
VLBA Correlator Memo N o . ^ £ 

Correlator Software Status* 

Don Wells 
National Radio Astronomy Observatory, Charlottesville, Virginia 

Ju ly 17, 1990 

Abstract 

A status report for the real-time software project for the VLBA 
Correlator for the period of approximately 2Q90 is given. During this 
period the conventions for code management and style were settled 
and portions of the tasking structure came into existence. The Group 
has nearly completed bringing all existing code and code development 
under the NSE code management system; i.e., most of the Group mem-
bers are now working together on a shared body of code rather than 
working independently on separate subsystems. 

Contents 

1 N a m i n g & D o c u m e n t a t i o n C o n v e n t i o n s 2 
1.1 Use of WRS's Module Naming Conventions 2 
1.2 Commenting/EXDOC Conventions for C-code 2 

2 T a s k s 3 
2.1 Station Code 3 
2.2 Model Code 5 
2.3 Tape Code 6 

3 U s e of N S E 6 
3.1 Component and Environment Structure 6 
3/2 NSE Bugs 9 

4 N e w R T H a r d w a r e 9 

'Postcript file in: / h o m e / c c c / v l b / f x c o r r / d B e l l s / s t a t i o n l / d o c / j u l 9 0 . p s 

1 



2 1 XAMIXC & DOCUMEXTATIOX COXVEXTIOXS 

1 Naming & Documentation Conventions 
Until recently Group members were working independently on subsystems 
of the Correlator, and coding conventions differed. As the code is being 
integrated and members are beginning to share responsibility for it, the time 
has come to more closely coordinate styles and practiccs, while continuing 
to tolerate some diversity. 

1.1 Use of WRS's Module Naming Conventions 1 

The Group decided during 2Q to adopt the WRS [Wind River Systems] 
convention of naming all modules with a 3- or -l-character lower case clas-
sification prefix followed by one or more capitalized (not uppercase) words. 
For example, all module names in the :vxWorks:s ta t ion component now 
start with " s tn" . This naming convention also applies to our include files 
For example, the include associated with the station component is <stn .h>. 
External structure declarations (for globally known variables, the C analogy 
to Fortran COMMON blocks) have names like s tnExte rn . Finally, the con-
vention is even used for parameters defined in includes and for enumeration 
symbols. There are two motivations for the convention: 

• When a programmer finds a symbol used in any module he can im-
mediately predict in which include file or NSE component (directory) 
the symbol is defined. 

• The convention minimizes the possibilities for name conflicts in the 
shared memory, shared library global namespace of vxWorks. 

1.2 Commenting/EXDOC Conventions for C-code 

The Group has reaffirmed our prior decision to use module commenting 
conventions similar to those used by the Monitor & Control Group and to 
use a variation on the program EXDQC to extract the comment text, keywords, 
one-line descriptions, etc. In particular, the Group has reaffirmed that the 
one-line description summaries and keywords are a good thing, and will 
provide a toolset to extract, search and print these items. These decisions 
have not yet been fully implemented. 



3 

2 Tasks 

During the period covered in this status report the tasking structure for the 
Correlator began to take shape. In particular, code for tasks associated with 
the station, model-generation and tape-control functions was defined, and 
these functions are discussed below. 

Development of the batch jobs associated with the DBMS on the general 
purpose computers was suspended beginning 2Q90 to permit concentration 
of the whole Group on the RT tasks. It was judged that this DBMS code 
was in good shape, with development substantially ahead of the RT code. 
Further development of the DBMS schema is now limited to what is found 
to be needed for further RT task development. This hold on DBMS de-
velopment will probably persist through 3Q90 and maybe through 4Q as 
well. 

All development of the Archive, Clock and Distribution tasks has been 
deferred temporarily. Also, the procurement of hardware for the Archive 
and Distribution functions has been deferred until sometime in 91 (maybe 
2Q91) both because the software development is deferred and in order to 
exploit continuing technology developments. 

2.1 Station Code 

The Group decided at the beginning of 2Q that we would concentrate on 
integrating tasks along an axis connecting the job script files which are pro-
duced by the DBMS and the HCB [Hardware Control Bus] which connects 
to the FFT cards. (This axis is the vertical line of arrows in Figure 1 below.) 
Subsequently we broadened the axis to include the model and tape tasks. 
The goal is to deliver a first version of the integrated task structure which 
will run jobs, commanding the hardware as it becomes available, but also 
able to run independent of the hardware for software debugging purposes. 
The s tnTask interacts with most of the hardware and software entities in 
the architecture, and so the act of defining it necessarily defines most of the 
rest. Indeed, paradoxically, s tnTask cannot be defined until the other enti-
ties have been defined; development of s tnTask is therefore lagging behind 
development of several other related tasks. 

In Figure 1 the tasknames follow our new naming conventions. This fig-
ure is an updated version of Fig. 4 on p. 36 in VLB A Correlator Memo No. 95 
(Sept. 29, 1989); it is beginning to be an "as built" schematic. The current 
experimental version of the system spawns the "permanent" tasks t i ckTask , 



2 TASKS 

LTA RAM LTA RAM Archive 
•disk? 

v 
VSN 
request* 
to operator 

t 
upe-mount 
requests 
to operator 

messages 
to operator 

job scripts, 

SELECTcd from DBMS 

ooCCC 

« — • m main data flow 
— » uskinitjv/w-ctrl 

»info-flow.pointen 
m » 131msec big-tick 

• -Done 

• i 
• i • In progress 

- Deferred 

© • permanent unique tasks 

revised by DWtllt. !7Jly90 15:10 

Figure 1: Real-Time Tasks 



2.2 Model Code 5 

t i c k T e s t , s tnFf tTask , modlTask and stnHchgTask. These tasks are spe-
cially marked in the figure as "permanent unique"; the latter attribute refers 
to the fact that there is only one instance of each of these tasks, the for-
mer attribute refers to the fact that these tasks are spawned at boot time 
and run forever. The experimental code also runs the jb ldTask to read 
a test job script, and then spawns a jobTask to run the job, which then 
spawns one or more stnTasks. A version of the experimental code in June 
spawned two independent job tasks with different job scripts, each of which 
spawned multiple independent station tasks, just to demonstrate that the 
architecture supports this. The jobTasks and stnTasks are created dy-
namically and go away when their respective jobs are completed. Soon the 
stnTasks will also be spawning tapeTasks and eventually the jobTasks will 
be spawning arryTasks and/or archTasks (these details have not yet been 
finally decided). 

Because the hardware interrupt has not yet been connected, and also for 
test purposes, the 7.63 Hz (106 /21 7) "ticking" action of the VLBA Correlator 
is simulated with a software interrupt generated by the t i c k T e s t task that 
runs at a lower frequency than the RT hardware will run. Each jobTask 
maintains the master time variable for its job. We decided that we will use 
floating point MJD (Modified Julian Days) for our internal time scales. 

2.2 Model Code 

During 2Q90 the modlTask, which includes the GSFC CALC code, approached 
its final form. We decided to compute models on a station basis. The model 
task acts as a server and each station invokes it periodically by writing mes-
sages into a "pipe". The model task reads the messages and then examines 
the station's job script and computes models as needed, and appends them 
to a list of models maintained for each station. The objective is to compute 
models far in advance of need, about 20 minutes ahead in the current ver-
sion, but not for entire jobs. Thus, the work of computing models, which is 
-expected to be the major CPU loading in the first CPU, is spread out and 
scheduled to minimize risk of a hard deadline crisis. The station tasks get 
their models from the lists as needed and delete them from the lists when 
they are no longer needed. WRS's I s t L i b has proven to be useful for these 
operations. 

We have added the stnMchgTask (model changer) to the software archi-
tecture in order to coordinate the simultaneous loading of new delay models. 
Because there is only one time variable for the model generator system of 



6 3 USE OF S'SE 

the FFT control card, and because this variable resets to zero on a model 
change, the act of loading or changing any model is a critical region for the 
entire Correlator, analogous to a crossbar reconfiguration. Indeed, cross-
bar changes and model changes must be interlocked, and furthermore any 
crossbar change must be followed immediately by a model change. 

2.3 Tape Code 

An experimental standalone tape manipulation code has been developed 
during 2Q, code that talks using the MCB to our one playback drive. A 
goal for 3Q is to integrate this code into the experimental tasking structure. 
This experimental tape code also incorporates our first use of the "screens" 
package for operator interfacing. 

3 Use of NSE 

The decision to utilize Sun's CASE product "NSE" [Network Software Envi-
ronment] for the Correlator project was not justified by any prior experience 
in the astronomy community. Indeed, there is little useful experience with 
such products in the larger general computing community. In this case 
the VLBA Correlator project is testing new technology. We believed that 
the gain would prove to be worth the pain over the lifetime of the project. 
Although the jury is still out on this trial, the counsel for the defense is be-
ginning to be fairly optimistic. We have indeed suffered from the "learning 
curve" of an unfamiliar, very sophisticated, software product, and we have 
suffered from certain outright bugs. But already the ability to coordinate 
parallel development is beginning to pay off in the expected fashion. 

3.1 Component and Environment Structure 

During 2Q almost all members of the Group began to use the component 
and environment structure for their code management. The component 
structure as it stood on 15-July-90 in the author's " s t a t i o n l Q d v e l l s " en-
vironment is shown in Table 1; this table was adapted from output produced 
by "nsecomp l i s t - r :" . 

The intent of the hierarchical component structure is to decompose the 
software into logical functional modules and categories. This is both to fa-
cilitate the automated delivery of modules of vastly different type and also 
to make it easier to find particular modules and to learn the system. In 



3.1 Component and Environment Structure 

Component Mature Status 
vxWorks Under vxWorks 
vxWorks:include all RT includes 
vxWorks:tape tapeTask, etc. In progress 
vxWorks:stat ion stnTask, etc. Prototype 
vxWorks:archive Deferred 
vxWorks:clock Deferred 
vxWorks:job jobTask, etc. Prototype 
vxWorks:model modlTask Done 
vxWorks:calc GSFC library Done 
vxWorks:sched In progress 
vxWorks:j obcont ro l In progress 
vxWorks:j obloader jbldTask Done 
vxWorks:hcb Device driver Done 
vxWorks:ut i l Misc utilities 
vxWorks :u t i l : e f c Event flag library Done 
v x W o r k s : u t i l : s c r i p t s 
v x W o r k s : u t i l : s c r i p t s : v s h Boot script Prototype 
v x W o r k s : u t i l : s c r i p t s : t x CX script job1000. tx 
vxWorks :u t i l : t ab l e s table library Done 
vxWorks :u t i l : c t sk tasking library Done 
v x W o r k s : u t i l : c t s k : t e s t 
vxWorks:tick t ickTask Done 
sun Under SunOS 
sun : inc lude 
s u n : l i b 
sun :b in 
s u n : e t c 
sun:hcb Compute tables Done 
sun:hcb:angles 
s u n : h c b : f r i n g e 
sun:dbms schema, batch jobs Suspended 
op-indep vxWorks k. SunOS 
op- indep : inc lude 
i n i t Initialize Delivery Done 
doc Documents 
doc:memo95 History 
doc : inc lude 
doc:miscjnemos This memo 

Table 1: NSE Component Structure 



8 3 USE OF SSE 

general, a "component*' is a group of related source files plus the Makef i le 
that contains the rules for processing them and delivering them to the opera-
tional code directory. For environment s t a t i o n l t i d w e l l s the delivery direc-
tories are /home/ccc /v lb / fxcor r /dwel l s / s t a t ion l /{vxWorks , sun ,doc} ; 
the reader should be able to infer what directories newQNse uses for deliv-
ery. An environment is an instance of a set of components; the instance can 
include the entire set (the whole system) or any subset of it. Programmers 
may own more than one environment. 

We have chosen to make our directory structure correspond exactly to 
the NSE component structure, with a few exceptions (various include files). 
For example, the text of this document is source file j u l 9 0 . t e x for the 
"delivery" target of component :doc:miscjnemos, and is in the directory 
/home/ccc /v lb / fxcor r /nse /doc /misc jnemos . 1 

Individual files have versions (maintained by VCS [Version Control Sys-
tem], a typical checkout/putback utility); so do environments. There is 
a parent-child relationship between environments. Children are "acquired" 
from parents and "reconcile" new code back to the parent environment. Mul-
tiple children may reconcile changes to the parent, and pick up each other's 
changes by using the "resync" operation. A tool called the "resolve r'' aids 
in merging the changes to source files and file/component structures. In this 
sense our new environment exploits NSE technology to provide a communica-
tions mechanism for the orderly interchange of source code being developed 
in parallel by members of our Group. Recently a cycle of reconcile-resync op-
erations led to two Group members sitting before a resolver window, which 
showed the multiple versions of their modules, and agreeing on how conflict-
ing changes should be merged (non-conflicting changes were merged semi-
automat ically). 

A parent environment may also be a child of another environment. In 
the case of our configuration, new is the child of r e l e a s e . So far we have not 
reconciled new back to r e l e a s e , because no version of the current experi-
mental code has yet represented an operational version of the station "axis" 
of the project that the Group is currently working on. Probably releases 
will be accompanied by some sort of formal report of changes analogous to 
the monthly code change reports from the M&C Group. 

'Our environments appear in the /hoae /ccc /v lb / fxcor r /nse directory for any proccss 
for which they are "activated", as though this directory were the mount point for a disk 
partition in ordinary Unix. Each process for which an environment is activated sees that 
environment's version of the file system mounted at that point (this is NSE magic, it 
depends on Sun's t f s [Translucent File System] device driver). 



3.2 NSE Bugs 9 

3.2 NSE Bugs 

Our NSE administrator, J. Horstkotte, has become quite knowledgeable 
about the inner workings of NSE during the past two quarters. He has filed 
numerous bug reports with Sun. He has learned/developed work-arounds. 
We have been particularly frustrated by certain bugs involving file name 
changes, bugs which were exposed during the name changes involved in 
our decision to adopt a module naming convention. On two occasions Sun 
personnel have logged into CCC and fixed the database (NSE depends on a 
special kind of DBMS). Parallel development has not really been stopped, 
but members of the Group have had to work in their own NSE environments 
without reconciling and resyncing as frequently as we would like, and the 
integration of the remainder of our code and Group members into the NSE 
environments has been delayed more than we expected. Jim has not been 
able to work on application code as much as he or the rest of the Group 
desire. We anticipate receiving a new version (1.2.1) of NSE within a few 
weeks but it won't include fixes for our bug reports, and Sun have suggested 
that we enter into a "beta" relationship with them for their 1.3 release. 

We are reluctant to recommend that other NRAO groups adopt NSE 
for group code management while these bugs exist in the product, although 
we ourselves believe that our project is still better off continuing to work 
around the bugs while awaiting the fixes because we have already paid the 
learning/workaround price. It appears to us that the product has real ad-
vantages, and that there is a good chance that the 1.3 release, perhaps to 
be available 1Q91, may be worthy of a solid recommendation. 

4 New RT Hardware 

Near the end of 2Q we received another Motorola MVME147 CPU. We have 
activated the second VME crate and now have two CPUs in each crate, two 
147 CPUs in one and a 147 plus the older 131 CPU in the other. The 
Electronics Group periodically utilizes a CPU and MCB to check out DAR 
racks for stations, but otherwise the Correlator Group can use (and needs!) 
all four CPUs. The new CPU was purchased from our spares budget in 
order to support the Electronics Group requirement. 

At present we have only one IICB controller, although plans and parts 
exist for a second. We have only one MCB. Consequently, test operation of 
RT code with actual hardware must be somewhat scheduled, and contends 
with engineering tests of the hardware. Functional testing of prototype 



10 4 SEW RT HARDWARE 

boards has priority, of course.2 We are still working out appropriate proce-
dures for coordinating hardware and software testing, and software testing 
by multiple programmers. 

2The FFT/MAC board test procedures arc coded in C and utilize the same vxWorks 
IICB driver that will be used for the RT tasks. This driver and test code has been partially 
moved under NSE, in the : vxWorks:heb component listed in Table 1. 


