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To: R. Escoffier, L. D'Addario 

From: S. Hi 1 son

Re: Error Control Coding for VLBA Recording
Part 1: Extended Hamming Codes

If Hamming codes are "extended* by adding an overall even- parity bit 
on the conventional Hamming codewords, we form a code capable of correcting 
all single error patterns and -flagging all patterns with an even number of 
errors. Since single-error correction and double-error detection are the 
most likely events, these codes are sometimes known as SEC-DED, and are 
widely used in computer memories after a further shortening. (The PDP 11 
series uses a (22,16) SEC-DED code on internal memory words to correct 
single errors within a memory location, and to interrupt the machine if a 
double error is detected.) These codes are easily implemented with short 
shift registers and a small amount of miscellaneous gates, and though not as 
powerful as more complicated codes, they give interesting performance as 
described below.

In this note 1 shall present the performance of these codes for a 
number of blocklengths (and correspondingly several redundancies) as a 
function of raw channel error probability, p. The first four extended 
Hamming codes have parameters tabulated below:

n k r=k/n overhead

32 26 0.81 19

64 57 8.89 11

128 120 0.94 6

25 6 247 8.965 3.5

Encoding is performed with an (n-k)-bit shift register with feedback, and in 
all cases above, this amounts to at most a few MSI chips. Decoding begins 
with computation of the syndrome, again done with an (n-k)-bit shift 
register virtually identical to the encoder. Based on tne syndrome pattern 
(n-k bits) the decoder attemffts to determine the error pattern and correct 
it, or to flag the codeword as containing an uncorrectable error. For the 
codes above, this is most easily done in ROM. The ROM stores the location 
of the single error if the syndrome corresponds to a correctable pattern or 
an error flag otherwise. Thus the ROM size is 2A(n-k) by log^. In the 
worst-case above this is only 512 by 8. Of the 512 locations, 256 would 
contain error locations for the single error (at least we think they're 
single errors) while the remainder would store *FLAG".

To summarize, if zero or one error occur among n bits, the decoder 
releases a correct block of k bits. If an even number (non-zero) of 
errors occur, the word is correctly flagged. If three, five, etc. errors 
occur, then a decoding failure (OF) occurs. The decoder believes a single 
error occured and attempts to correct it, introducing additional error into 
the decoded block. An expression for probability of decoding failure is 
then



n

Pt DF J = ^

Ar3,3,->, -

For reasonably small p, only the first term in the sum is significant.

When the decoder releases an incorrect block, only a few of the k bits 
will typically be incorrect. We can estimate the decoded bit error 
probability by arguing that the triple error patterns are the dominant cause 
of failure, and the decoder thinks a single error somewhere else actually 
occured. Thus typically four of the k bits are wrong, and probability of 
decoded error is roughly 4/k times PCDFJ. This is plotted in Figure 1. To 
interpret, we see that if p=10“3 then the output error probability for the 
n=128 code is 10"^. This gain is with an overhead of only 6/.,

The decoder "erases" blocks occasionally, and it is important to know 
how often this occurs. All even-weight error patterns produce such 
dismissal; again for small p only the double-error events are significant.

r\

PI dismissal 3 = ^  (?) -p 

a - 2.AMj -

Figure 2 provides a plot of this probability for the extended Hamming codes, 
and we note that if a throw-away rate of a few percent is tolerable, as it 
probably is -for the VLBA, then channel error rates as high as 2 x 10”3 can 
be accepted.

In summary, the (64,57) and (128,120) extended Hamming codes appear 
attractive for the VLBA application. If the raw error rate is below 10”3 , 
then the decoded bit error rate is below 10" ^  ancj dismissal 
percentage is less than V/., Even if p becomes five times higher, the 
performance is perhaps still tolerable. Of course, if the error probability 
is even better, the decoder performance improves dramatically. The 
throughput loss due to code redundancy is 1IX and 6'/. respectively, and both 
are easily implemented* The length 256 code would not seem to be 
preferable as it produces slightly higher decoded error probability, with 
only marginal decrease in redundancy. Block diagrams of generic encoders, 
syndrome formers, and a non-ROM implementation of decoding are attached.

There are more powerful, codes (mostly BCH codes) which I wi 11 soon 
report upon. An example is the (128,112) BCH code, capable of correcting 
single and double- error patterns. However, triple errors, at least some of 
them, cause decoder failure, and it's not clear that performance is much 
superior to the extended Hamming codes. Of course, the latter achieve a low 
P£DF) partly by dismissing double-error blocks. For these remaining codes 
to outperform the extended Hamming codes, they will probably need to-be 
longer, and have more complicated decoders. A competitor to the (64,57) 
code having the same throughput might be a (255,223) quadrople-error 
correcting BCH code.
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April 5, 1 9 ^

To: R. Escoffier, L. D'Addario 

From: S. G. Nil son

Re: Error Control Coding for VLBA Recording
Part 2: Multiple Error Correcting/Detecting Codes

In the previous memo I described the SEC-DED Haiwning codes which are 
simple to instrument, and give ra-ther good performance, e.g. a (128,120) 
code has an overhead o f 6Z, but the decoded error probability is about 
10"5 for a raw channel error rate of 10~3f an(j the block dismissal 
rate is about IX for the same condition.

This memo describes several slightly more powerful BCH codes having 
mu 1 tipi e-error correcting capability. Performance improves somewhat in 
exchange for more complicated decoders, though I regard them as quite 
feasible.

CODES:

The codes under study are listed below:

Code Overhead,/  Corrects/Detects

(44,51) 20 2/3

(128,112) 12 2/3

(256,239) 6.6 2/3

(256,231) 10 3/4

All codes are capable of being encoded with a feedback shift register 
having at most 24 bits. Decoding proceeds first by computing the syndrome 
of the error message with a circuit virtually the same as the encoder. At 
this point, the decoding must proceed differently for the codes above.
For the shorter codes, either table look-up of the error positions or the 
Meggitt decoding procedure is used. The latter recirculates the syndrome 
n times, looking for a pattern corresponding to a correctable error in the 
right-most buffer position. Implementing this error-recognizer can be 
performed nicely with gate array technology. The longer codes, especially 
the last one above, would use an algebraic type of decoding.

PERFORMANCE

(64,51) CODE:

This code has minimum distance of 6, meaning it can correct up to two 
errors and detect all triple errors. At least some quadruple error events 
cause decoding errors, and an upper bound on probability of decoding 
-failure is obtained by assuming all higher-order error patterns lead to 
decoding error.

PCdecoding error] < p **(*-p)



2: 6 . 3 5 x i e > 5 j>^

We also estimate when a decoding error occurs at most -five of the 51 
information bits are incorrectly output. Thus,

PCbit error] =* C . Z K i o *  p*^

The probability of a block dismissal can be approximated as the 
probability of having exactly three errors in 64 bits (actually many 4,5, 
etc. error events are detected as well, but for small p these are not 
significant) .

PCblocK dismissal] = r 3 4 - p )“ „  ^  p J 0 - f ) 6 '

(128,112) CODE:

This code also is double-error correcting, triple-error detecting. By 
the same argument as above,

PCbit error] =(_!E. ) PCdecoding error]
V 112.

= < i l o (  * 8 ) r o - f ) iL* s  ^ . 6 « . o 5 ) • «

and PtblocK d i s m i s s a l }  = p 3 ( | - p ) « ^ r  3 . 4  x . o s  f>3 (i~t>)  ,t r

(256,23?) CODE:

Again the code is two-error correcting, triple-error detecting, and 

Ptbit error] =

y  3 .7  x i o c 6 * p )  2 5 ^“

A1 so,

PCblock dismissal] = 2 . 7 6  * t O  ̂  p 3 (j-p)2 5 ^

(256,231) CODE:

This code is capable of correcting triple errors and detecting 
quadruple errors since minimum distance between codewords is eight. 
Approximate performance is given by

P t b i t  « r r o r ]  = ^  ^  f S  Q - f )  ^  ~  2 . 3  i ‘O 8  f 3  ( l - p ) ^ 51



and PCblock dismissal! = (j^P )

These results are plotted in Figures 1 and 2 (compare the same -figures 
in the previous memo -for the SEC-DED codes). From Figure 1 we see that at 
p=10 3, ^11 codes give at least two orders of magnitude improvement in 
decoded error probability. The most -fair comparison with earlier results 
is obtained with codes of roughly equal overhead. A SEC-DED (64.57) code 
and the (256,231) code both have about 1 \V. overhead. With p=10“* the 
former gives PCbit error] = 3x10“* while the latter gives 1.8x10"'.
As the channel improves, the longer code improves more rapidly than the 
SEC-DED code as it has a larger exponent on p.

Figure 2 shows that dismissal rates are acceptable, i.e. less than \V.y 
for all codes provided p<10-3; p being -five times worse still leaves 
reasonable throughput.

My evaluation is that the codes of most interest are the (128,112) 
code and the (256,23?) code. Their decoders are reasonably simple, using 
either ROM-based or Meggitt decoding. The (64,51) code probably has too 
large an overhead burden, and the (256,231) code, though performing the 
best of all studied thus far, would need a relatively compicated algebraic 
decoder, at least with my current understanding of the problem.

The remaining question is how to weigh the complexity/performance 
question between these candidates and the SEC-DED codes. My current 
opinion is that complexity is easily manageable, especially if gate array 
technology is used, and that the (128,112) code represents a reasonable 
compromise. It happens that this same code is used in INTELSAT V 
time-division multiple access at information rates in the vicinity of 60 
Mbps.

A final ccrafnent on implementation is that independent errors have been 
assumed throughout; since errors are likely to occur in clusters on a tape 
system, interleavers are required. For a ( 128,120) code a block 
interleaver of 128 by 16 bit size would probably be adequate. The 
requirement for the interleaver/deinter Ieaver is another issue mitigating 
against longer codes. Also, to decode at 10 Mbps rates, a doublerbuffer 
strategy will be necessary unless a ROM look-up of error positions can be 
accomplished in one shift time (100 nanoseconds). The Meggitt decoder 
would be cycling one syndrome and the received message, while another 
buffer was being loaded. During the next word, the buffers switch roles.
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Stephen G. Wilson 

August 20, 1984

ABSTRACT

A high-speed Ffeed-So lemon coding scheme is described which is capable of 

correcting single byte errors and detecting double byte errors in a codeword 

written across 32 tracks on a recording system, with a 3-track redundancy 

required. Cc\ a random error binary channel with p = 1 0“̂, the decoded error 

probability is estimated to be 2 x 10-5, and the block dismissal probability 

is .01. The code is capable of correcting indefinitely long error bursts 

along any one recorder channel.

ODding and decoding algorithms are provided, and a quick implementation 

study indicates that standard low-power Schottky logic can provide both 

functions with roughly 125 IC*s.

USE OF REED-SOLCMON CODES FOR VLB RECORDING



USE OF REED-SOLOMON CODES FOR VLB RECORDING

I . INTRODUCTION

This memo describes the use of non-binary Ffeed-Solomon codes for high- 

rate recording of data for the VLBI project. The technique is applicable to 

either multi-channel longitudinal recording, or to the case where many less- 

expensive, single-channel VCR's operate in parallel.

The application is illustrated in Figure 1, where we visualize up to 32 

simultaneous bit streams produced by the sensors, each having a bit rate of 4 

Mbps. The "recorder" can be viewed as either a single longitudinal recorder 

with parallel tracks, or a number of single-channel VCR's. In either case, 

the error control coding is done "across-tape", so that this decoder is 

capable of correcting errors due to single-channel electronics failure. 

Furthermore, the coding is done in terms of symbols from a non-binary 

alphabet. Although binary codes can be employed across tape as suggested, the 

overhead, or redundancy, required to correct one error out of, say, 32 tracks 

is higher than for non-binary codes. Figure 2 illustrates the manner in which 

code symbols are formed and written on tape, or the effective "tape" of 

several parallel VCR's. NDte b bits represent a symbol in this coding scheme, 

and the code is defined on the field GF (2b ).

In the following discussion, code design c o n s i d e r a t i o n s  will b e  

summarized, tentative recxxnraendations made, a performance analysis given, and 

inplementation requirements sketeched.
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II. CODE SELECTION

We are interested in non-binary codes of high rate, or lew redundancy, 

capable of correcting a single symbol (byte) error, and perhaps detecting and 

flagging double errors as well., We refer to these properties as SBEC or SBEC/ 

DBED respectively. (A byte here is b bits, not the more usual 8). Choice of 

the byte size does rot affect the encoder conplexity substantially, as long as 

it's reasonably snail, i.e. < 8. However, the decoder conplexity is strongly 

influenced by byte size; in particular the size of the table used to locate 

error positions is 2 ^  words. Again we're motivated to keep b small. Cn the 

other hand, the byte-size is related to the codeword length for Reed-Solomon 

codes in that

n < 2b

(There are other codes which avoid this restriction, but nuch less is knewn 

about them). Keeping in mind a block length of about 32, we find the byte 

size ought to be at least b = 5.

The natural Iteed-Solomon codes have 

n = 2 * M

n~^ = ^min”*̂

where is the minimum distance of the code. Fbr b=5, the natural codes

are (31, 29) which is SBEC and (31, 28) which is SBEC/DBED.

It may be more convenient to have a block length of 32, which can be 

obtained by lengthening the Ffeed-Solomon codes to (32, 30) or (32, 29) 

respectively. This may be done without changing c^in, and thus the error 

correcting capability.



Another possibility is that slightly longer codes are convenient, say 

to accomodate 32 information tracks. The construction then would use b = 6, 

giving n = 63 as the natural length. These codes may be shortened to (34, 32) 

or (35, 32), depending on whether SBEC or SBEC/DBED is desired.

The redundancy, or overhead, of these codes is about 6.6% and 9.4% for 

SBEC and SBEC/DBED respectively. The redundancy penalty is felt in this 

application as a need for extra tracks, not a lowering of throughput per 

unit time.

Ftor the subsequent discussion, I shall consider only the (32, 30) SBEC 

code and the (32, 29) SBEC/DBEC code. Accomodating the alternatives above in 

either analysis or design is a minor change on the baseline case.

I I I .  PERFORMANCE ANALYSIS 
(32, 30) Cbde over GF (32)

The lengthened code has dm in = 3. There are 32*31 single-error 

patterns and one zero-error pattern, totalling 993 patterns. The nunber of 

syndromes is 32^ since there are 2 syndrome symbols; thus the number of syn­

dromes only slightly exceeds the required number of correctable patterns.

This says that very few double-errors could be corrected (or detected as well) 

and a good appro ximation is to assume all double and higher error patterns 

cause decoding error.

The symbol error probability Ps is approximately bp = 5p assuming p 

reasonably small. The probability the decoder commits a decoding error is:



PdE = I (32) Ps3 (1—Ps )32-3 h (32) Ps2 (1-ps )30

3 -  j

= 496 (25) p 2 (l-5p)30

= 12400 p 2 (l-150p)

Ft>r p = 10"3f a baseline choice, = .0105. Thus, the block error rate is 

rather large. This is not too surprising given the effective binary block- 

length of 32*5 = 160 and the channel error rate of 10-3. The probability of 

two bit errors in 160 is about .01, and with high probability, 

these are located in two distinct bytes.

The decoded bit error probability, 1^, is estimated by assuming a most- 

likely error event of tv»o fcyte errors, each having a single bit error. The 

decoder thinks a single byte error somewhere else occurs, and this decoded 

byte is basically garbage. This expected number of bit error per block error 

is then (b/2) + 1 + 1 ,  and since there are 30*b bits released per block.

Pb = (b/2 + 2) £12400 p 2 (l-150p)]
““TO-b---

Again taking p  = 10“3f 

Pb = 3 x 10~4

If p irrproves to 10”̂, then = 3.5 x 10“®. Thus as the raw channel 

inproves, the end-to-end performance improves twice-as-fast in order of 

magnitude.

32



(32, 29) Code over GF (32)

Ibis code has d ^ ^  = 4 and is SBEC/DBED. We can reduce the decoded error 

rate substantially if we're willing to dismiss a small fraction of the data.

The number of distinct syndromes is now 323 = 32768. Wfe note this is

plenty to cover the zero and single error cases. There are (32)*(31)2
2

distinct double errors, which is 476,656. We can of course, not correct all 

double-errors since we run out of distinct syndrcroes, but it happens that 

these double-error patterns are all confined to oosets other than those of the 

zero or single-error patterns. These syndromes can be easily recognized as 

described later, and the blocks flagged. Hence it requires at least three 

byte errors to force a decoder error. It is likely that many (probably most) 

of the three error (and higher) error patterns are flagged; hcwever as I do 

not yet have a handle on the actual number, I make the pessimistic assumption 

that all 3-error patterns cause a decoder error. Thus,

32
Pde = I (32) PSD (1—Ps )32—j 5 (32)  r.3 (1 -P s )29  

j = 3 j 3

= 4960 (125 p 3) (1-145p)

= 6.2 x 105 p 3 (1 — 145p)

For p = 10—3, P£>£ = 5.3 x 10"^, much lower than before. The decoded error 

probability is estimated by assuming three symbol errors, each with a single 

bit error, cause a fourth symbol error elsewhere in the block to be released.

= (b/2 + 3) [6 .2 x 10 + 5 p 3 (1-145P)]
29*b

W ith  p  =  TO"3 , Pfr = 2 . 0  x 1CT 5 . A l s o  f o r  p  = 10 “ 5 , Ffc = 2 . 1  x 1C T 1 1 .



With this code, we dismiss code blocks as bad whenever we think a double­

byte error occurs. The probability this happens is

P [dismissal] = I (32) Ps 2 (1 -Ps )30
2

= 12400P2 (1- 150p)

When p = 10“3, P [dismissal] = .01, or 1% of the data is discarded. With 

the SBEC code, it was these cases which caused erroneous data to be released.

Garments:

1. The performance analysis for the SBEC/DBED code is the least 

accurate, but is pessimistic in any case.

2. The channel is likely to have a bursty nature. This

caui be caused by electronics problems associated with a single trade. These 

types of errors are corrected by the across-tape codinq patterns here. Other 

types of bursty error phenomena, such as oxide inper feet ions are probably 

spatially isotropic. Bursts in the direction "across tape" are not well 

handled by the schemes here. A big interleaving arrangement could help, but 

at the speeds contenplated here, this is probably prohibitive. A  "helical" 

patterning on the tape can ensure no codeword occupies a position on more than 

one channel, and no more than one column along the tape.

3. Another decoding alternative is "errors-and-erasures* decoding. If 

it is known that a certain code position is untrustvorthy, it’s reasonable 

that a smart decoder can do better than if it didn't use this information.



This information might be available from observation of electronics over a 

period of time, or the decoder can "learn" the bad tracks itself by counting 

errors per track. The (32, 29) code, which without side information is able 

to correct one error and detect two, can correct one erasure and another 

randomly placed error.

The decoding for "errors and erasures" is only slightly more difficult 

than for errors-only; the bigger question is whether this information can be 

obtained easily and reliably during decoding.

IV. CODING AND DECODING FOR (31, 28) SBEC/DBED CODE

Let u = (u^.2 / ....Uq) denote the information k-tuple, with I GF (2^). 

The code will be systematic with the k highest-order (or left-most) positions

having these symbols. Letting c = (cn_i, C p ^ * ......Cq ) , we have Cp.-j =

ujc_i,....C3 = Uq. The regaining three parity symbols are formed as described 

next.

Let u(x) be the polynomial representation of the information vector. We 

define
C2 = rein x u (x ) 

x + 1

which is a constant contained in GF (32). Similarly,

c-j — rem x u (x ) 

x + a

Cq  - rem u u (x )

X + a ” l



where a is a primitive element in GF (32) and a " 1 is its multiplicative 

inverse. We note the polynomials

V 2 (x) = x u (x) + C 2 r v-j (x) = x u (x) + and vQ (x) = x u (x) +

are all of degree at nost k and have (x + 1), (x + a); and (x + a ”̂) as 

factors respectively, Alternatively a° = 1, a^, and are roots of 

V 2 (x), v-j (x), and vQ (x) respectively. In terms of the code symbols,

V 2 (x) = 0 inplies

^k-1 + **-2 + .....+ U o  + c2 = 0

which says C2 is a symbol chosen equal to the sum of the information symbols. 

Likewise v*j (a) = 0 inplies

a + Ufc_2 + • • • •  + Uq ) + c -j = 0
or

+ Uk—2 + •••• + + c-j = 0

Finally, V 2 (a”**) = 0 inplies

a~^ (^k- 1  a"^+  ̂ + Uk- 2  a ” ^+2 + .... + U]a“̂ + Uq) + <̂ 3 = 0

These three equations are the parity check equations for the code. The three 

symbols may be generated by the block diagram circuits in Figure 3, more 

detail of which is given in the Appendix.

A A A A

Ndw suppose we receive a codeword F  = (u, C2 * c-j, q -,). We define syndrome 

symbols in k e y i n g  with the parity equations of the code:



Noting that Uj = Uj + ej and + e^, we have

These symbols can be corrputed using circuits nearly identical to those of 

Figure 3.

C2 Cl

- 0

H  r *<j>

u

Cb

Figure 3: Circuits for Calculating Parity Symbols 
for SBEC/DBED Gode

r ~ io
©

denotes a b-bit storage cell 

denotes a GF (2^) multiplier 

denotes a GF (2^) adder 

(b-bit ex-or)



Now consider several cases of error patterns:

Case I: Zero Errors

The syndrane symbols are all zero. If we obtain this result we nust say 

the codeword is valid; it may be that a three-error pattern fools the decoder.

Case II; Single Error of value 3 in jt*1 position, n-1 < j < 3.

This is the case of a single error in and information position 

S2 = 3 
S-j = 8
^3 = 6 a-j+3

Thus S2 is the value of the error and Sj/S-) = o 3~3. This equation may 

be solved for j, the error position. 9olution of the equation may be by 

trial-and-error (test all 28 values for j) or by table look-up.

Case III; Single error of Value 6 in Position j, 2 > j > 0.

S j will be non-zero, and the other two syndromes will be zero. Wien this 

event is detected, we release the information, as it is deemed error free.

Case IV; Double-Byte Error

IVa; Error B0  and 3 1 in positions 0 and 1 

S2 = 0

S 1 = &i

5o = 00



Case IV: Double-Byte Error (Continued)

IVb: Errors Bq ^nd 62 in positions 0 and 2

s2 = 6 2 

S-] = 0

50 =

IVc: Error B 2 and B 1 in positions 2 and 1 

S 2  =  B 2
5 1 = B i 

%  = 0

All of these cases give syndrome patterns differing from the single 

error or zero error syndromes and hence can be detected.

I\*3: Errors of type B in positions jfk 31 > j, k > 3, i.e., both errors 

of same type (an inprobable event).

52 = B + B = 0

S-j = B ( a 3 ~ 3 + a ^ ~ 3) * 0 
Sq = B (a “3 + 3 + a -k+3) t Q

Again this is distinct frcm the pattern of single error or zero-error 

syndromes and is detectable.

E r r o r s  o f  t y p e  B , one in  in fo r m a t io n  s e t ,  one in  p a r i t y  C2»

S 2 = B +  B = 0 

S, = 6 (aj-3) * 0 

Sfe, = B (a"3 + 3) * 0



Case IV: Double-Byte Error (Continued)

IVf: Eiror of type B, one in information set, one in parity c-j

s2 = 6

S t = 6 (aj-3) + 6 = 6  (o5-3 + 1)

Sq  = B (a-3+3)

IVg: Error of type B, one in inforrration set, one in parity

S 2 = B 

S! = B a3~3 

^> = B a-j + 3 + B

TWd errors of value Bj and B^ in positons j, k

S2 = Bj + Bk * 0 

S-j = Bj a3~3 +

Sq  = Bj a “j + 3 + B^ a “̂+ 3

Cases IVf, IVg, and IVh have the apparent potential of producing three non­

zero syndromes, which would at first glance correspond to a single error 

(Case II). However, the syndrcmes in Case II have a unique relationship; 

namely

S-]/S2 = a 3~3 anc3 V s2 = a 3_j for the same j

It may be shewn that Cases IVf, IVg and IVh produce syndromes for which this 

is not true, and these events are hence detectable as neither zero-error nor 

single-error.



The decoding rules are summarized in the following table:

So S1 s 2 Action

0 0 0 accept information

NZ NZ NZ test if S“|/S2 and % / S 2 give same j; 

if so, have single error of value S2 

jth position; if not dismiss block

0 NZ NZ dismiss

NZ 0 NZ dismiss

NZ NZ 0 dismiss

0 0 NZ accept (single parity error)

0 NZ 0 accept (single parity error)

NZ 0 0 accept (single parity error)

Extension to (32, 29) SBEC/DBED Cbde:

We can lengthen the code adding an extra information symobl, and keeping 

three parity symbols. The codeword is again systematic so that C 32 = ^ 29'

C 31 = u28 ••• c 3 = Uq. The symbol c 2 is again chosen so that 

32
I Ci = 0 

i = 2

i.e. it forms an overall check on the symbols; c 1 is such that 

32a I Cj a^~3 + c .j = 0 
i = 3

and c q  is such that 

32

a ~ 1 I Ci a3~i + = 0 
i = 3



If no errors occur in 32 positions, all syndromes will be zero. If a single 

error occurs in an information position, S2 is the error value, and 5 -1/82 = 

a j-3 and % / S 2 = a 3-} for the same j. Syndrome rules are followed as before 

for the other cases. The circuits for calculating the parity symbols and 

syndrome are exactly as before, but are sinply clocked one extra time.

(Note: the lengthening can actually be done once more without lessening 

performance, to say (33, 30), but these values are perhaps not so convenient).

V. IMPLEMENTATION CONSIDERATIONS

We assume use of the (32, 29) code over GF (32), with 29 parallel trades 

being presented at 4 Mbps. Building the enooder/deooder is conplicated by the 

fact that coding is across-tape, whereas the symbols are arriving bit-serial, 

byte parallel.

An implementation which has high internal speed requirement is to load 29 

5-bit registers in parallel, then have a multiplexer sequence these bytes 

through the parity calculating circuits shewn earlier. The clock rate of 

this multiplexer and parity circuits must be 29 (4 x 10^) = 116 MHz (I), 

given that we wish to corrplete all the conputation within one shift time. 

Recording then amounts to clocking out the" 5-bit registers along with the 

three 5-bit parity registers, to the 32-track recorder.

A  way to lower the internal logic speed is to allow time-skewing of the 

codeword, and pipeline the processing. If 4 Maps is the bit rate per track, 

then the byte rate is 800 kHz per trade. TO avoid missing data, we need to 

sanple each track 8 x 10^ times pet second. A  convenient method is to adopt



a multiplexer that scans 8 tracks (or symbols) every bit time, 1/ (4 x 10^) 

second. Then it scans 8 more bytes, etc., until it has processed the required 

29 tracks. The multiplexer rate and internal canputation rate would be 32 MHz

4 MHz

to encoder circuits

15

The bits that join to form a codeword are boxed in the diagram belcw: 

0-

15
16

28

32

The codeword would also physically appear with this skew on the tape; if 

desired, this "one bit per 8 track" skew could be eliminated by adding off­

setting delay bits prior to recording.



The nutiplexer actually needs to sweep only 29 tracks every 1/ (8 x 10^ 

seconds, or have a stepping rate of 23.2 MHz. If it has a 32 MHz step rate, 

the clocking is synchronous and there will a short delay before the next cycle 

begins. (We need to wait until a new 5 bits have entered the register).

Decoding can utilize the same arrangement, paying attention to deskew­

ing, so that the correct bits are grouped together. At the oorrpletion of a 

multiplexer scan, we have the three syndromes, and within one shift time 

(250 nsec) we mast find the error location, and load a register with the 

error value, for subsequent nod - 2 addition of the error value with the 

desired trade. Error correction will require a mod-2 adder on each track 

which is selected according to the error locations.

For a projected throughput on the order of 128 tt>ps, it appears that 

low-pcwer Schottky logic is sufficiently fast to perform encoding and decod­

ing. A rough projection of parts count (see be lew) gives 125 standard IC's. 

Gate array technology could reduce this same, but a substantial number of IC's 

are shift register buffer elements.



Estimated Package Count:

Encoder

1. Input Ifegisters and 3 Parity Registers: 32 29 8-bit SR's and 3 8-bit
latches

2. Parity Calculation

3. Multiplexer

4. Miscellaneous dividers & counters

6 quad ex-ors

(10?) could use two
(5-1 mixes for each) 
bit of 5 bits

< 5

Decoder

50 IC’s (MSI)

Same as for encoder, 
plus 2 IK x 5 ROM's, 5-bit ex-or, 
location register, 8 quad ex-ors 
for error correction, 8 quad two-input 
gates for gate selecting, 5-bit to 
32 line deaoder

50 
+ 25

75 IC's



APPENDIX 1: Arithmetic in GF (32)

We view the elements of GF (32) as binary polynomials of degree 4 or 

less, and perform field addition by adding polynomial coefficients nod-2 , and 

field multiplication by performing polynomial multiplication modulo p (x), a 

primitive polynomial of degree 5. Vfe take p (x) = x^ + x 2 + 1. Doing so 

gives the field of T^ble 2, with elements listed as 5-tuples by ascending

: a , where a is primitive, a = (01000).

CF(2S) generated by p(^) -- 1 -f X 1 + X>

_ 00000 i 1111
o 1 oooo 16 1 1 01 1
i Ot 000 i r 1 1 0012 OOt 00 18 1 1000
3 00010 19 01 1 00
« 00001 20 001 10
S 1 01 00 21 0001 1
e> 01010 22 10101
7 001 01 23 1 1 1 10
8 1 01 10 24 01111
9 0 10 11 2S 10011
I O 1 OOOI 2* 11101
I I 1 1 1 00 27 110101 2 01110 ?« 01101
1 3 00111 29 100 10
1 4 1 01 I 1 30 0 1 OOt

example, if we wish to add a 2 + a 3 we have

Table 2

(00110) = a 20, whereas a 2 • a 3 = a 5. (Exponents add as usual, reduced mod 

31.)

We note any field element 6 can be expressed as 

£ = fĉ-j + b| a + b 2 a 2 + b^ a 3 + b^

where b^ are binary coefficients. If we wish to add two elements B and y , 

we sinply mod-2 add their respective bits, so GF (32) addition is a trivial 

extension of GF (32) addition.

Suppose we wish to multiply y - y0 + y ] a + Y 2 a ^ + T'3a ^ + ‘Y + a ^ b y  a 

fixed value a , as in the encoder/decoder circuits, 

ay = ^0 a + ,,rici^ + ^ 2 a ^ + ^ 3 a ^ + ^4 + a ^

=  ^ 0 a  + ^ - ] a 2 + ^ 2 a "̂  +  ^ 3 a 4 +  ^ 4  ( a +  1 )

= T 4 + (To  + T 4 } a + Y 1 a 2 + Y 2 a 3 + ^ 3 a*



This circuit is implemented by: 

T4

Now suppose we wish to form 

6 = a y + B 
Then 64 = ^3 + 64 

83 = T 2 + $ 3  

®2 = t 1 + 6 2 
®1 = yO  + y 4 + 8 1  

e 0 = Y 4 + Bo

which is implemented as 

*4

8 3
All cells and adders are binary



By similar reasoning, multiplication by a  ̂ and adding to 6 is built as

Finally, multiplication by 1 and adding 3 is

1

63

62
+ -< z>

© ----------------T c



These three circuits provide c}, c q ,  and c2 respectively when encoding, with 

F  respresenting the information symbols. Wfe zero the register initially and 

clock each 29 times. After this, the register contents contains the desired 

symbol.

Likewise for decoding we zero the registers, clock in the 29 received 

symbols to each, then add with c2 , c-j, or Cq  to obtain S 2, S-j, and 

respectively.



APPENDIX 2: Table-Look-Up From Syndromes

Given S2 , S-j, and as described earlier, we inplenient the decoding 

rule: accept if S 2 = S-| = Sq  = 0 or Sq  = S-| = 0, S2 * 0, etc. The Boolean 

variable A is

A = s2 * S 1 * So + s2 * S 1 * Sq  + S2 • S-| * Sq  + S2 * S“| • Sq  

If A is true, we take no further action, and release data as is.

If S2 , S-|, and Sq  are all non-zero, we test whether the syndrome 

corresponds to a correctable single error. We must corrpute S-j//S2 = and

SD /S2 = a^'j, checking to see if the same j results. This can be done best 

by having two tables of 1024 words by 5 bits. T^ble 1 stores the solution 

to S“|/S2 = when addressed by S-j and S2, while table 2 stores the

solution to S^/S2 = when addressed by and S2 . If both solutions

agree then the 29-jt*1 symbol of the information patterns should have S2 added 

to it. If they don't agree, we dismiss the data, thinking a double-byte error 

occured.

Schematically we have the system on the following page:



5

j------- position 29-j

5
if non-zerof dimiss data

if zero, add S2 in

5

ar>d T 2 are 1024 words by 5 bits each

A  "bad-data" bit is set if exactly one syndrome is zero, or if the above 

sun is non-zero. In actual operation, we probably would configure the decoder 

to always release its best guess, i.e. always deoode, but to merely have a 

single flag bit set whenever the data is suspect. The user of the data has 

the final say in hew to utilize this. If we ignore the flag and always 

decode, the error rate goes up by roughly a factor of 20, but we're not 

throwing away data.

(Alternate at press-t ime: We could use a table with 2^5 = 32k words x 6 bits. 

The first five bits store the error location if it's to be corrected, and bit 6 

would be a flag bit, when the solutions for j do not equate. This would 

save same on package count. )


