
VLBA Acquisition Memo # 26
N O R T H E A S T RA D IO O B S E R V A T O R Y C O R PO R A T IO N

H AYSTACK OBSERV A TO RY
W E S T F O R D , M A S S A C H U S E T T S 0 18 86

5 October 1984

TO: V LB A Acq uisition Group

FROM: S . W i 1 son

SUBJECT: Er ro r Correciton for VLBI

Area Code 617
6 92-4764

operated under agreement with
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 18, 1984

To: R. Escoffier, L. D'Addario

From: S. Hi 1 son

Re: Error Control Coding for VLBA Recording
Part 1: Extended Hamming Codes

If Hamming codes are "extended* by adding an overall even- parity bit
on the conventional Hamming codewords, we form a code capable of correcting
all single error patterns and -flagging all patterns with an even number of
errors. Since single-error correction and double-error detection are the
most likely events, these codes are sometimes known as SEC-DED, and are
widely used in computer memories after a further shortening. (The PDP 11
series uses a (22,16) SEC-DED code on internal memory words to correct
single errors within a memory location, and to interrupt the machine if a
double error is detected.) These codes are easily implemented with short
shift registers and a small amount of miscellaneous gates, and though not as
powerful as more complicated codes, they give interesting performance as
described below.

In this note 1 shall present the performance of these codes for a
number of blocklengths (and correspondingly several redundancies) as a
function of raw channel error probability, p. The first four extended
Hamming codes have parameters tabulated below:

n k r=k/n overhead

32 26 0.81 19

64 57 8.89 11

128 120 0.94 6

25 6 247 8.965 3.5

Encoding is performed with an (n-k)-bit shift register with feedback, and in
all cases above, this amounts to at most a few MSI chips. Decoding begins
with computation of the syndrome, again done with an (n-k)-bit shift
register virtually identical to the encoder. Based on tne syndrome pattern
(n-k bits) the decoder attemffts to determine the error pattern and correct
it, or to flag the codeword as containing an uncorrectable error. For the
codes above, this is most easily done in ROM. The ROM stores the location
of the single error if the syndrome corresponds to a correctable pattern or
an error flag otherwise. Thus the ROM size is 2A(n-k) by log^. In the
worst-case above this is only 512 by 8. Of the 512 locations, 256 would
contain error locations for the single error (at least we think they're
single errors) while the remainder would store *FLAG".

To summarize, if zero or one error occur among n bits, the decoder
releases a correct block of k bits. If an even number (non-zero) of
errors occur, the word is correctly flagged. If three, five, etc. errors
occur, then a decoding failure (OF) occurs. The decoder believes a single
error occured and attempts to correct it, introducing additional error into
the decoded block. An expression for probability of decoding failure is
then

n

Pt DF J = ^

Ar3,3,->, -

For reasonably small p, only the first term in the sum is significant.

When the decoder releases an incorrect block, only a few of the k bits
will typically be incorrect. We can estimate the decoded bit error
probability by arguing that the triple error patterns are the dominant cause
of failure, and the decoder thinks a single error somewhere else actually
occured. Thus typically four of the k bits are wrong, and probability of
decoded error is roughly 4/k times PCDFJ. This is plotted in Figure 1. To
interpret, we see that if p=10“3 then the output error probability for the
n=128 code is 10"^. This gain is with an overhead of only 6/.,

The decoder "erases" blocks occasionally, and it is important to know
how often this occurs. All even-weight error patterns produce such
dismissal; again for small p only the double-error events are significant.

r\

PI dismissal 3 = ^ (?) -p

a - 2.AMj -

Figure 2 provides a plot of this probability for the extended Hamming codes,
and we note that if a throw-away rate of a few percent is tolerable, as it
probably is -for the VLBA, then channel error rates as high as 2 x 10”3 can
be accepted.

In summary, the (64,57) and (128,120) extended Hamming codes appear
attractive for the VLBA application. If the raw error rate is below 10”3 ,
then the decoded bit error rate is below 10" ^ ancj dismissal
percentage is less than V/., Even if p becomes five times higher, the
performance is perhaps still tolerable. Of course, if the error probability
is even better, the decoder performance improves dramatically. The
throughput loss due to code redundancy is 1IX and 6'/. respectively, and both
are easily implemented* The length 256 code would not seem to be
preferable as it produces slightly higher decoded error probability, with
only marginal decrease in redundancy. Block diagrams of generic encoders,
syndrome formers, and a non-ROM implementation of decoding are attached.

There are more powerful, codes (mostly BCH codes) which I wi 11 soon
report upon. An example is the (128,112) BCH code, capable of correcting
single and double- error patterns. However, triple errors, at least some of
them, cause decoder failure, and it's not clear that performance is much
superior to the extended Hamming codes. Of course, the latter achieve a low
P£DF) partly by dismissing double-error blocks. For these remaining codes
to outperform the extended Hamming codes, they will probably need to-be
longer, and have more complicated decoders. A competitor to the (64,57)
code having the same throughput might be a (255,223) quadrople-error
correcting BCH code.

. /
JO -

„ /
/o -I

JO

/o '

/o

/o '6

/A

fiyUrt 2. £b>̂ >' f/Jy

-A / * / <A r £■ jffe sid a ^ t /Y & r~ /» sty J

— I- ----------------------- * ' ’— ~
/o'* /o'3 /o'1 /o'

Figure 4.1 l.ncotiing circuit foi an («, k) cyclic cchIc w ith generator polynomial
K<-V) I , * j A' I f ;zX' ‘ I • • • i 1 I X" t .

K
S

V!

N

■*
»

V?
X

s i
w

(kill'

0 © * - - 0

II t I

Kittin’J
»«v*(X

Q ~ ^ ~ •• ~ ^ v) — *■ •• — ^ 0 } - ^ ------

VA.i
?

Figure 4.5 A n (« A)-Magc syndriKitc circuit with input from the left end.

S - - * ‘

 ̂ 4 .1 4 IX . iih '. n i iM ii ‘f a 'in u k '- c i lo t - i i i r i u iin i-. .nwl i!nul>k ci m t -tk rlcciingl '\ iHte* I I inw w nc *•

April 5, 1 9 ^

To: R. Escoffier, L. D'Addario

From: S. G. Nil son

Re: Error Control Coding for VLBA Recording
Part 2: Multiple Error Correcting/Detecting Codes

In the previous memo I described the SEC-DED Haiwning codes which are
simple to instrument, and give ra-ther good performance, e.g. a (128,120)
code has an overhead o f 6Z, but the decoded error probability is about
10"5 for a raw channel error rate of 10~3f an(j the block dismissal
rate is about IX for the same condition.

This memo describes several slightly more powerful BCH codes having
mu 1 tipi e-error correcting capability. Performance improves somewhat in
exchange for more complicated decoders, though I regard them as quite
feasible.

CODES:

The codes under study are listed below:

Code Overhead,/ Corrects/Detects

(44,51) 20 2/3

(128,112) 12 2/3

(256,239) 6.6 2/3

(256,231) 10 3/4

All codes are capable of being encoded with a feedback shift register
having at most 24 bits. Decoding proceeds first by computing the syndrome
of the error message with a circuit virtually the same as the encoder. At
this point, the decoding must proceed differently for the codes above.
For the shorter codes, either table look-up of the error positions or the
Meggitt decoding procedure is used. The latter recirculates the syndrome
n times, looking for a pattern corresponding to a correctable error in the
right-most buffer position. Implementing this error-recognizer can be
performed nicely with gate array technology. The longer codes, especially
the last one above, would use an algebraic type of decoding.

PERFORMANCE

(64,51) CODE:

This code has minimum distance of 6, meaning it can correct up to two
errors and detect all triple errors. At least some quadruple error events
cause decoding errors, and an upper bound on probability of decoding
-failure is obtained by assuming all higher-order error patterns lead to
decoding error.

PCdecoding error] < p **(*-p)

2: 6 . 3 5 x i e > 5 j>^

We also estimate when a decoding error occurs at most -five of the 51
information bits are incorrectly output. Thus,

PCbit error] =* C . Z K i o * p*^

The probability of a block dismissal can be approximated as the
probability of having exactly three errors in 64 bits (actually many 4,5,
etc. error events are detected as well, but for small p these are not
significant) .

PCblocK dismissal] = r 3 4 - p)“ „ ^ p J 0 - f) 6 '

(128,112) CODE:

This code also is double-error correcting, triple-error detecting. By
the same argument as above,

PCbit error] =(_!E.) PCdecoding error]
V 112.

= < i l o (* 8) r o - f) iL* s ^ . 6 « . o 5) • «

and PtblocK d i s m i s s a l } = p 3 (| - p) « ^ r 3 . 4 x . o s f>3 (i~t>) ,t r

(256,23?) CODE:

Again the code is two-error correcting, triple-error detecting, and

Ptbit error] =

y 3 .7 x i o c 6 * p) 2 5 ^“

A1 so,

PCblock dismissal] = 2 . 7 6 * t O ̂ p 3 (j-p)2 5 ^

(256,231) CODE:

This code is capable of correcting triple errors and detecting
quadruple errors since minimum distance between codewords is eight.
Approximate performance is given by

P t b i t « r r o r] = ^ ^ f S Q - f) ^ ~ 2 . 3 i ‘O 8 f 3 (l - p) ^ 51

and PCblock dismissal! = (j^P)

These results are plotted in Figures 1 and 2 (compare the same -figures
in the previous memo -for the SEC-DED codes). From Figure 1 we see that at
p=10 3, ^11 codes give at least two orders of magnitude improvement in
decoded error probability. The most -fair comparison with earlier results
is obtained with codes of roughly equal overhead. A SEC-DED (64.57) code
and the (256,231) code both have about 1 \V. overhead. With p=10“* the
former gives PCbit error] = 3x10“* while the latter gives 1.8x10"'.
As the channel improves, the longer code improves more rapidly than the
SEC-DED code as it has a larger exponent on p.

Figure 2 shows that dismissal rates are acceptable, i.e. less than \V.y
for all codes provided p<10-3; p being -five times worse still leaves
reasonable throughput.

My evaluation is that the codes of most interest are the (128,112)
code and the (256,23?) code. Their decoders are reasonably simple, using
either ROM-based or Meggitt decoding. The (64,51) code probably has too
large an overhead burden, and the (256,231) code, though performing the
best of all studied thus far, would need a relatively compicated algebraic
decoder, at least with my current understanding of the problem.

The remaining question is how to weigh the complexity/performance
question between these candidates and the SEC-DED codes. My current
opinion is that complexity is easily manageable, especially if gate array
technology is used, and that the (128,112) code represents a reasonable
compromise. It happens that this same code is used in INTELSAT V
time-division multiple access at information rates in the vicinity of 60
Mbps.

A final ccrafnent on implementation is that independent errors have been
assumed throughout; since errors are likely to occur in clusters on a tape
system, interleavers are required. For a (128,120) code a block
interleaver of 128 by 16 bit size would probably be adequate. The
requirement for the interleaver/deinter Ieaver is another issue mitigating
against longer codes. Also, to decode at 10 Mbps rates, a doublerbuffer
strategy will be necessary unless a ROM look-up of error positions can be
accomplished in one shift time (100 nanoseconds). The Meggitt decoder
would be cycling one syndrome and the received message, while another
buffer was being loaded. During the next word, the buffers switch roles.

/« / .

j.r?o t' ' '■

&/JS»VS*-4

Stephen G. Wilson

August 20, 1984

ABSTRACT

A high-speed Ffeed-So lemon coding scheme is described which is capable of

correcting single byte errors and detecting double byte errors in a codeword

written across 32 tracks on a recording system, with a 3-track redundancy

required. Cc\ a random error binary channel with p = 1 0“̂, the decoded error

probability is estimated to be 2 x 10-5, and the block dismissal probability

is .01. The code is capable of correcting indefinitely long error bursts

along any one recorder channel.

ODding and decoding algorithms are provided, and a quick implementation

study indicates that standard low-power Schottky logic can provide both

functions with roughly 125 IC*s.

USE OF REED-SOLCMON CODES FOR VLB RECORDING

USE OF REED-SOLOMON CODES FOR VLB RECORDING

I . INTRODUCTION

This memo describes the use of non-binary Ffeed-Solomon codes for high-

rate recording of data for the VLBI project. The technique is applicable to

either multi-channel longitudinal recording, or to the case where many less-

expensive, single-channel VCR's operate in parallel.

The application is illustrated in Figure 1, where we visualize up to 32

simultaneous bit streams produced by the sensors, each having a bit rate of 4

Mbps. The "recorder" can be viewed as either a single longitudinal recorder

with parallel tracks, or a number of single-channel VCR's. In either case,

the error control coding is done "across-tape", so that this decoder is

capable of correcting errors due to single-channel electronics failure.

Furthermore, the coding is done in terms of symbols from a non-binary

alphabet. Although binary codes can be employed across tape as suggested, the

overhead, or redundancy, required to correct one error out of, say, 32 tracks

is higher than for non-binary codes. Figure 2 illustrates the manner in which

code symbols are formed and written on tape, or the effective "tape" of

several parallel VCR's. NDte b bits represent a symbol in this coding scheme,

and the code is defined on the field GF (2b).

In the following discussion, code design c o n s i d e r a t i o n s will b e

summarized, tentative recxxnraendations made, a performance analysis given, and

inplementation requirements sketeched.

n bit
streams

Figure 1: General Configuration

b bits

k info
tracks ̂

/

n-k parity,
tracks

n

Codeword
n

Codeword
n + 1 time

Figure 2: Arrangement of Coded Data

II. CODE SELECTION

We are interested in non-binary codes of high rate, or lew redundancy,

capable of correcting a single symbol (byte) error, and perhaps detecting and

flagging double errors as well., We refer to these properties as SBEC or SBEC/

DBED respectively. (A byte here is b bits, not the more usual 8). Choice of

the byte size does rot affect the encoder conplexity substantially, as long as

it's reasonably snail, i.e. < 8. However, the decoder conplexity is strongly

influenced by byte size; in particular the size of the table used to locate

error positions is 2 ^ words. Again we're motivated to keep b small. Cn the

other hand, the byte-size is related to the codeword length for Reed-Solomon

codes in that

n < 2b

(There are other codes which avoid this restriction, but nuch less is knewn

about them). Keeping in mind a block length of about 32, we find the byte

size ought to be at least b = 5.

The natural Iteed-Solomon codes have

n = 2 * M

n~^ = ^min”*̂

where is the minimum distance of the code. Fbr b=5, the natural codes

are (31, 29) which is SBEC and (31, 28) which is SBEC/DBED.

It may be more convenient to have a block length of 32, which can be

obtained by lengthening the Ffeed-Solomon codes to (32, 30) or (32, 29)

respectively. This may be done without changing c^in, and thus the error

correcting capability.

Another possibility is that slightly longer codes are convenient, say

to accomodate 32 information tracks. The construction then would use b = 6,

giving n = 63 as the natural length. These codes may be shortened to (34, 32)

or (35, 32), depending on whether SBEC or SBEC/DBED is desired.

The redundancy, or overhead, of these codes is about 6.6% and 9.4% for

SBEC and SBEC/DBED respectively. The redundancy penalty is felt in this

application as a need for extra tracks, not a lowering of throughput per

unit time.

Ftor the subsequent discussion, I shall consider only the (32, 30) SBEC

code and the (32, 29) SBEC/DBEC code. Accomodating the alternatives above in

either analysis or design is a minor change on the baseline case.

I I I . PERFORMANCE ANALYSIS
(32, 30) Cbde over GF (32)

The lengthened code has dm in = 3. There are 32*31 single-error

patterns and one zero-error pattern, totalling 993 patterns. The nunber of

syndromes is 32^ since there are 2 syndrome symbols; thus the number of syn­

dromes only slightly exceeds the required number of correctable patterns.

This says that very few double-errors could be corrected (or detected as well)

and a good appro ximation is to assume all double and higher error patterns

cause decoding error.

The symbol error probability Ps is approximately bp = 5p assuming p

reasonably small. The probability the decoder commits a decoding error is:

PdE = I (32) Ps3 (1—Ps)32-3 h (32) Ps2 (1-ps)30

3 - j

= 496 (25) p 2 (l-5p)30

= 12400 p 2 (l-150p)

Ft>r p = 10"3f a baseline choice, = .0105. Thus, the block error rate is

rather large. This is not too surprising given the effective binary block-

length of 32*5 = 160 and the channel error rate of 10-3. The probability of

two bit errors in 160 is about .01, and with high probability,

these are located in two distinct bytes.

The decoded bit error probability, 1^, is estimated by assuming a most-

likely error event of tv»o fcyte errors, each having a single bit error. The

decoder thinks a single byte error somewhere else occurs, and this decoded

byte is basically garbage. This expected number of bit error per block error

is then (b/2) + 1 + 1 , and since there are 30*b bits released per block.

Pb = (b/2 + 2) £12400 p 2 (l-150p)]
““TO-b---

Again taking p = 10“3f

Pb = 3 x 10~4

If p irrproves to 10”̂, then = 3.5 x 10“®. Thus as the raw channel

inproves, the end-to-end performance improves twice-as-fast in order of

magnitude.

32

(32, 29) Code over GF (32)

Ibis code has d ^ ^ = 4 and is SBEC/DBED. We can reduce the decoded error

rate substantially if we're willing to dismiss a small fraction of the data.

The number of distinct syndromes is now 323 = 32768. Wfe note this is

plenty to cover the zero and single error cases. There are (32)*(31)2
2

distinct double errors, which is 476,656. We can of course, not correct all

double-errors since we run out of distinct syndrcroes, but it happens that

these double-error patterns are all confined to oosets other than those of the

zero or single-error patterns. These syndromes can be easily recognized as

described later, and the blocks flagged. Hence it requires at least three

byte errors to force a decoder error. It is likely that many (probably most)

of the three error (and higher) error patterns are flagged; hcwever as I do

not yet have a handle on the actual number, I make the pessimistic assumption

that all 3-error patterns cause a decoder error. Thus,

32
Pde = I (32) PSD (1—Ps)32—j 5 (32) r.3 (1 -P s)29

j = 3 j 3

= 4960 (125 p 3) (1-145p)

= 6.2 x 105 p 3 (1 — 145p)

For p = 10—3, P£>£ = 5.3 x 10"^, much lower than before. The decoded error

probability is estimated by assuming three symbol errors, each with a single

bit error, cause a fourth symbol error elsewhere in the block to be released.

= (b/2 + 3) [6 .2 x 10 + 5 p 3 (1-145P)]
29*b

W ith p = TO"3 , Pfr = 2 . 0 x 1CT 5 . A l s o f o r p = 10 “ 5 , Ffc = 2 . 1 x 1C T 1 1 .

With this code, we dismiss code blocks as bad whenever we think a double­

byte error occurs. The probability this happens is

P [dismissal] = I (32) Ps 2 (1 -Ps)30
2

= 12400P2 (1- 150p)

When p = 10“3, P [dismissal] = .01, or 1% of the data is discarded. With

the SBEC code, it was these cases which caused erroneous data to be released.

Garments:

1. The performance analysis for the SBEC/DBED code is the least

accurate, but is pessimistic in any case.

2. The channel is likely to have a bursty nature. This

caui be caused by electronics problems associated with a single trade. These

types of errors are corrected by the across-tape codinq patterns here. Other

types of bursty error phenomena, such as oxide inper feet ions are probably

spatially isotropic. Bursts in the direction "across tape" are not well

handled by the schemes here. A big interleaving arrangement could help, but

at the speeds contenplated here, this is probably prohibitive. A "helical"

patterning on the tape can ensure no codeword occupies a position on more than

one channel, and no more than one column along the tape.

3. Another decoding alternative is "errors-and-erasures* decoding. If

it is known that a certain code position is untrustvorthy, it’s reasonable

that a smart decoder can do better than if it didn't use this information.

This information might be available from observation of electronics over a

period of time, or the decoder can "learn" the bad tracks itself by counting

errors per track. The (32, 29) code, which without side information is able

to correct one error and detect two, can correct one erasure and another

randomly placed error.

The decoding for "errors and erasures" is only slightly more difficult

than for errors-only; the bigger question is whether this information can be

obtained easily and reliably during decoding.

IV. CODING AND DECODING FOR (31, 28) SBEC/DBED CODE

Let u = (u^.2 /Uq) denote the information k-tuple, with I GF (2^).

The code will be systematic with the k highest-order (or left-most) positions

having these symbols. Letting c = (cn_i, C p ^ *Cq) , we have Cp.-j =

ujc_i,....C3 = Uq. The regaining three parity symbols are formed as described

next.

Let u(x) be the polynomial representation of the information vector. We

define
C2 = rein x u (x)

x + 1

which is a constant contained in GF (32). Similarly,

c-j — rem x u (x)

x + a

Cq - rem u u (x)

X + a ” l

where a is a primitive element in GF (32) and a " 1 is its multiplicative

inverse. We note the polynomials

V 2 (x) = x u (x) + C 2 r v-j (x) = x u (x) + and vQ (x) = x u (x) +

are all of degree at nost k and have (x + 1), (x + a); and (x + a ”̂) as

factors respectively, Alternatively a° = 1, a^, and are roots of

V 2 (x), v-j (x), and vQ (x) respectively. In terms of the code symbols,

V 2 (x) = 0 inplies

^k-1 + **-2 ++ U o + c2 = 0

which says C2 is a symbol chosen equal to the sum of the information symbols.

Likewise v*j (a) = 0 inplies

a + Ufc_2 + • • • • + Uq) + c -j = 0
or

+ Uk—2 + •••• + + c-j = 0

Finally, V 2 (a”**) = 0 inplies

a~^ (^k- 1 a"^+ ̂ + Uk- 2 a ” ^+2 + + U]a“̂ + Uq) + <̂ 3 = 0

These three equations are the parity check equations for the code. The three

symbols may be generated by the block diagram circuits in Figure 3, more

detail of which is given in the Appendix.

A A A A

Ndw suppose we receive a codeword F = (u, C2 * c-j, q -,). We define syndrome

symbols in k e y i n g with the parity equations of the code:

Noting that Uj = Uj + ej and + e^, we have

These symbols can be corrputed using circuits nearly identical to those of

Figure 3.

C2 Cl

- 0

H r *<j>

u

Cb

Figure 3: Circuits for Calculating Parity Symbols
for SBEC/DBED Gode

r ~ io
©

denotes a b-bit storage cell

denotes a GF (2^) multiplier

denotes a GF (2^) adder

(b-bit ex-or)

Now consider several cases of error patterns:

Case I: Zero Errors

The syndrane symbols are all zero. If we obtain this result we nust say

the codeword is valid; it may be that a three-error pattern fools the decoder.

Case II; Single Error of value 3 in jt*1 position, n-1 < j < 3.

This is the case of a single error in and information position

S2 = 3
S-j = 8
^3 = 6 a-j+3

Thus S2 is the value of the error and Sj/S-) = o 3~3. This equation may

be solved for j, the error position. 9olution of the equation may be by

trial-and-error (test all 28 values for j) or by table look-up.

Case III; Single error of Value 6 in Position j, 2 > j > 0.

S j will be non-zero, and the other two syndromes will be zero. Wien this

event is detected, we release the information, as it is deemed error free.

Case IV; Double-Byte Error

IVa; Error B0 and 3 1 in positions 0 and 1

S2 = 0

S 1 = &i

5o = 00

Case IV: Double-Byte Error (Continued)

IVb: Errors Bq ^nd 62 in positions 0 and 2

s2 = 6 2

S-] = 0

50 =

IVc: Error B 2 and B 1 in positions 2 and 1

S 2 = B 2
5 1 = B i

% = 0

All of these cases give syndrome patterns differing from the single

error or zero error syndromes and hence can be detected.

I*3: Errors of type B in positions jfk 31 > j, k > 3, i.e., both errors

of same type (an inprobable event).

52 = B + B = 0

S-j = B (a 3 ~ 3 + a ^ ~ 3) * 0
Sq = B (a “3 + 3 + a -k+3) t Q

Again this is distinct frcm the pattern of single error or zero-error

syndromes and is detectable.

E r r o r s o f t y p e B , one in in fo r m a t io n s e t , one in p a r i t y C2»

S 2 = B + B = 0

S, = 6 (aj-3) * 0

Sfe, = B (a"3 + 3) * 0

Case IV: Double-Byte Error (Continued)

IVf: Eiror of type B, one in information set, one in parity c-j

s2 = 6

S t = 6 (aj-3) + 6 = 6 (o5-3 + 1)

Sq = B (a-3+3)

IVg: Error of type B, one in inforrration set, one in parity

S 2 = B

S! = B a3~3

^> = B a-j + 3 + B

TWd errors of value Bj and B^ in positons j, k

S2 = Bj + Bk * 0

S-j = Bj a3~3 +

Sq = Bj a “j + 3 + B^ a “̂+ 3

Cases IVf, IVg, and IVh have the apparent potential of producing three non­

zero syndromes, which would at first glance correspond to a single error

(Case II). However, the syndrcmes in Case II have a unique relationship;

namely

S-]/S2 = a 3~3 anc3 V s2 = a 3_j for the same j

It may be shewn that Cases IVf, IVg and IVh produce syndromes for which this

is not true, and these events are hence detectable as neither zero-error nor

single-error.

The decoding rules are summarized in the following table:

So S1 s 2 Action

0 0 0 accept information

NZ NZ NZ test if S“|/S2 and % / S 2 give same j;

if so, have single error of value S2

jth position; if not dismiss block

0 NZ NZ dismiss

NZ 0 NZ dismiss

NZ NZ 0 dismiss

0 0 NZ accept (single parity error)

0 NZ 0 accept (single parity error)

NZ 0 0 accept (single parity error)

Extension to (32, 29) SBEC/DBED Cbde:

We can lengthen the code adding an extra information symobl, and keeping

three parity symbols. The codeword is again systematic so that C 32 = ^ 29'

C 31 = u28 ••• c 3 = Uq. The symbol c 2 is again chosen so that

32
I Ci = 0

i = 2

i.e. it forms an overall check on the symbols; c 1 is such that

32a I Cj a^~3 + c .j = 0
i = 3

and c q is such that

32

a ~ 1 I Ci a3~i + = 0
i = 3

If no errors occur in 32 positions, all syndromes will be zero. If a single

error occurs in an information position, S2 is the error value, and 5 -1/82 =

a j-3 and % / S 2 = a 3-} for the same j. Syndrome rules are followed as before

for the other cases. The circuits for calculating the parity symbols and

syndrome are exactly as before, but are sinply clocked one extra time.

(Note: the lengthening can actually be done once more without lessening

performance, to say (33, 30), but these values are perhaps not so convenient).

V. IMPLEMENTATION CONSIDERATIONS

We assume use of the (32, 29) code over GF (32), with 29 parallel trades

being presented at 4 Mbps. Building the enooder/deooder is conplicated by the

fact that coding is across-tape, whereas the symbols are arriving bit-serial,

byte parallel.

An implementation which has high internal speed requirement is to load 29

5-bit registers in parallel, then have a multiplexer sequence these bytes

through the parity calculating circuits shewn earlier. The clock rate of

this multiplexer and parity circuits must be 29 (4 x 10^) = 116 MHz (I),

given that we wish to corrplete all the conputation within one shift time.

Recording then amounts to clocking out the" 5-bit registers along with the

three 5-bit parity registers, to the 32-track recorder.

A way to lower the internal logic speed is to allow time-skewing of the

codeword, and pipeline the processing. If 4 Maps is the bit rate per track,

then the byte rate is 800 kHz per trade. TO avoid missing data, we need to

sanple each track 8 x 10^ times pet second. A convenient method is to adopt

a multiplexer that scans 8 tracks (or symbols) every bit time, 1/ (4 x 10^)

second. Then it scans 8 more bytes, etc., until it has processed the required

29 tracks. The multiplexer rate and internal canputation rate would be 32 MHz

4 MHz

to encoder circuits

15

The bits that join to form a codeword are boxed in the diagram belcw:

0-

15
16

28

32

The codeword would also physically appear with this skew on the tape; if

desired, this "one bit per 8 track" skew could be eliminated by adding off­

setting delay bits prior to recording.

The nutiplexer actually needs to sweep only 29 tracks every 1/ (8 x 10^

seconds, or have a stepping rate of 23.2 MHz. If it has a 32 MHz step rate,

the clocking is synchronous and there will a short delay before the next cycle

begins. (We need to wait until a new 5 bits have entered the register).

Decoding can utilize the same arrangement, paying attention to deskew­

ing, so that the correct bits are grouped together. At the oorrpletion of a

multiplexer scan, we have the three syndromes, and within one shift time

(250 nsec) we mast find the error location, and load a register with the

error value, for subsequent nod - 2 addition of the error value with the

desired trade. Error correction will require a mod-2 adder on each track

which is selected according to the error locations.

For a projected throughput on the order of 128 tt>ps, it appears that

low-pcwer Schottky logic is sufficiently fast to perform encoding and decod­

ing. A rough projection of parts count (see be lew) gives 125 standard IC's.

Gate array technology could reduce this same, but a substantial number of IC's

are shift register buffer elements.

Estimated Package Count:

Encoder

1. Input Ifegisters and 3 Parity Registers: 32 29 8-bit SR's and 3 8-bit
latches

2. Parity Calculation

3. Multiplexer

4. Miscellaneous dividers & counters

6 quad ex-ors

(10?) could use two
(5-1 mixes for each)
bit of 5 bits

< 5

Decoder

50 IC’s (MSI)

Same as for encoder,
plus 2 IK x 5 ROM's, 5-bit ex-or,
location register, 8 quad ex-ors
for error correction, 8 quad two-input
gates for gate selecting, 5-bit to
32 line deaoder

50
+ 25

75 IC's

APPENDIX 1: Arithmetic in GF (32)

We view the elements of GF (32) as binary polynomials of degree 4 or

less, and perform field addition by adding polynomial coefficients nod-2 , and

field multiplication by performing polynomial multiplication modulo p (x), a

primitive polynomial of degree 5. Vfe take p (x) = x^ + x 2 + 1. Doing so

gives the field of T^ble 2, with elements listed as 5-tuples by ascending

: a , where a is primitive, a = (01000).

CF(2S) generated by p(^) -- 1 -f X 1 + X>

_ 00000 i 1111
o 1 oooo 16 1 1 01 1
i Ot 000 i r 1 1 0012 OOt 00 18 1 1000
3 00010 19 01 1 00
« 00001 20 001 10
S 1 01 00 21 0001 1
e> 01010 22 10101
7 001 01 23 1 1 1 10
8 1 01 10 24 01111
9 0 10 11 2S 10011
I O 1 OOOI 2* 11101
I I 1 1 1 00 27 110101 2 01110 ?« 01101
1 3 00111 29 100 10
1 4 1 01 I 1 30 0 1 OOt

example, if we wish to add a 2 + a 3 we have

Table 2

(00110) = a 20, whereas a 2 • a 3 = a 5. (Exponents add as usual, reduced mod

31.)

We note any field element 6 can be expressed as

£ = fĉ-j + b| a + b 2 a 2 + b^ a 3 + b^

where b^ are binary coefficients. If we wish to add two elements B and y ,

we sinply mod-2 add their respective bits, so GF (32) addition is a trivial

extension of GF (32) addition.

Suppose we wish to multiply y - y0 + y] a + Y 2 a ^ + T'3a ^ + ‘Y + a ^ b y a

fixed value a , as in the encoder/decoder circuits,

ay = ^0 a + ,,rici^ + ^ 2 a ^ + ^ 3 a ^ + ^4 + a ^

= ^ 0 a + ^ -] a 2 + ^ 2 a "̂ + ^ 3 a 4 + ^ 4 (a + 1)

= T 4 + (To + T 4 } a + Y 1 a 2 + Y 2 a 3 + ^ 3 a*

This circuit is implemented by:

T4

Now suppose we wish to form

6 = a y + B
Then 64 = ^3 + 64

83 = T 2 + $ 3

®2 = t 1 + 6 2
®1 = yO + y 4 + 8 1

e 0 = Y 4 + Bo

which is implemented as

*4

8 3
All cells and adders are binary

By similar reasoning, multiplication by a ̂ and adding to 6 is built as

Finally, multiplication by 1 and adding 3 is

1

63

62
+ -< z>

© ----------------T c

These three circuits provide c}, c q , and c2 respectively when encoding, with

F respresenting the information symbols. Wfe zero the register initially and

clock each 29 times. After this, the register contents contains the desired

symbol.

Likewise for decoding we zero the registers, clock in the 29 received

symbols to each, then add with c2 , c-j, or Cq to obtain S 2, S-j, and

respectively.

APPENDIX 2: Table-Look-Up From Syndromes

Given S2 , S-j, and as described earlier, we inplenient the decoding

rule: accept if S 2 = S-| = Sq = 0 or Sq = S-| = 0, S2 * 0, etc. The Boolean

variable A is

A = s2 * S 1 * So + s2 * S 1 * Sq + S2 • S-| * Sq + S2 * S“| • Sq

If A is true, we take no further action, and release data as is.

If S2 , S-|, and Sq are all non-zero, we test whether the syndrome

corresponds to a correctable single error. We must corrpute S-j//S2 = and

SD /S2 = a^'j, checking to see if the same j results. This can be done best

by having two tables of 1024 words by 5 bits. T^ble 1 stores the solution

to S“|/S2 = when addressed by S-j and S2, while table 2 stores the

solution to S^/S2 = when addressed by and S2 . If both solutions

agree then the 29-jt*1 symbol of the information patterns should have S2 added

to it. If they don't agree, we dismiss the data, thinking a double-byte error

occured.

Schematically we have the system on the following page:

5

j------- position 29-j

5
if non-zerof dimiss data

if zero, add S2 in

5

ar>d T 2 are 1024 words by 5 bits each

A "bad-data" bit is set if exactly one syndrome is zero, or if the above

sun is non-zero. In actual operation, we probably would configure the decoder

to always release its best guess, i.e. always deoode, but to merely have a

single flag bit set whenever the data is suspect. The user of the data has

the final say in hew to utilize this. If we ignore the flag and always

decode, the error rate goes up by roughly a factor of 20, but we're not

throwing away data.

(Alternate at press-t ime: We could use a table with 2^5 = 32k words x 6 bits.

The first five bits store the error location if it's to be corrected, and bit 6

would be a flag bit, when the solutions for j do not equate. This would

save same on package count.)

