fchanl : = 0 !row!
bbconv = 6 fe = 6cm ifchan = A net.side = +1 sky.freq = 5.006990e+9

bbfilter = 4M fchanu = = 6 fchanl = = 0 !row!
bbconv = 7 fe = 6cm ifchan = C net.side = +1 sky.freq = 5.002990e+9

bbfilter = 4M fchanu = = 7 fchanl = = 0 !row!
bbconv = 8 fe = 6cm ifchan = C net.side = +1 sky.freq = 5.006990e+9

bbfilter = 4M fchanu = = 8 fchanl = = 0 !row!
!endtable!

! * Clocks Table *!
!table ?clocks *!

58 B MODEL-SCRIPT. TX EXAMPLE JOB SCRIPT

name = 'HY'
date • 80Sep22

date • 80Sep23
name = 'MPI'
date = 80Sep22

date • 80Sep23
name = 'GB'
date = 80Sep22

date - 80Sep23
!endtable!

time
time
time
time

time
time
time
time

time
time
time
time

OOhOOmOO.Os
06h00m00.0s
18h00m00.0s
OlhOOmOO.Os

OOhOOmOO.Os
06h00m00.0s
18h00m00.0s
OlhOOmOO.Os

OOhOOmOO.Os
06h00m00.Os
18h00m00.0s
OlhOOmOO.Os

offset « -1.00e-6 !row!
offset = -6.0e-6 'row!
offset = -18.0e-6 !row!
offset « -25.0e-6 !row!

offset = -1.00e-6 'row!
offset = -6.0e-6 !row!
offset » -18.0e-6 !row!
offset « -25.0e-6 !row!

offset = -1.00e-6 !row!
offset = -6.0e-6 !row!
offset = -18.0e-6 !row!
offset = -25.0e-6 !row!

!* Stations Table *!
!table 'stations'!
name = 'MPI»
x = 4.03394212e+6 y = 4.86993120e+05 z = 4.90043183e+06
axistype = 'altaz' axisoff = 0.00

!row!
name = 'HY'
x = 1.49240669e+06 y = -4.45726733e+06 z » 4.29688210e+06
axistype = 'altaz' axisoff = 0.00

!row!
name = 'GB'
x = 8.882882548e+5 y = -4.92448405e+6 z = 3.94413087e+6
axistype = 'polar' axisoff =0.0

!row!
!endtable!

!* Source Table *!
!table 'sources'!
name ='BLLAC'
ra ® 22h00m39.363s dec = 42d02'08.57"
parallax = 0.0

- date = 80Sep23 time = 12h00m00.0s

59

dlra = 0.0 dldec = 0.0 d2ra = 0.0 d2dec = 0.0
!row!
name ='VIRGO' epoch = 2000.0
ra = 12h30m48.450s dec = 12d23'28.49"

!row!
name = '3C779'
ra = 12hl2m45.612s dec = 31d08'54.55"

!row!
!endtable!

! * Tape Table
!table 'tapes1!
date = 80Sep22 name = 'HY'
tapeid = VLBA1012 start » 12h00m28.2s

!row!
date = 80Sep23 name = 'HY'
tapeid = VLBA1013 start » 00h00m31.3s

!row!
date = 80Sep22 name = 'MPI'
tapeid = VLBA1023 start = 12h00m28.2s

!row!
date = 80Sep23 name = 'MPI'
tapeid = VLBA1024 start = 00h00m31.3s

.'row!
date = 80Sep22 name = 'GB'
tapeid = VLBA1911 start = 12h00m28.2s

!row!
date = 80Sep23 name = 'GB'
tapeid = VLBA1123 start = 00h00m31.3s

!row!
!endtable!

!* Earth postion, velocities : Section B, Astronomical Almanac *!
!* Sun position, velocities : Section C, Astronomical Almanac *!
!* Moon position, velocities : Section D, Astronomical Almanac *!
!table 'solar'!
date = 80Sep22
earth.x = 1.5e+ll earth_y = 1.0e+10 earth.z = 1.0e+09
earth.vx - 1.0e+02 earth.vy = 30.0e+03 earth.vz = 1.0e+01

stop = 24h00m00.0s

stop = 12h00m00.0s

stop = 24h00m00.0s

stop = 12h00m00.0s

stop = 24h00m00.0s

stop = 12h00m00.0s

60 B MODEL-SCRIPT. TX EXAMPLE JOB SCRIPT

sun.x = -1.5e+ll
sun.vx = -1.0e+02
moon.x = 3.844e+08
moon.vx « 1.0e+02

!row!
date • 80Sep23
earth.x = 1.5e+ll
earth.vx = 1.0e+02
sun.x = -1.5e+ll
sun.vx = -1.0e+02
moon.x = 3.844e+08
moon.vx = 1.0e+02

!row!
!endtable!

sun.y = -1.0e+10
sun.vy = -30.0e+03
moon.y = 1.0e+07
moon.vy • 1.0e+03

earth.y = 1.0e+10
earth.vy = 30.0e+03

sun.y = -1.0e+10
sun.vy = -30.0e+03
moon.y = 1.0e+07
moon.vy « 1.0e+03

sun.z = -1.0e+09
sun.vz = -1.0e+01
moon.z = 1.0e+07
moon.vz = 1.0e+01

earth.z = 1.0e+09
earth.vz = 1.0e+01

sun_z = -1.0e+09
sun.vz = -1.0e+01
moon.z = 1.0e+07
moon.vz = 1.0e+01

! * UT1-UTC Table *!
.'table 'UT1'.«
date = 80Sep20 time = OOhOOmOO .Os utlutc = 0 .0560 row!
date = 80Sep21 time = OOhOOmOO .Os utlutc = 0 .0560 row!
date = 80Sep22 time = OOhOOmOO .Os utlutc = 0 .0560 row!
date = 80Sep23 time = OOhOOmOO .Os utlutc = 0 .0560 row!
date = 80Sep24 time = OOhOOmOO .Os utlutc = 0 .0560 row!

!endtable!

!* Polar Motion Table *!
!table 'polar'!
date = 80Sep20 time s OOhOOmOO.Os X = -0 .0090 y = 0 .3190 row
date = 80Sep21 time = OOhOOmOO.Os X = -0 .0090 y = 0 .3190 row
date = 80Sep22 time = OOhOOmOO.Os X = -0 .0090 y = 0 .3190 row
date = 80Sep23 time = OOhOOmOO.Os X = -0 .0090 y = 0 .3190 row
date = 80Sep24 time = OOhOOmOO.Os X = -0 .0090 y • 0 .3190 row

!endtable!

!* Physical Constan
!table 'constants'!
vlight = 299792.458e3
gmsun = 1.32712499e+20
earthrad = 6378145.0

- eflat = 0.00335289

t (1976, 1984 IAU)—*!

gauss = 0.01720209
gmmoon = 4.90279750e+12
emsmms = 81.3006592
preconst = 5029.0966

accelgrv = 9.78031846
tsecau = 499.00478
ugrvcn = 6.668e-ll
relative » l.o

61

dipolar • 1.0
etide.lag =0.0
stn.a.x = 0.0001

!row!
!endtable!

ephepoch = 2000.0
love.h = 0.60967
stn_a_y = 0.0001

love.l = 0.085
stn_a_z = 0.0001

!QUIT!

62 C QUEUE.TABLE. H JOB QUEUE HEADER FILE

C QUEUE.TABLE. H Job Queue Header File

- r ~ r ~ r ~ 1 jbenson vlb 2108 Sep 29 10:09 s.QUEUE.TABLE.H
in directory /home/ccc/vlb/fxcorr/src/code/SCCS

/*+ QUEUE.TABLE. H
'/,•/. Include file struct for correlator Queue Table.

The Queue Table holds locations and descriptions of each active
and pending correlator job in the job queue in the real.time system.

LANGUAGE: C
ENVIRONMENT: vxWorks
++$ AUDIT TRAIL
1.0 89Mayl0 jbenson
1.1 89Aug07 jbenson

tdefine N.JOBS 100

struct queue.table {
int job.index; /* job index number */
char •job.ptr; /* ptr to job table */
char •active.ptr; /* ptr to active.base.table */
long date; /* date of job entry */
float time; /* time of job entry */
int n.tables; /* number of input data tables this job */
char filename[80]; /* script file name */
int priority; /* job priority level */
int flag.CALC; /* CALC completed, 0 = no, 1 = yes */
int flag.j ob.active » /* status = -1, error occurred;

status = 0, job on hold;
status = 1, job ready in queue;
status = 5, job is correlating,
status = 10, job finished normally */

int flag.job.archived;
>;

Initial submission
replace *model_ptr with *active.ptr

63

D TABLES.H Job Tables Header File

- r ~ r ~ r ~ 1 jbenson vlb 21347 Sep 19 10:42 s.TABLES.H
in directory /home/ccc/vlb/fxcorr/src/code/SCCS

/*+ TABLES.H
YX Structure declarations for the correlator real-time data tables.

The TABLES.H include file contains the structure declarations for all of the
tables created and filled by the script file reader, and subsequentially read
by tasks in the real-time system.

LANGUAGE: C (Include file)
ENVIRONMENT: vxWorks
++$ AUDIT TRAIL
1.0 89/04/26 jbenson Initial submission
1.1 89/05/15 fxcorr date and time created 89/05/15 15:27:48 by fxcorr
1.2 89/05/18 jbenson change time/angles to double, long's to int's.
1.3 89/05/24 jbenson put structs in alpha order, more documentation
1.4 89/05/25 jbenson re-load alphabetized file
1.5 89/07/13 jbenson station coords in constants table
1.6 89/07/18 jbenson added net.side, sky.freq to channels struct
1.7 89/07/19 jbenson station-based correl, channels, obs, formatter tables
1.8 89/07/19 jbenson put bbconv back into channels table
1.11 89/09/13 jbenson added array.id to observations table
1.12 89/09/14 jbenson changed formatter.mode from char[16] to float

-*/

/* TABLE KEYWORD DESCRIPTION STRUCTURE */
/* The script keyword table describes the script keyword by name, format,

and location in the relavent data table. */

struct table.desc {
char keyword[16]; /* keyword string */
char format[16]; /* keyword value format */
char • *cp; /* keyword pointer */

64 D TABLES. H JOB TABLES HEADER FILE

/* JOB TABLE STRUCTURE */

struct job.table {
char table_name[16];
int num.rov s;
int row.size;
int num.keys;
char *base_ptr;
char * current _row;
struct tables.desc *desc;

/* data table name */
/* number of rows in current table */
/# row size */
/* number of keywords in table */
/* pointer to first row in table */
/* pointer to the current row */
/* pointer to current table's keyword
* descriptions */

/* DATA TABLE DECLARATIONS */

#define N.TABLES 13 /*

/* Baseband Channels Table */

number of data tables declared */

struct channels {
char name [16]; /* station name */
int date; /* channels config epoch (MJD) */
double time; /* channels config epoch (rad) */
int net.side; /* net sideband counter */
char bbfilter[16]; /* baseband converter bandwidth,

* {0-255} */
char if chan [16] ; /* baseband converter IF input,

* {,A,,,B,»,C,,,D,> */
int bbconv; /* baseband converter unit number */
char fe[16] ; /* front-end id (20cm,6cm, etc..) */
double sky.freq; /* sky frequency at zero Hz baseband

* (GHz) */
int fchanu; /* formatter channel which receives

* USB signal */
int fchanl; /* formatter channel which receives

* LSB signal */

65

/* Clocks Table */

struct clocks {
/* Station Clock Errors */
char name[16];
int date;
double time;
float offset;

>;
/* Correlator Configuration */

struct correl {

/* station name */
/* clock epoch date (MJD) */
/* clock epoch time (rad) */
/* station clock offset (sec) */

char name [16] ; /* station name */
int date; /* correl config epoch (MJD) */
double time; /* correl config epoch (rad) */
int fftsize; /* number of spectral points */
int interleav; /* interleaving factor */
int overlap; /* overlapping factor */
int interpol; /* interpolation factor */
char filter[16]; /* digital filter option */
char window[16]; /* FFT window selection */
float time.avg; /* time average interval (sees)
float spect.avg; /* spectral channel averaging */

>;
/* Physical Constants */
/* The physical constants will be shifted into #define statements

after the software integration and debugging is complete */

*/

struct const suits
double
double
double
double

double

vlight;
gauss;
accelgrv;
gmsun;

gmmoon;

/* velocity of light (m/s) */
/* grav constant (kg-m**3/sec**2) */
/* accel grav at equator (m/sec**2) */
/* solar mass # newt grav
* (m**3/sec**2) */

/* lunar mass * newt grav
* (m**3/sec**2) */

66 D TABLES. H JOB TABLES HEADER FILE

double
double
double
double
double
double
double
double
double
double
double
double
double
double
double

>;
/* Sampler/Formatter/Recorder Table */

struct formatter {
char
int
double
float
char
char
float
char
char
float

/* Job Card Table */

struct job {
char jobid[16];
char program[16];
int date.start;
int date.stop;

/* au in light sees (sec/au) */
/* equatorial radius (m) */
/* earth mass/moon mass */
/* newt grav const (m**3/kg-sec**2) */
/* sqr eccentricity of earth shape */
/• diurnal polar motion scale ellips */
/# earth tides lag angle (rads) */
/* earth tide love number 1 */
/* earth tide love number h */
/* ephmeris ref epoch (years) */
/* precession const (arcsec/century) */
/* post newt expansion parm */
/* geocentric coord station a (m) */
/* geocentric coord station a (m) */
/* geocentric coord station a (m) */

/* station name */
/* formatter config epoch (MJD) */
/* formatter config epoch (rad) */
/* sampler rate (MHz) */
/* sampler mode, 2 or 4 levels */
/* format » 'VLBA' or 'MKIII' */
/* formatter mode */
/* barrel switch, on or off */
/* track switch, on or off */
/* recorder write speed (inches/sec) */

/# job id for current script file */
/• observing program id */
/* job start date */
/* job stop date */

tsecau;
earthrad;
emsmms j
ugrven;
eflat;
dipolar;
etide.lag;
love.l;
love_h;
ephepoch;
preconst;
relative;
stn_a_x;
stn_a_y;
stn_a_z;

name[16];
date;
time; .
sample.rate;
sample.mode[16];
format[16];
formatter.mode;
barrel_swx[16];
track.swx[16];
write.speed;

67

double start;
double stop;
int n_drives;
int n_chans;
int n_fft_pts;
int n_stns;
int fft_factor;

/* job start time UTC */
/* job stop time UTC */
/* max number similtaneous PBD's */
/* max number similtaneous channels
/* largest fft size */
/* number stations */
/* fft multiplicity factor */

/* Observations Table */

struct observations {
char source[16];
char name [16] ;
int array_id;
int date;
double start;
double stop;

/* source name */
/* station name */
/* this obs belongs to array.id */
/* observe date (MJD) */
/* observe start time (rads) */
/* observe stop time (rads) */

/• Polar Motion Table */

struct polar {
/* Earth's Spin Axis Position Offsets */
int date; /* epoch date (MJD) */
double time; /* epoch time (rad) */
float x; /* x offset (milliarcsec) */
float y; /* y offset (milliarcsec) */

/* Sun, Earth, Moon positions (J2000.0) */

struct solar {
int
float
float
float
float
float

date;
earth.x;
earth_y;
earth_z;
earth_vx;
earth_vy;

/* solar system epoch date (MJD) */
/* earth position (meters) */
/* in solar system baricentric */
/# coordinate system */
/• earth velocity in x */
/* earth velocity in y */

68 D TABLES. H JOB TABLES HEADER FILE

float earth.vz; /* earth velocity in z */
float moon_x; /* moon position */
float moon_y; /* in earth-moon baricentric
float moon.z; /* coordinate system */
float moon.vx; /* moon velocity in x */
float moon_vy; /* moon velocity in y */
float moon.vz; /* moon velocity in z */
float sun.x; /• sun position */
float sun.y;
float sun.z;
float sun.vx; /* sun velocity in x */
float sun_vy; /* sim velocity in y */
float sun_vz; /* sun velocity in z #/

/* Sources Table

struct sources {

*/

char name [16]; /* source name */
double ra; /* source ra (J2000.0) */
double dec; /* source dec (J2000.0) */
float epoch; /* position epoch (J2000.0) */
float parallax; /* source parallax (arcsec) */
int date; /* position derivatives epoch,
double time; /* position derivatives epoch,
double dlra; /• first deriv of ra #/
double dldec; /* first deriv of dec */
double d2ra; /* second deriv of ra */
double d2dec; /* second deriv of dec */

/* Stations Table */

struct stations {
char name[16];
double x;
double y;
double z;
double x.phs;

/* station name */
/* geocentric x coord (meters) */
/* geocentric y coord (meters) */
/* geocentric z coord (meters) */
/* geocentric coords for separate

69

double
double
char
float

/* Tapes Table

struct tapes {

y.phs;
z_phs;
axistype[12];
axisoff;

*/

phase delay model (if req.) */
/* geocentric y coord (meters) */
/* geocentric z coord (meters) */
/* antenna mount type */
/* non-intersecting axis offset
* (meters) #/

char name [16] ; /* recording station name */
char tapeid[16]; /* tape reel id */
int date; /* begin recording, date (MJD) */
double start; /* begin recording, time (rad) */
double stop; /* end recording, time (rad) */

/* UT1 - UTC table */

struct UT1 {
int
double
double

date;
time;
utlutc;

/* epoch date (MJD) */
/* epoch time (rad) */
/* utl - utc correction (sees) */

70 E TABLESJ)ESC. H SCRIPT KEYWORDS HEADER FILE

E TABLESJ)ESC.H Script Keywords Header File

- r ~ r ~ r ~ 1 jbenson vlb 23569 Sep 19 10:42 s.TABLES_DESC. H
in directory /home/ccc/vlb/fxcorr/src/code/SCCS

/*+ TABLES.DESC.H
•/,'/, Descriptive Structures for the correlator real-time data tables.

The table descriptions below list the keywords for each data
table as they are represented in the script files. Along with each
keyword is its data type and a pointer offset to its location with
respect to the beginning of the appropriate data table row.

The description structures are declared once, as part of the
job queue table initialization.

LANGUAGE: C (Include file)
ENVIRONMENT: VxWorks
++$ AUDIT TRAIL
1.0 89/04/26 jbenson Initial submission
1.1 89/05/15 fxcorr date and time created 89/05/15 15:28:16 by fxcorr
1.2 89/05/24 jbenson put structs in alpha order, lined up columns by hand.
1.3 89/05/25 jbenson re-load alphabetized file..
1.4 89/07/13 jbenson add stn_a_x, y, z to constants table.
1.5 89/07/18 jbenson added net.side, sky.freq to channels description
1.7 89/07/19 jbenson put bbconv back into channels table
1.6 89/07/19 jbenson station-based correl, channels, obs, formatter tables
1.8 89/09/13 jbenson add array.id to observations table
1.9 89/09/14 jbenson change formatter.mode from char to float

-*/

/* Channels Table Description */

struct channels channels.onerow;
tdefine channels.P(xx) (char *)(ftchannels.onerow.xx)
struct table.desc chan.descQ = {

"name", "char", channels.P (name[0]) - channels.P (name[0]),

71

"date",
"time",
"net.side",
"bbfilter",
"ifchan",
"bbconv",
"fe",
"sky.freq",
"fchanu",
"fchanl",

"date",
"time",
"int",
"char",
"char",
"int",
"char",
"double"
"int",
"int",

channels.P (date) - channels_P (name[0]),
channels.P (time) - channels.P (name[0]),
channels.P (net.side) - channels.P (name[0]),
channels.P (bbfilter) - channels.P (name[0]),
channels.P (ifchan) - channels.P (name[0]),
channels.P (bbconv) - channels.P (name[0]),
channels.P (fe) - channels.P (name[0]),
,channels.P (sky.freq) - channels.P (name[0]),
channels.P (fchanu) - channels.P (name[0]),
channels.P (fchanl) - channels.P (name[0])

/* Clocks Table Description */

struct clocks clocks.onerow;
#define clocks.P(xx) (char *)(&clocks.onerow.xx)
struct table.desc clocks.descD = {

"name", "char", clocks.P (name[0]) - clocks.P (name[0]),
"date", "date", clocks.P (date) - clocks.P (name[0]),
"time", "time", clocks.P (time) - clocks.P (name[0]),
"offset", "float", clocks.P (offset) - clocks.P (name[0])

>;
/* Physical Constants Table Description •/

struct constants constants.onerov;
#define constants.P(xx) (char *)(ftconstants.onerow.xx)
struct table.desc constants.descQ = {

"vlight", "double", constants.P (vlight) - constants.P (vlight),
"gauss", "double", constants.P (gauss) - constants.P (vlight),
"accelgrv", "double", constants.P (accelgrv) - constants.P (vlight),
"gmsun", "double", constants.P (gmsun) - constants.P (vlight),
"gmmoon", "double", constants.P (gmmoon) - constants.P (vlight),
"tsecau", "double", constants.P (tsecau) - constants.P (vlight),
"earthrad", "double", constants.P (earthrad) - constants.P (vlight),
"emsmms", "double", constants.P (emsmms) - constants.P (vlight),
"ugrvcn", "double", constants.P (ugrvcn) - constants.P (vlight),
"eflat", "double", constants.P (eflat) - constants.P (vlight),
"dipolar", "double", constants.P (dipolar) - constants.P (vlight),

72 E TABLESJ)ESC. H SCRIPT KEYWORDS HEADER FILE

"etide.lag","double",
"love.l", "double",
"love_h", "double",
"ephepoch", "double",
"preconst", "double",
"relative", "double",
"stn.a.x", "double",
"stn_a_y", "double",
"stn_a.z", "double",

constants.P (etide.lag) - constants_P (vlight),
constants_P (love_l) - constants.P (vlight),
constants_P (love.h) - constants.P (vlight),
constants.P (ephepoch) - constants.P (vlight),
constants.P (preconst) - constants.P (vlight),
constants.P (relative) - constants.P (vlight),
constants.P (stn.a.x) - constants.P (vlight),
constants.P (stn_a_z) - constants.P (vlight),
constants.P (stn.a.z) - constants.P (vlight)

/* Correl Table Description */

struct correl correl.onerov;
#define correl.P(xx) (char *)(ftcorrel.onerow.xx)
struct table.desc correl.descQ = {

"name",
"date",
"time",
"fftsize",
"interleav",
"overlap",
"interpol",
"filter",
"window",
"time.avg",
"spect.avg",

•char", correl.P (name[0]) - correl.P (name[0]),
•date", correl.P (date) - correl.P (name[0]),
•time", correl.P (time) - correl.P (name[0]),
'int", correl.P (fftsize) - correl.P (name[0]),
•int", correl.P (interleav) - correl.P (name[0]),
•int", correl.P (overlap) - correl.P (name[03),
•int", correl.P (interpol) - correl.P (name[0]),
•char", correl.P (filter) - correl.P (name[0]),
•char", correl.P (window) - correl.P (name[0]),
•float", correl.P (time.avg) - correl.P (name[0]),
•float", correl.P (spect.avg) - correl.P (name[0])

/* Formatter Table Description */

struct formatter formatter.onerow;
tdefine formatter.P(xx) (char *)(ftformatter.onerow.xx)
struct table.desc formatter.desc • « {

"name", "char", formatter_P(name[0]) - formatter.P(name[0]),
"date", "date", formatter.P(date) - formatter.P(name[0]),
"time", "time", formatter.P(time) - formatter.P(name[0]),
"sample.rate", "float", formatter.P(sample.rate) - formatter.P (name[0]),
"sample.mode", "char", formatter.P(sample.mode) - formatter.P (name[0]),

73

"format", "char", formatterJP(format) - formatter_P (name[0]),
"formatter_mode","float",formatter_P(formatter.mode) - formatter.P (name[0]),
"barrel_swx", "char", formatter.P(barrel.swx) - formatter_P (name[0])»
"track_swx", "char", formatter_P(track_swx) - formatter.P (name[0]),
"write_speed", "float", formatter_P(write_speed) - formatter.P (name[0])

/* Job Table Description */

struct job job_onerow;
#define job_P(xx) (char *)(&job_onerow.xx)
struct table.desc job.descD - {

"jobid",
"program",
"date.start",
"date.stop",
"start",
"stop",
"n.drives",
"n_chans",
"n_fft_pts",
"n_stns",
"fft_factor",

"char", job.P (jobid) - job.P (jobid),
"char", job_P (program) - job.P (jobid),
"date", job.P (date.start) - job.P (jobid),
"date", job_P (date.stop) - job_P (jobid),
"time", job_P (start) - job_P (jobid),
"time", job_P (stop) - job_P (jobid),
"int", job_P (n_drives) - job_P (jobid),
"int", job_P (n.chans) - job.P (jobid),
"int", job_P (n.fft.pts) - job_P (jobid),
"int", job_P (n.stns) - job_P (jobid),
"int", job.P (fft.factor) - job_P (jobid)

/* Observations table Description */

struct observations obs_onerow;
#define obs_P(xx) (char *)(ftobs.onerov.xx)
struct table.desc obs.descQ = {

"source", "char", obs.P (source[0]) - obs_P (source[0]),
"name", "char", obs_P (name[0]) - obs_P (source[0]),
"array.id", "int", obs_P (array_id - obs_P (source[0]),
"date", "date", obs_P (date) - obs.P (source[0]),
"start", "time", obs.P (start) - obs_P (source[0]),
"stop", "time", obs_P (stop) - obs_P (source[0]),

/* Polar Table Description */

74 E TABLESJ)ESC. H SCRIPT KEYWORDS HEADER FILE

struct polar polar.onerov;
#define polar.P(xx) (char *)(ftpolar.onerov.xx)
struct table.desc polar.descD = {

"date", "date", polar.P (date) - polar.P (date),
"time", "time", polar.P (time) - polar.P (date),
"x", "float", polar.P (x) - polar.P (date),
"y", "float", polar.P (y) - polar.P (date)

>;
/* Solar System Table Description */

struct solar solar.onerov;
#define solar.P(xx) (char *)(ftsolar.onerov.xx)
struct table.desc solar.descD = {

"date", "date", solar.P (date) - solar.P (date),
"earth.x", "float", solar.P (earth.x) - solar.P (date),
"earth.y", "float", solar.P (earth.y) - solar.P (date),
"earth.z", "float", solar.P (earth.z) - solar.P (date),
"earth.vx", "float", solar.P (earth.vx) - solar.P (date),
"earth.vy", "float", solar.P (earth.vy) - solar.P (date),
"earth.vz", "float", solar.P (earth.vz) - solar.P (date),
"moon.x", "float", solar.P (moon.x) - solar.P (date),
"moon.y", "float", solar.P (moon.y) - solar.P (date),
"moon.z", "float", solar.P (moon.z) - solar.P (date),
"moon.vx", "float", solar.P (moon.vx) - solar.P (date),
"moon.vy", "float", solar.P (moon.vy) - solar.P (date),
"moon.vz", "float", solar.P (moon.vz) - solar.P (date),
"sun.x", "float", solar.P (sun.x) - solar.P (date),
"sun.y", "float", solar.P (sun.y) - solar.P (date),
"sun.z", "float", solar.P (sun.z) - solar.P (date),
"sun.vx", "float", solar.P (sun.vx) - solar.P (date),
"sun.vy", "float", solar.P (sun.vy) - solar.P (date),
"sun_vz", "float", solar.P (sun.vz) - solar.P (date)

/* Sources Table Description */

struct sources src.onerow;

75

#define src.P(xx) (char *)(ftsrc.onerow.xx)
struct table.desc src.descD = {

"name", "char", src.P (name[0]) - src.P (name[0]),
"ra", "angle", src.P (ra) - src.P (name[0]),
"dec", "angle", src.P (dec) - src.P (name[0]),
"epoch", "float", src.P (epoch) - src.P (name[0]),
"parallax", "float", src.P (parallax) - src.P (name[0])
"date", "date", src.P (date) - src.P (name[0]),
"time", "time", src.P (time) - src.P (name[0]),
"dlra", "double", src.P (dlra) - src.P (name[0]),
"dldec", "double", src.P (dldec) - src.P (name[0]),
"d2ra", "double", src.P (d2ra) - src.P (name[0]),
"d2dec", "double", src.P (d2dec) - src.P (name[0])

/* Stations Table Description #/

struct stations stations.onerow;
#define stations.P(xx) (char *)(ftstations.onerow.xx)
struct table.desc stations.descQ = {

name", "char", stations _P (name[0]) - stations.P (name[0]),
x", "double", stations. _P (x) - stations.P (name[0]),
y". "double", stations. _P (y) - stations.P (name[0]),
?n ~ » "double", stations _P (z) - stations.P (name[0]),
x.phs", "double", stations. _P (x.phs) - stations.P (name[0]),
y.phs", "double", stations. .P (y.phs) - stations.P (name[0]),
z.phs", "double", stations. _P (z.phs) - stations.P (name[0]),
axistype", "char", stations. _P (axistype[0]) - stations.P (name[0])
axisoff", "float", stations. _P (axisoff) - stations.P (name[0])

/* Tapes Table Description */

struct tapes tapes.onerow;
#define tapes.P(xx) (char *)(fttapes.onerow.xx)
struct table.desc tapes.descQ - {

"name", "char", tapes.P (name[0]) - tapes.P (name[0]),
"tapeid"", "char", tapes.P (tapeidCO]) - tapes.P (name[0]),

76 E TABLESJ)ESC. H SCRIPT KEYWORDS HEADER FILE

"date", "date", tapes_P (date) - tapesJP (name[0]),
"start", "time", tapes.P (start) - tapes JP (name[0]),
"stop", "time", tapes.P (stop) - tapes_P (name[0])

>;
/* UT1 Table Description */

struct UT1 UTl.onerow;
#define UTl.P(xx) (char *)(&UTl_onerow.xx)
struct table.desc UTl.descD = {

"date", "date", UT1.P (date) - UT1.P (date),
"time", "time", UT1_P (time) - UT1.P (date),
"utlutc", "double", UT1_P (utlutc) - UT1.P (date)

>;

77

F JOBJ)ESC.H Job-Structure Header File

-r—r--r~ 1 jbenson vlb 4168 Aug 7 11:48 s.JOB.DESC.H
in directory /home/ccc/vlb/fxcorr/src/code/SCCS

/*+ JOB.DESC.H
'/,*/, Initialization values for Job Table.

A Job Table is created by the the Job.Loader task. The contents of
the table.comQ array are copied into the new Job Table. Each row
contains : the data table name, the number of rows in that table
(filled in by Job.Loader), the data table row size, the number of keys,
the data table base pointer and current row pointer, and the pointer
to the description table for the current data table.

LANGUAGE: C
ENVIRONMENT: vxWorks

++$ AUDIT TRAIL
1.0 89/05/11 jbenson Initial submission.
1.1 89/05/15 fxcorr date and time created 89/05/15 15:27:28 by fxcorr
1.2 89/05/24 jbenson lined up columns by hand.
1.3 89/07/13 jbenson modify constants table enrty for station a coords
1.5 89/07/19 jbenson put bbconv back into channels table
1.4 89/07/19 jbenson station-based correl, channels, obs, formatter tables

-*/

/* Job Table Description */

#define rowsize(yy) sizeof(struct yy)
struct job_table table_com[]

"stations", 0, rowsize (stations),
"UT1", 0, rowsize (UT1),
"polar", 0, rowsize (polar),

9, 0, 0, &stations_desc[0],
3, 0, 0, &UTl_desc[0],
4, 0, 0, &polar_desc[0],

78 F JOBJ)ESC.H JOB-STRUCTURE HEADER FILE

"sources", 0, rowsize (sources), 11, 0, 0, &src_desc[0],
"channels", 0, rovsize (channels), 11, 0, 0, &chan_desc[0],
"formatter", 0, rowsize (formatter), 10, 0, 0, &formatter_desc[0],
"observations", 0, rovsize (observations) , 5, 0, 0, &obs_desc[0],
"correl", 0, rowsize (correl), 11, 0, 0, &correl_desc[0],
"tapes", 0, rowsize (tapes), 5, 0, 0, fttapes.desc[0],
"clocks", 0, rowsize (clocks), 4, 0, 0, &clocks_desc[0],
"constants", 0, rowsize (constants), 20, 0, 0, ftconstants_desc[0] ,
"job", 0, rowsize (job), 11, 0, 0, &job_desc[0],
"solar", 0, rowsize (solar), 19, 0, 0, &solar_desc[0]

79

G ACTIVE.H Active Base Table Header File

-rw-rw-r— 1 jbenson vlb 878 Aug 14 10:40 ACTIVE.H
- r ~ r ~ r ~ 1 jbenson vlb 1332 Sep 19 10:46 s.ACTIVE.H

in directory /home/ccc/vlb/fxcorr/src/code/SCCS

/*+ ACTIVE.H
Structure declaration for active.table, base table of active tables.

The active tables associated with a particular correlator job each have
a one row description in the active_base_table. As new active tables are
allocated and filled, their respective table base pointers said row counters
are updated in the active.base.table.

LANGUAGE: C (Include file)
ENVIRONMENT: vxWorks
++$ AUDIT TRAIL
1.0 89/08/07 jbenson Initial submission

-*/

•define N.ACTIVE 100

struct active.base.table {
char table.name[16]; /* active table name */
int table.num; /* index or version number that

distinguishes multiple versions
of the same table.name; first
index number = 0 */

int num_rows; /* number of row in current table */
int row_size; /* row size (bytes) */
int num_ elements; /* number of elements per row */
char *base_ptr; /* pointer to first row in table */
char *current_row; /* pointer to current row */

#include "MODEL.H

80 H MODEL.H MODEL TABLE HEADER FILE

H MODEL.H Model Table Header File

- r — r — r — 1 jbenson vlb 5540 Sep 19 10:40 s.MODEL.H
in directory /home/ccc/vlb/fxcorr/src/code/SCCS

/*+ MODEL.H
'/,'/, Structure declaration for CALC/polynomial model table.

The MODEL.H include file is the structure declaration of a table
created by the Model Task. The Model Table address is stored in the
Job Table. The CALC solutions and the polynomial coefficients from
the quintic spline fitter are held in the Model Table.

LANGUAGE: C (Include file)
ENVIRONMENT: vxWorks
++$ AUDIT TRAIL
1.0 89/06/14 jbenson Initial submission
1.1 89/06/15 jbenson date and time created 89/06/15 12:17:28 by jbenson
1.2 89/06/15 jbenson shortened record, int to short etc.
1.3 89/06/16 jbenson change struct name to model.table
1.4 89/06/16 jbenson add semicolon after last close bracket
1.5 89/08/28 jbenson add delay rate polynomials, 5 terms each.
1.6 89/09/15 jbenson add tape.delay word, PBD offset (samples). — $

-*/

/• MODEL TABLE STRUCTURE */

struct model.table {
int date; /* model epoch date (MJD) */
double time; /* model epoch time (rad) */
short stn.id; /* station id number */
short src_id; /* source id number */
short crl_channel; /* correlator channel number this

* model */
short on_src_flag; /* on = 1, off « 0 source flag */

81

short CALCLflag; /* CALC flag : -1; CALC solution not
* required, 0; CALC not yet
* attempted, 1; CALC successful, >1;
* CALC invalid solution, error no. */

short poly.flag; /* spline fitter flag : -1; polynomial
* solution not required, 0;
polynomial solution not yet

* attempted, 1; polynomial solution
* successful, >1; invalid solution,
* error no. */

int tape.delay; /* delay to offset PBD (samples) */
double gdelay; /* group delay (samples) */
double grate; /* group delay rate (samples/second) */
double pdelay; /* phase delay (turns) */
double prate; /* phase delay rate (turns/second) */
double gpoly[4]; /* group delay polynomial (samples)

* coefficients 2 - 5 */
double ppoly[4]; /* phase delay polynomial (turns)

• coefficients 2 - 5 */
double grpoly[5]; /* group delay rate polynomial */
double prpoly[5]; /* phase delay rate polynomial */

82 I HARDWARE CONTROL BUS INTERFACE

I Hardware Control Bus Interface

I . l Overview

The VLBA Correlator Hardware Control Bus is the lower level portion of
the communications path from the real time control VME system to the
correlator hardware (see the "HDWR CTRL BUS INTF (HCB)" module
in Figure 2). The complete path is not yet fully defined, but should be
something of the following nature:

16 HCB
slaves

* * 16 HCB
slaves

®6 16 HCB
/ * slaves

16 HCB
slaves

Each of the 68230 parallel interface chips provides 8 bi-directional data
lines and 8 control lines to the corresponding transition module. The transi-
tion module contains the handshake hardware to interface to up to 16 slave
targets in a correlator rack.

Each transition module provides the following signals to the correspond-
ing rack:

Global to all slave interfaces:
8 bi-directional data lines HCB[0..7]
2 mode lines MODE1, MODEO
1 strobe line STROBE

Dedicated, one to each slave:
16 select lines SELECT
16 acknowledge/attention lines ACK
43 total signals

1.2 Mode Definitions 83

All signals between the transition module and the slave targets are dif-
ferential RS-485 signals, resulting in 86 wires to the rack. The data lines
have 100 ohm terminations at each end of the run (single resistor between
the two wires).

The STROBE and MODE lines have terminations at the far end of
the run which float low if there is no driver. The SELECT lines have a
termination at the slave that floats low if there is no driver. The ACK lines
have a termination at the transition module that floats high if there is no
driver. (These terminations consist of a series of three resistors, 330 ohm
4- 150 ohm + 330 ohm, where one end goes to +5V, the other end goes to
ground and the differential signal connects to each side of the 150 ohm.)

The HCB bus master may write to a single slave, or may "broadcast"
to more than one slave at a time. The hardware provides the capability of
allowing slaves to originate an attention request to the master.

Collision protection is provided in part by the hardware and in part by
the slave software. A first byte state is provided to indicate that the next
byte is the first byte of a transmission from the master to a slave. When a
slave detects the first byte state, it must abort any pending communication
process. In the hardware, the process of writing to a slave clears any pending
hardware attention request from the slave.

When the master detects an attention request from a slave, the master
responds by requesting a transmission from the slave.

1.2 M o d e Definit ions

The two bit mode word is decoded at each slave, along with the select line,
to define the following modes:

SELECT MODE FUNCTION
not selected 0 allow slave to assert attention to master
not selected 1-3 idle
selected 0 master interrupts slave to flag first byte
selected 1 master writes bytes to slave
selected 2 master reads from slave
selected 3 master resets slave

The RESET function is a hard reset, applied to the slave microprocessor.

84 I HARDWARE CONTROL BUS INTERFACE

1.3 Slave Targets in a Rack

There are presently 8 slaves defined in each of the four correlator racks
(see Figure 7). Using the notation HCBn to indicate a specific slave HCB
interface port:

• HCBO thru HCB5 are the six Playback Interfaces in the DPC chassis.
The actual HCB interface goes to a 68000 processor on the Deformatter
Card, which in turn is interfaced to the four 8751 processors on the
two Track Recovery Cards.

• HCB6 goes to the FFT Control Card.

• HCB7 goes to the System Control Card which includes the Multiplier
Control functions.

• The Long Term Accumulator may be located in one of the correlator
racks. If so, it may also have a HCB interface.

If expansion is required beyond 16 slaves per rack, a second HCB will be
provided for the rack.

1.4 Sub-Targets at Each Slave

Bytes per rack indicates the number of bytes that must actually be trans-
ferred to the slave, which may be less than the number of physical bytes in
the target. For example, there are four sets of Xilinx chips in the PBI that
receive identical personalities, so the data for only one set is sent. Update
rates are shown if updates are more often than once per observation. Total
bytes per rack for PBI, FFT Control, MULT Control and LTA (some byte
counts rounded to nearest IK; these figures are very preliminary):

PBI FFT MULT LTA Rack totals (bytes)
477K 683K 6K ? 1160K at start observation

0 31K 0 ? 31K at "minutes" update rate
6K 0 0 ? 6K at tape reversals

111K 82K 2K ? 195K at tape change

The following sections provide details on the sub-targets in each rack.

£ •i

«
*
S «
o o p

w c
0 •-1
O s
J0
g
fr4

Co
c Cr i
CO

o fcr &
CD £

00 OI

86 I HARDWARE CONTROL BUS INTERFACE

1.4.1 Playback Interface (PBI)

There are 6 PBIs per rack, each with 2 Track Recovery Cards, 1 Deformatter
Card. The HCB interface is connected to a 68000 /iP on the Deformatter.

sub-target
bytes/

PBI
at obs

start
bytes/update/rack

sub-target
bytes/

PBI
at obs

start rack period
Deformatter, 68K code 10K 60K
Deformatter, barrel-roll
& data invalid; set of 2
Xilinx XC3020 (1.9K
per chip)

4K 24K . . .

Detormatter: Bit
Ordering; set of 4
Xilinx XC3030(?)
(2.8K per chip)

11K 66K 66K tape changes

Deformatter: FFT
sequencer RAM 4K 24K 24K tape changes

Deformatter: R/W
sequencer RAM 2K 12K 12K tape changes

Deformatter: Address
sequencer RAM 512 3K 3K tape changes

Track Recovery: 8751
code (4 total per ant,
4K each)

16K 96K

Track Recovery: set ot
11 Xilinx XC3030 for 9
tracks (2.8K per chip)

31K 186K

PBI misc: active
tracks, tape modes, ?????

IK 6K 6K tape changes
& reversals

Rack sub total: 477K 6K
111k

reversals
tape changes

1.4 Sub-Targets at Each Slave 87

1.4.2 FFT Control Card

The Parameter storage RAM is presently 8Kx32; it may be increased to
32Kx32.

Sub-Target Bytes/rack
at obs start

Periodic
bytes/rack

Update
period

8751 code 4K
Fringe model 21K 21K minutes
Delay model 5K 5K minutes
FSEC model 5K 5K minutes
Pulsar model IK
Trig tables 596K
RAMs on FFT cards:
window, EXT0UPR,
EXT0LWR, EXT5,
TTijsr,

50K 50K tape change

F F T ASI(J control
w o r d s

IK IK tape change

Rack sub total: 683K 31K
82K

minute level
tape change

Fringe: 10 stations x 4 channels x 8 coef = 320 coef
(320 phase coef + 320 rate coef) x 8 bytes = 5120 bytes
5120 bytes per model x 4 models = 20,480 bytes total

Delay: 10 stations x 2 phase centers x 8 coef = 160 coef
160 coef x 8 bytes = 1280 bytes
1280 bytes per model x 4 models = 5120 bytes total

FST: 10 stations x 2 phase centers x 8 coef = 160 coef
160 coef x 8 bytes = 1280 bytes
1280 bytes per model x 4 models = 5120 bytes total

Pulsar: 1 pulsar x 4 channels x 4 coef = 16 coef
16 coef x 8 bytes = 128 bytes
128 bytes per model x 4 models = 512 bytes total

88 I HARDWARE CONTROL BUS INTERFACE

1.4.3 Mult Control Card (system control card?)

Sub-Target Bytes/rack at
obs start

Periodic
bytes/rack

Update Period

8751 code 4K
Mult ASIC
control words

2K 2K tape change

Rack sub total: 6K 2K tape change

1.4.4 Long Term Accumulator (LTA)

To be defined.

1.5 H C B Slave Interface Hardware Description

To be inserted later. Until then, consult the schematic in Figure 8.

Ox

RCVENAVl
BUSENAl
OEAVi
ACXAV l

RESET:
IRQVi

FOR WRITES FROM MASTER TO 2950,
AOC GOES LOW WHEN 2950 IS BUSY. GOES HIGH WHEN 2950 IS READY FOR MORE DATA.
FOR READS OF 2950 BY MASTER, ACX GOES LOW WREN 2950 HAS NEW DATA, HIGH WHEN MASTER BAS READ THE DMA.
FOR ATTENTION REQUEST FROM SLAVE TO MASTER, ACX GOES LOW; CLEARS WHEN MASTER INTEROGATES SLAVE.
ENABLE DATA FROM HCB BOS TO LOCAL BOS
ENABLE DATA FROM LOCAL BOS TO HCB BOS
ENABLE DATA FROM 2950 PORT A TO LOCAL BOS
ACX PULSE TO 2950 FOR BOTH READ AND WRITE (PULSES LOW, TRAILING EDGE IS ACTIVE)
WRITE PULSE TO 2950 FOR WRITES BY MASTER (PULSES LOW, TRAILING
HIGH TRUE RESET PULSE
LOW TRUE INTR HOST PULSE TO SLAVE

INPUTS FROM BCB

STROBE GETS INTO OEM BUT NOT INTO RCVENAV. CONTENTION BETWEEN THE 15116 AND 2950 IS NOT POSSIBLE. BECAUSE MODE KILL NEVER BE CHANGED WHILE

IF STROBE WAS IN RCVENAV, THEN IT WOULD BE NECESSARY TO MAKE SURE THAT SUFFICIENT HOLD TIME EXISTS WHEN WRITING DATA FROM THE MASTER TO THE 2950.
A SLAVE CAN INITIATE AN ATTENTION REQUEST ONLY WHEN 0 AND THE TARGET IS NOT SELECTED. THOS WHEN ONE OR MORE SLAVES ARE SELECTED FOR WRITING, OR A SINGLE SLAVE IS SELECTED FOR READING, ALL NON-SELECTED SLAVES WILL HOLD ACX/IRQ HIGH.

STROBEV GETS INTO ACXAV DURING WRITES TO THE SLAVE
MINIMUM STROBE PULSE WIDTH IS 1.1 uSi REQUIRES 24 CLOCK PERIODS FOR RESET • 1.5 US AT 1«MH|)

J REQUIRES 10 CLOCK PERIODS FOR RESET - <00 nS AT 12.5 (•<•1 REQUIRES 1 US)

MKUHE HUUbl— muuu fc'UNC'lluN not HL'VLHAV BUSbHA OEJrt AOtAV— Inurv RESET 1KU\

1
X X X

— n —

0
1 0 0
1

i

1

IDLE IDLE IDLE
MASTER SENDS IRQ TO SLAVE MASTER WRITES TO SLAVE MASTER READS FROM SLAVE MASTER RESETS SLAVE (HARD RESET)

BUSYV S1JATARDYV t

0
8 I

STROBE
1

STROBEV

1
1

STROBEV STROBEV STROBEV STROBEV
STROBEV

1 0 0 0 STROBE

STROBEV

1

TTtT
VLBA CORRELATOR PROJECT
NATIONAL RADIO ASTRONOMY OBSERVATORY
CHARLOTTESVILLE. VA

00 <D

J UNRESOLVED ISSUES & TBDS

Unresolved Issues &: TBDs

1. "Single-dish" (auto-correlation) jobs (one-station arrays!). Can AIPS
accept auto-correlation spectra?

2. How will we specify things like track-substitution in track recovery
logic? (Equivalent question is: how will we be told to do it by ACC?)
How will we know about barrel-roll active/inactive?

3. Handling of bad-data flags.

4. Transfer of Schedules/Logs from non-VLBA stations.

5. Worldwide tape bar-code system.

6. Software support for pulsar modes.

7. LTA-output filter.

91

K Technology Used to Prepare This Document
The correlator project uses Sun workstations under SunOS 4.0.ar, with a
Sun-3/280 file server and five Sun-3/50 and 3/60 clients. The 3/280 has
16 MB of RAM and one 892 MB disk. The 3/50 clients each have 8 MB of
RAM (4 MB original plus 4 MB expansion kits from Solflower Computer).

This document has been typeset using &Tj?X version 2.09 executing un-
der TeX version 2.9. The document is in frT^X's "article" style with 11 pt
type. The various sections, figures and appendices were integrated into
this typeset document by use of a "Makefile" processed by the basic Unix
utility make. It is hard to exaggerate the usefulness of make. The text
was edited by several different people, using several different editors. Two
of the authors use Richard Stallman's "GNU" Emacs (distributed by the
Free Software Foundation) with emacstool under the Sun view-1 window
system; another uses Sun's t e x t e d i t window- and mouse-based text edi-
tor. The document was examined in the workstation windows while editing
by using the dv i too l previewer from the "Vortex" project at UC-Berkeley.
Output was on a QMS PS-810 300 dpi laser printer operating in its (default)
Postscript mode using the dvi2ps utility.

Figures 1, 3, 4, 6 and the drawing on p. 82 were "edited" in the Sun
windows using the "Fig" graphics editor, version Fig 1.4.FS. The "Trans-
fig" package was used to incorporate these figures into the &T]?X document
automatically. Figures 2, 5, 7 and 8 were prepared on a PC using ORCAD
with output in Postscript format; the Postscript files were inserted (scaled
down) into the document with the \ spec ia l{} command of dvi2ps.

Appendices B, C, D, E, F, G and H are maintained using the SCCS
(Source Code Control System) utility of Berkeley Unix. The extraction of
the current SCCS versions and the reformatting of the text for typesetting
were performed by a shell script which utilized the AWK language15. AWK
has proven to be quite useful for a number of utility operations, especially
in its gawk version from the Free Software Foundation.

These are public domain tools; modest shipping and handling charges
were paid for the original Unix T^X tape from the Univ. of Washington
and the Vortex tape from UC-Berkeley. The other tools were fetched from
various anonymous-guest FTP (File Transfer Protocol) archives across the
Internet free of charge. In fact Unix-T^X is now freely available via FTP.

15see "The AWK Programming Language", A. V. Aho, B. W. Kernighan, P. J. Wein-
berger, Addison-Wesley, 1988.

