
CALIFORNIA INSTITUTE OF TECHNOLOGY

MEMORANDUM VLB ARRAY MEMO No. 35*

«
o: VLBA Memo Series 6/21/84
rom: Martin Ewing

^ubject: A Question of Language: C vs Fortran, etc,

■ At the request of some interested NRAO parties, I have culled
and slightly edited a dialog that occured through the Caltech VOX
Jystem.

■rom: DLM l-MAY-1984 11:11
“ o: VOX

ubj : Cf FORTRAN, VMS and U***

have had occasion to run essentially the same program on three
machines (PHOBOS, LOGOS, and the UNIX HEP VAX) in two different

anguages (C and FORTRAN). The program is a one dimensional
ydrodynamic calculation of a shock wave traveling through a tube; the

computations include setting up the problem and running the evolution

t
OO time steps. Each code was compiled with optimization (/OPTIMIZE or
0). In the case of FORTRAN, the code was compiled on PHOBOS and run on
oth PHOBOS and LOGOS and then conversely compiled on LOGOS and run on

I
 both with identical results. (As UNIX FORTRAN is not as structured as
MS FORTRAN, DO/END DO structures and other items had to be translated
n order to run on HEP. The translation from VMS FORTRAN to C, however,

was nearly trivial as they are both structured in similar ways.)

Bach program was timed using ~T or the UNIX TIME command and extracting
The user time only. The results are shown below in CPU seconds (numbers
j.n parentheses show the evolution time only — the most CPU-intensive
Jart of the calculation — and are not available for the UNIX VAX):

LOGOS(VMS 750) PHOBOS(VMS 780) HEP(UNIX 780)

12.5 (11.6) 3.8 (3.2) 6.0

33.3 (32.5) 7.5 (6.7) 6.7

LANGUAGE

i —

FORTRAN
i
F(

i

I t is no surprise that the VMS FORTRAN compiler is very good. This is
common knowledge. What is most surprising, however, is that it is still m factor of 2 better than any C compiler, even the UNIX one.

■*urthermore, I would strongly suggest that no production runs of C
programs be done on LOGOS as that machine is a factor of 4 slower in
fhis case and a factor or 9 slower than FORTRAN on PHOBOS.

I

welcome any suggestions from C pundits on ways to optimize the C
version of the program which cannot be done in VMS FORTRAN. The code

Iesides in JPL: [DLM.CCP] LAXWEN. FOR and LAXWEN.C. Further investigations
C this sort are needed, I think, in order to determine how we are to
Be LOGOS, PHOBOS (or the new JPL machine), and the concurrent

t
rocessors we will acquire, and which language will become dominant,
ersonally I look forward to the installation of VMS FORTRAN on the CPs
omeday soon.

I
rom: BCB 1-MAY-19 84 15:06
os VOX

t
have examined your C code for LAXWEN, and have the following comments*

• As they stand, your comparisons are not entirely fair. TWo factors
:fect the speed of any program:

a. Design of the language, i .e . access to efficient methods

I
b. Quality of the compiler
he primary speed advantage of C over FORTRAN as a language is that one may
avoid index calculations in tight loops. With regard to this, LAXWEN. C is

I
eally crypto-FORTRAN with array indexing going on in the innermost loop. I
ade a first pass over the code to convert it to a more efficient form (ten
inutes in EDT); the result is jpl: [bcblLAXBCB.C. I suggest you compare its

t
untime with the others (I will be happy to help you get it compiled i f there
re bugs in it — No guarantees as it stands since it is super
uick-and-dirty) . I shall be highly surprised if it is not a lot better (at

least 50%) on VMS and MUCH FASTER THAN FORTRAN on UNIX.

The VAX/VMS FORTRAN compiler is very good. The C compiler is relatively
new, and, as I understand it, it is merely a reworking of the VMS PL /1

Iompiler. It is not shocking that the 'bugs' are not out of it yet. DEC's
ew, and, as I understand it, it is merely a reworking of the VMS P L /1
ompiler. It is not shocking that the 'bugs' are not out of it yet. DEC 's

I
 compilers tend to be highly non-straightf orward and very complex, and this one
s probably not optimized for the language. The UNIX compilers, on the other
and, are very simple in design (made to be portable) and not nearly so sophis­

ticated, and tend to produce mediocre code. The UNIX compilers themselves take
| disgustingly long time to run.

If you need convincing that C is faster than FORTRAN, just take a look at

(
ack issues of the Bell Labs Technical Journal. It certainly is under UNIX.

rom: DEIM0S::KS l-MAY-1984 15:09
To: PHOBOS::DLM,VOX
|ubj: C and Fortran

An initial guess would be connected with the fact that C does a ll

I
ts floating point arithmetic in double precision, and the code generated
y C is full of CVTFD and CVTDF instructions. I raced the C and Fortran
compilers some time ago on integer arithmetic - the Eratosthenes sieve -

£nd saw almost no difference.
Keith

2.

lorn:
To:

1-MAY-1984 21:29SL
BCB,VOX

«
hy should C be faster than FORTRAN in loops when it is possible to
ave DO WHILE (.TRUE.) loops in VAX FORTRAN? Or is there still some
sort of indexing going on in FORTRAN still which slows it down?

Bie VAX manual states that DO WHILE loops are faster than conventional
Indexed do loops.

1-MAY-1984 22:53Eom: DLM
: SL , VOX

Subj: C

K
ian was referring to the ability to address array elements without having
compute array indices each time. This is done with pointers and works

best with linear arrays, although it can be done for multi-dimensional arrays.

K
may be fastf but it appears tedious to me, even in such a simple program
LAXWEN. It would be a bear, I think, in a much more complicated hydro-code
I think KS's suggestion is the "correct" one. C has to work harder to

I
ultiply two numbers. The language will probably display its efficiency if
puble precision arithmetic is needed. I will try compiling LAXWEN.FOR with
ouble precision to see if this assumption is correct. Let me reiterate that
re studies of this type are needed to fully assess VMS FORTRAN and C.

I om:
To:
|ubj:

DLM
KS, BCB, VOX
C

1-MAY-1984 23:24

It looks as though KS is correct. The revised figures with double
jpecision FORTRAN are shown below:

B&NGUAGE LOGOS (VMS 750) PHOBOS(VMS 780) HEP (UNIX 780)

PbRTRAN (SINGLE) 12.5 (11.6) 3.8 (3.2) 6.0

■DRTRAN (DOUBLE) 37.5 (36.6) 6.7 (6.0) 12.6
I
C 33.3 (32.5) 7.5 (6.7) 6.7

1
I

owever, if I don't want all that precision, VAX FORTRAN still wins. It
a shame C doesn't have that choice.

om:
To:

BCB 2-MAY-1984 14:09
VOX,DLM,SL, DEIMOS: : KS

| very large speedup can usually be realized by avoiding indexing in C
(not possible to avoid it in FORTRAN when using arrays). The trick is
^.lustrated by the two following code fragments:

.OW WAY (CRYPTO-FORTRAN) FAST WAY (REAL C)

double array[SIZE];
(ouble result! SIZE];
register i;

double array[SIZE],
double result! SIZE],
register i;

*pa;
*pr;

I

for (i*0; i<SIZE? i++) {

L
result[il« munge(array[i]
r(i*0; i<SIZE; i++) {
result[i]« munge(array[i]

I

/* munge does something * /
/* time-consuming */

}

for(i*0, pa=array, pr^result;
) ; i<SIZE; i++, pa++, pr++) {

for(i®0, pa»array, pr«result;
); i<SIZE? i++, pa++, pr++) {

*pr « munge(*pa) ;

I he slow way gets array i by a multiply, addf and indirect chain. The
fast way does only an increment and indirect. Obviously, if the loop

K
ntains repeated references to an array, the savings is increased since
e increment is done only once (LAXWEN.C contained about ten references
to each array in the tightest loop — every reference entails unnecessary

computation and expense)•
I really smart optimizer might be able to create temporary variables for
you, but I doubt the VAX/FORTRAN is that smart; does anyone out there
know?

i
T<

i

Iroro
To:
lubj

DEIMOS: : KS
PHOBOSs:BCB,VOX
C and speed

2-MAY-19 84 15s27

I hate to spoil a good theory by actually testing it, but I

I
oded up those examples and looked at the code generated (I really
ecommend FOR/LIST/MAC and CC/LIST/MAC to people who worry about
his sort of thing) and the code generated by

INTEGER SIZE
PARAMETER (SIZE=1024)
DOUBLE PRECISION ARRAY (SIZE)
DOUBLE PRECISION RESULT (SIZE)
DO 1=1,SIZE

RESULT (I)=MUNGE (ARRAY (I))
END DO
END
END DO
END

|nd

Idefine size 1024
ain()

double array[size];

I
 double result[size];

int i;

for (i=0; i<size; i++) {
result [i] «munge (array [i]) ;

i 1

I

 are almost identical, and do not involve multiplication at all. In fact,
— ------

i

he code looks rather nice,

n the other hand

define size 1024
main 0

i double array[size], *pa;
double result[size], *pr;

I
int i;
for (i=0, pa=array, pr=result;

i<size; i++, pa++, pr++) {
_ *pr = munge(*pa) ;

i 1

Ienerates pretty horrible code, and deserves to as well, if I might say
o. (I have to admit that I've not actually raced them, since I didn't

code up a time-consuming MUNGE, so I suppose I could be wrong about the

(
ode...)

think the point is that if you can make it clear enough what you want

I
 to be able to do, a GOOD compiler will be able to do it efficiently. If
ou make it hard for the compiler to see what's going on, it will not
e able to optimise vour code.able to optimise your code.

Keith

rom: TJP 2-MAY-1984 17:43
o: VOX
ubj: Optimization

1

i
As Keith has pointed out: the VAX Fortran compiler optimizes subscript

Ialculations for one-dimensional arrays very well. It is pretty bad at
wo-dimensional arrays though. The VAX C compiler is also an optimizing

compiler and will probably do a similar job. I don't know whether the
jjnix compiler optimizes, but I suspect that it will not as it is intended
■o be more "portable" and less machine-dependent. The VAX architecture
Tncludes instructions specifically designed for one-dimensional array
±o be more "portable" and less machine-dependent. The VAX architecture
■ncludes instructions specifically designed for one-dimensional array
Subscripting; most machines do not.

5~

I
roms JLV 2-MAY-1984 17s58
os VOX, DLM, BCB,

Subj s C vs FORTRAN, and all that jazz

1
he comparisons of C vs. FORTRAN on the different machines are interesting
ut a couple of caveat's should be added.. . .

I .) A comparison of 780 vs. 750 should be done with the same "process m parameters* in each case. Such things as paging do indeed (though
theoretically they shouldn't) increase one's CPU usage.

.) Same thing for (TMHW)+ and VMS. >Though this is impossible to achieve.
I don't know enough about UNIX internals to know how much a user gets
nailed for "system" tasks.

.) The VMS FORTRAN compiler stores away intermediate values such as ARRAYtll,

I
 and does some index calculation at compile time (I believe) when

constants are used. This tends to make a "munge" routine with many
references to the same location look the same whether pointers or
constants are used. This tends to make a "munge" routine with many
references to the same location look the same whether pointers or
indices are used.i

i

i
.) The (TMHW)+ FORTRAN-77 compiler produces (or so I am told) notoriously

bad code (but it does w ork ...).

n conclusion small differences should probably be ignored, but anything over a
actor of 2 is probably significant. Also, why is the 750 so slow? It is
eputed to have 60% the speed of a 780. Maybe it 's FPA is not working?

I
roms MSE 2-MAY-1984 20s06
os VOX

Subj s C

ow universal is this use of double precision floating point in C? This looks
ike a fatal flaw if it can't be undone. We might like to adopli ght like to adopt C for the

I
VLBA correlator, but I can't believe we would accept a factor of 2+ degradation
n single precision real work.

Of course, the VMS MTH$ routines can be called in any VMS supported precision,
"aybe that's good enough.
roms TJP 2-MAY-1984 21s29
os MSE,VOX
ubj s C double precision

It is part of "standard" C that all integer arithemetic is done on

I
ong integers (32 bits on VAX) and all floating-point arithmetic is done
n double precision (64 bits on VAX). I know of no compiler which does not
follow these rules. Thus using "short int" or "float" variables is only

«
n advantage if you have an awful lot of them and want to save storage space,
ne can pass short ints and floats to routines written in other languages,
ut not to C routines. One wouldn't want to call a subroutine, though, to

jdd two floating point numbers. A typical C program will be speeded up
■y changing all "short int" declarations to "long int" and all "float"
•o "double".

■rom: SL 3-MAY-1984 10:27
Vo: VOX
Subj: C

i

Piven that the double precision tests (reported to VOX so far) show
about equal speed between FORTRAN and C, and the single precision

K
sts showed a clear advantage for FORTRAN, what is the motivation
r us to learn and program in Cr especially when most people (at least
around here) do not know C?

Apparently C has some advantages in character manipulations. However
I recently had to modify a whole library of source code to run on
a VAX (it was written for a UNIVAC), and this required many character
■hanges — all of which were pretty easy to do, I found, in an automated
Way using the VAX run time library calls for character string procedures.

I
 guess an important factor is that many people are using rainbow computers
ow, and apparently these are being acquired with C (but not FORTRAN)
compilers. I don't think that UNIX is relevant to any of these discussions,

I
ecause our system management has stated that UNIX will never be the
perating system for the Caltech-JPL production programs (i.e . the ones
hat use a lot of cpu). Although I am teaching myself C, it is hard

to be motivated when one sees that after spending a lot of time and effort,
he new language is slower than FORTRAN, except when everything is
ouble precision (in which case it is about equal).

I
rom: ZAR 3-MAY-1984 11:04
o: VOX

Subj: Language Comparisons

|as anyone one tested PASCAL vs. FORTRAN or C?

I
 From: TEL 3-MAY-1984 11:43
o: VOX

ubj : C arithmetic conversions

Iccording to Kernighan & Ritchie, the "usual arithmetic conversions" for
inary operations are:

I
 First, any operands of type char or short are converted to int, and any of
type float are converted to double.

Then, if either operand is double, the other is converted to double and that
is the type of the result.

I
 Otherwise, if either operand is long, the other is converted to long and that

is the type of the result.

7

I
 Otherwise, if either operand is unsigned, the other is converted to unsigned
and that is the type of the result.

- Otherwise, both operands must be int, and that is the type of the result.
| is the type of the result

I

Otherwise, if either operand is unsigned, the other is converted to unsigned
and that is the type of the result.
Otherwise, both operands must be int, and that is the type of the result.

o, as has been accurately stated earlier in Vox, all floating-point numbers

K
are converted to double precision. However, it is not true that all integer

pes are converted to long int*s, only to int*s. While it is true that int's
d long int's are both 32-bit quantities on the VAX, there are many machines

(most micros, for example) on which these two types are different sizes.

!
pd, by the way, I use C not because of any efficiency consideration, but
ecause I prefer the language - in spite of having used Fortran exclusively
£or several years before ever hearing of C (or maybe because of this).

- Todd Litwin

I
roms DLM 3-MAY-1984 13:26
o: TJP,VOX

Subj : UNIX C OPTIMIZATION

■nix provides a -0 option which is supposed to produce optimized code.
T do not know whether the optimization is VAX-specific or not. On the
m e hand, UNIX is supposed to be portable. On the other hand, I always
■bought that it is the C code that is portable and it is in the C compile
^read "compiler") where the machine-specific interface takes place.
(The UNIX operating system is written in C.) I must ask the HEP people.

I
 read "compiler") where the machine-specific interface takes place.
The UNIX operating system is written in C.) I must ask the HEP people.

I
oes anyone know who is the final authority on C? ANSI? Bell Labs?
ernighan & Ritchie? If ANSI, maybe someday we can lobby for single
recision arithmetic in C88 or C99. Won't help the VLBA much though.

I
rom: DEIMOS::WALTON 3-MAY-1984 16:44
o: PHOBOS:: VOX

Subj: Efficiency etc.

i According to Norm Wilson, the HEP UNIX VAX manager, Berkeley claims to
have written a Fortran compiler for Berkeley Unix which is as good as the VMS

I
ne. This was done by answer analysis; i .e . , by looking at the code the VMS
bmpiler generated and rewriting the Berkeley one to produce the same code. HEP
oes NOT, I believe, have this latest compiler. The VMS Fortran compiler uses

I
 tricks to get that last factor of 2 in speed which are highly dependent on the
eculiarities of the hardware, and are very likely to contain hard-to-find
ugs.

As far as C vs. Fortran vs. Pascal - if you don't need double
precision, then Fortran is the clear winner. Before you decide you don't,
though, consider carefully the problem at hand. For example, in my thesis
precision, then Fortran is the clear winner. Before you decide you don't,
though, consider carefully the problem at hand. For example, in my thesis
research I was doing radiative transfer calculations using the usual
forward-backward sweep method for solving a tridiagonal matrix (Mihalas,
Stellar Atmospheres, 2nd edition, chap. 6) . This method fails due to single
precision floating-point roundoff errors when the minimum optical depth is less
than l.e-5 on the Vax. This value is not atypical for a stellar atmosphere
calculation. Moreover, the good structured programming constructs like while
loops are part of standard C and Pascal, but not of Fortran-77. Given the
itinerant nature of many astronomers nowadays, non-standard Fortran-77
constructions are probably to be avoided.

One very useful tool for efficiency tests is a profiler, a program
which (ideally) produces a table of what percentage of your program is spent in
which statements. Unix has one; does anyone know of a way to do such a thinq
in VMS?

From: BCB 3-MAY-1984 16:47
To: VOX,SL
Subj: C vs. FORTRAN

One reason C is preferable to FORTRAN is that it provides data abstraction
in the form of recursively defined data structures. This paradigm enables
many elegant solutions to difficult problems that are not possible in
FORTRAN. As a result, coding time goes down, debugging time goes down, and
the code is more readable (because you don't have to do headstands to get
simple things done). Any language which provides linguistic constructs that
more closely match the structures of the problems at hand is preferable.
Linguistically, C is much more "complete" and consistently designed than
FORTRAN. It is not the last word on languages, but many agree it is the most
usable language currently in existence.

The C Monster

a

From: DLM 4-MAY-1984 20:10
To: TJP,VOX
Subj: The UNIX C Compiler

The following was sent to me by norman on CITHEP when I asked him
whether their UNIX compiler was VAX-specific or portable* His answer
helps (somewhat) in explaining why the UNIX C code is a bit faster than
VMS C (it does SINGLE precision arithmetic) but not that much faster (it
does not know a lot about the VAX architecture). At least that is the
way I read it — DLM:

Obviously any compiler is machine-specific to an extent; the goal
of portability is to isolate the dependencies. The C compiler used
by almost all UNIX systems except the original PDP-11 version is
the so-called 'portable C compiler,1 which is designed to be easily
modified to produce code for different machines. The VAX one has been
tuned to some extent, but doesn't know a great deal about the VAX
architecture. There's a separate optimizer which knows some quite
VAX-specific things, including putting in some of the fancy loop
instructions; however, since it 's a separate program, and has access
only to the assembly languange output of the compiler, there are
a lot of optimizations it can't make because it doesn't know if they
are safe. (For example, it can't assume that a variable in memory
has the same value from one instruction to the next, since it 's
easy to have many names for the same address from assembly language.)

30 both sides are right; the compiler is a generic one, but has been
customized to produce code for VAXes (and the optimizer makes no
pretense of machine-independence).

The compiler at HEP is slightly divergent, in that it does single­
precision floating point ops in single precision (which is a slight
violation ot the definition of C, but one the compiler occasionally
violated anyway), and allows float and double variables to be in
registers. These should be second-order effects.

Dramatis Personae:
DLM David Meier
BCB Brian Beckman
KS Keith Shortridge
SL Steve Lichten
TJP Tim Pearson
JLV Jon Vavrus
MSE Martin Ewing
ZAR Dan Zirin
TEL Todd Litwin
WALTON Steve Walton

