VLBA Electronics Memo No. 56

(851126)

NATIONAL RADIO ASTRONOMY OBSERVATORY Charlottesville, Virginia

November 25, 1985

MEMORANDUM:

- TO: VLBA Electronics Group
- FROM: S. Weinreb
- SUBJECT: Front-End Design Changes

This memo summarizes the changes made in the front-end design from the design described in VLBA Technical Report No. 1 (August 29, 1984). These changes have been incorporated in the 10.7 GHz front-end, S/N 1, and will be incorporated in Neptune/Voyager 8.4 GHz front-ends, S/N 3 and later. Changes III-VIII which involve control circuits will be incorporated in all cooled VLBA front-ends except 43 GHz.

I. Gain Reduction

In order to increase the tolerance to interfering signals (see VLBA Electronics Memo No. 39), the post-amplifier gain has been reduced from 27 dB to 18 dB. The total power output of a receiver with input shorted is -44 dBm. This arises from -89 dBm input noise power (50K in 1.5 GHz bandwidth), 30 dB CRYOFET gain, 18 dB post-amp gain, and 3 dB cable and isolator loss.

II. Phase Cal Coupling

The coupling of the phase cal input jack to the receiver input has been increased from -56 dB to -46 dB at 10.7 GHz and lower frequencies and -37 dB for the 14.9 GHz front-end. This has been accomplished by a rearrangement of couplers (see Figure 1) on the RF components card and, in the 14.9 GHz case, an increase of coupling in the receiver input line from -30 dB to -25 dB.

III. Vacuum Sensor Circuit

It was found that some of the transformers used in the first build of vacuum sensor circuits had abnormally high temperature coefficients resulting in vacuum-sensor zero drift. The circuit has been replaced by a transformer-less design shown in Figure 2, Rev. B of D532005002. Circuit interfaces and calibration remain the same.

IV. Control Card Circuit

The mechanical relays used in the initial control cards generated interfering pulses to a monitor computer and also were sensitive to shock. The relays were replaced by solid-state, zero-crossing types shown in Figure 3, Rev. B of D532005003.

The dewar-vacuum trip point for turning on the refrigerator was changed from 1,000 μ m to 50 μ m.

V. HEMT Illumination Wiring

Initial tests of low-noise HEMT devices revealed that they were not time invariant at cryogenic temperatures unless they are illuminated with light. Wiring for two light-remitting diodes (LED's) was installed as shown in Figure 4. The LED monitor voltage will be approximately +5 volts if both LED's have correct voltage drop.

VI. Local Monitor and Control Panel

A small control panel which is mounted on a plug-in card was installed in the card cage; a schematic is given in Figure 5. The purpose was to provide all-in-one-place control and monitor of a front-end.

The panel contains a six-position cryogenics control switch with positions CPU, COOL, STRESS, OFF, PUMP, and HEAT. If the switch is not in the CPU position, a red indicator is illuminated and a CPU monitor bit is set low. The cryogenic mode selected is monitored whether selected manually or by the CPU; a green light is illuminated if COOL mode is selected manually or by the CPU.

A twelve-position monitor switch with a $4\frac{1}{2}$ digit DVM is provided for metering the analog monitor points; a pin jack in parallel with the meter is provided on the panel.

VII. Third Cryogenic Control Bit

In order to remotely diagnose a vacuum leak in the dewar, a fifth cryogenic state, PUMP, was required; this necessitated a third control bit which has been labeled "X". The cryogenic control modes are:

Mode	X	C	Ĥ	Octal	Comment
COOT. <	1	1	1	7	Normal
STRESS	1	o	o o	4	Extra heat load
OFF	1	0	1	5	No cool, heat, or pump
PUMP	0	1	0	2	Pump only
HEAT	1	1	0	6	Fast warmup and pump

(The unused control codes should not be used but as presently wired: 0 = 4, 1 = 5, and 3 = 7.)

VIII. Connector Changes

A second 25-pin connector was added to accommodate 12-bits of front-end identification (ID) data (frequency, serial number, and modification state) and also allow more spare wires. The wiring of both 25-pin connectors was redistributed so J2 (DB25S socket on front-end) provides monitor connections and J5 (DB25P plug on front-end) provides DC power, cryogenic control, cal control, and ID. A third 9-pin connector, J4 (DB9S on front-end), was added to allow auxiliary connections to the front-end; at present the only auxiliary connections are two wires to the AC current monitor located on the 150-volt AC power supply and a second output (also on J2) of the pump request signal.

Pin connections for these connectors are given in the attached Tables I, II, and III. A suggested coding for the FREQUENCY ID code is given in Table IV. A "O" will be coded as a short-circuit to ground and a "1" will be denoted by an open circuit.

cc: P. Lilie

Figure 1 - Noise calibration block diagram

TABLE I

J2-MONITOR (DB25S ON FRONT-END)			
Pin	Label	Function	
1 2	VP VD	PUMP VAC Dewar vac	
3 4 5	1 5K 50K 300K	TEMP MON, 10 mV/ ^O K	
6 7 8 9 10 11 12 13 14 15 16 17 18	AC I RF1 RF2 LF1 LF2 LED - QGND	AC CURRENT RCP STAGE 1 OTHER STAGES LCP STAGE 1 OTHER STAGES LED VOLTAGE - QUALITY GND	
20 21 22	S P M	SOLENOID MON PUMP REQ MANUAL MON	
23 24 25	X C H	CON TROL MODE MON ITO R	

TABLE II

J5-FWR, CONTROL, AND ID (DB25P ON FRONT-END)				
<u>Pin</u>	Label	Function		
1 2 3 4 5	GND +15 -15	POWER GROUND 600 mA 100 mA		
6 7 8	X C H	CONTROL BITS		
9 10 11 12 13	CAL HI CAL GND	28.0 V, 4-10 mA 28.0 V, ~ 50 mA		
14 15 16 17	FØ F1 F2 F3	LSB FREQUENCY ID MSB		
18 19 20 21	SØ S1 S2 S3	LSB SERIAL NUMBER MSB		
22 23 24 25	MØ M1 M2 M3	LSB MODIFICATION MSB		

TABLE III

J4-AUXILIARY (DB9S ON FRONT-END)				
<u>Pin</u>	Label	Function		
1 2 3 4 5 6 7 8 9	AC+ AC- P GND	CURR MON, 10V/AMP RETURN PUMP REQUEST GROUND		
TABLE IV				
FREQ	UENCY ID	CODE		
ode	Frequency			

<u>Code</u>	Frequency
0123456789ABC	75 327/610 1.5 2.3 4.9 8.4 10.7 14.9 23 43 86
D R	8 IL VI A SN1. 16
F	8.4 VLA SN17-32