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When fringe rotation is done at baseband, undesired products that do 
not contribute to the cross correlation, but that do contribute noise, are generated. 
This is because multiplication of the signal by a sinusoid at the fringe frequency 
shifts each component both up and down by the fringe frequency, and only one 
of these is correct. The undesired product can be suppressed if the signal is 
multiplied by two fringe-frequency sinusoids in quadrature; if one of these 
products is passed through a 90-degree phase shift filter and then added to 
(or subtracted from) the other product, the undesired part is cancelled. This 
phase shifting and recombining can be done before or after cross correlation 
with the signal from another antenna, but in the latter case twice as much cross 
correlation must be done. To do it before cross correlation, a 90-degree phase 
shift filter must be built. One way of approximating such a filter is discussed 
in this memo. 

Let s(t) be the signal to be fringe-rotated. Formally, we can write 

s(t) = s+(t) + s_(t) 

where s+(t) is the positive frequency part and s_(t) is the negative frequency 
part (they are complex conjugates, and s+ is one half of the analytic signal 
of s). This is convenient because 

2 cos(wt) = exp(jwt) + exp(-jwt) 
and 

2 sin(wt) = -j [exp(jwt) - exp(-jwt)]. 

Thus, the product of s(t) with each of the latter functions can be written 

C(t) = 
and 

s+exp(jwt) + s_exp(-jwt) + s+exp(-jwt) + s_exp(jwt) 

S(t) = -j[s+exp(jwt) - s_exp(-jwt) + s+exp(-jwt) - s_exp(jwt)]. 

If we assume that a positive frequency shift is desired, then the first two 
terms in each equation are the desired products and the others are the undesired 
ones. Also, the first and third terms contain only positive frequencies and 
the others contain only negative frequencies. Now suppose that S(t) is passed 
through a filter whose impulse response is H(t}, and that the result is added 
to C(t), giving: 

s'(t) : C(t) + S(t)*H(t). 
= [s.exp{jwt)]•[1 - jH(t)] + [s_exp(-jwt)]•[1 + jH(t)] 

+ [s+exp(-jwt)]•[1 + jH(t)] + [s_exp(jwt)]•[1 - jH(t)] 

where • represents convolution. It should be apparent from the above that 
the undesired terms cancel if H has a Fourier transform that is +j for positive 
frequencies and -j for negative frequencies. This makes it, as expected, 
a 90 degree phase shifter or Hilbert transform filter. 



In the last equation, the t1rst two terms are the desired ones and the 
others are undesired; the first and third terms contain only positive frequencies 
and the others only negative frequencies. Considering only positive frequencies, 
we find that the signal to noise ratio is reduced, relative to ideal filtering, 
by the factor 

11 - Jh(f) I 
SNR = -----------~-~-------~------~---

+ [1 + jh(f)]2 

where h( f') is the Fourier transform of H( t). The denominator terms are the 
contributions from the desired and undesired products, which are independent 
and hence add in power. 

Next, suppose that s(t) and s'(t) are discrete time {sampled) signals; 
i.e. , s ( t) is only available at t = i/f s• for integer i, and we are only 
interested in s' (t) for the same values of t. This causes no loss of information 
if the maximum frequency in s(t) is less than f s/2. Then H(t) can be band
limited to f 8 /2 also, and only its samples are of interest. It turns out that 
the ideal filter bas the following discrete impulse response: 

••• -1/7' o, -1/5, o, -1/3, 0, -1' o, 1' 0, 1/3, o, 1/5, o, 1/7 , ••• 

By truncating this symmetrically about the center, and by inserting a delay 
of half the truncated length, we obtain a realizable filter with a finite impulse 
response (FIR). The use of such a filter in a fringe rotator is illustrated 
in Figure 1. 

Figure 3 shows the calculated frequency responses of fringe rotators 
based on FIR filters with 4, 6, and 8 "taps"; for N taps one obtains a filter 
of length 2N+1, because alternate samples or the impulse response are zero. 
The effect on the signal to noise ratio, relative to a perfect filter, is also 
plotted. At the band edges, no suppression-of the undesired product is obtained, 
and so the SNR is reduced by ·-{2 ; but for even the simplest filter, the loss 
is less than 10% over 90S of the band, and is less than 1% over 80S of' the band. 
For continuum work, the reduction in effective bandwidth causes a loss which 
is also given in Figure 3; normally, the effective bandwidth will also be reduced 
by other filters in the system, in which case the percentage loss from this 
filter will be less. 

The calculated SNR loss factors are ratios of signal amplitude to noise 
standard deviation for a single signal. If similar fringe rotators are installed 
on both signals of a baseline, the loss factor should be squared. 

This calculation has not specified whether the input signals are continuous 
in magnitude or quantized to a finite number of levels; thus, the results apply 
equally well in either case. But we have not considered quantization or the 
fringe frequency sinusoids, nor re-quantization of the output signal, both or 
which would be required in a digital implementation. These will be studied 
in a later memo. 
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FIGURE 1: Fringe rotator based on an FIR filter with 2N taps 

Boxes labeled kD are delays of k sample times. • 
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] FIGURE 2: Listing of BASIC program used to generate plots of Fig. 3. 
ST~RT=16385 END=17280 LEN6TH=89S 
1 REM ===FIR FILTER CALCULRTIONS~= 
2 REM FOR ULBA FRINGE ROTATORS 
3 REM 840209 LRO. 
100 OF = .802:0X = 279 / .5:DY = 191 
105 P4 = 6-2831853: REH 2*PI 
lltt INPUT .. HALF NUMBER OF TAPS: 11 ;N 
120 FOR I = 1 TO N: PRINT ,.COEFF "I 11 =",;: INPUT " .. ,;Q( I ): t·~E:=\T 
130 60SUB 1000: REH M~KE BORDER 
200 Sl = 0:NO = 0: FOR F = 0 TO .5 STEP OF 
210 W = P4 * F:J = 0 
220 FOR I = 1 TO N:J = J + R(J) * SIN(~* <I+ I- 1>): NEXT 
230 X= (1- J) / (1 + J):SNR = 1 / SQR <1 +X* X) 
235 X = INT (F * OX + .5> 
240 HPLOT X,181.S- (J + 1> / 4 * OY 
~~50 HPLOT X .. 191.5- (SNR- .70) / .3 * OY 
260 SI = SI + J:NO = NO + J * J: NEXT 
-~~~0 PRINT CHR$ ( 4 ) 11PR#1 11

: PRINT 
310 PRINT ,.FOR "2 * N" TRPS:u 
.~20 FOR .( = 1 TO N: PRINT A( I ), : NEXT 
330 PRINT : PRINT .. CONTINUUM SNR= "(. 5 + OF * SI .> / SOt=;: (. 5 + OF * NO"> 
.340 PRINT CHR$ ( 4 )"PR#e•• 
40(-t GET ~$ 
41~.!1 JF ~$ = "T .. THEN POKE - 18303 ... 0: GOTO 400 
420 IF AS = ueu THEN POKE - 16304 ... ~3: GOTO 4\30 
430 IF t=IS = ••e,. THEN TEXT : END : GOTO 409 
44~ IF AS = "C .. THEN PRINT : PCII<.E 1145,49: CALL - 16038: GOTO 409 
450 SOTO 400 
1000 : 
l00S REM *** SET UP SCREEN *** 
101121 : 
~.(t2t!:t Ht~R : HCOLOR= 3: PI)KE - 16304~0: POKE - 1830"Z,.0: POKE - 16297,.8 
1~30 HPLOT 0.0 TO 279 .. 0 TO 279,.191 TO 0,.191 TO 0~e 
U'40 FOR J = 19. 1 TO 172 STEP 19. 1: HPLOT 0 .. J TO 3,""1: HPLOT 276 ... J TO 279.J: 
NFXf 

l t1?l3 FO~ ,J = 27.9 TO 252 STEP 27.9: HPLOT "'t,0 TO "'1,.3: HPLOT '-1 .. 188 TO "'t,.t91: 
N':=-;xl · 

1 L.:~.::~~ RE1'URN 
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FIGURE 3: Performance of fringe 
rotators using PIR filters with 
4, 6, and 8 taps. 
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