
VLB ARRAY MEMO No.
840918 

VLBA MEMO

From: Joseph J. (Jay) Johovich

Re: Monitor and Control; The View From The Top

The traditionly NRAO has produced telescope systems 
that }iave just enough computational equipment to make that 
system work. The designers at NRAO have done wonders at 
squeezing every inch of performance out of limited 
resources. For computer resources, the techniques of 
Bottom-Up" design and the use of assembly language provided 

the most economical systems in terms of CPU cycle economics 
and address space economics, the two traditional factors for 
determining computer power. This design methodology also 
produces code that utilizes the unique elements of a 
particular CPU, memory system, and 10 system, to produce a 
system "tailored" to that particular architecture.

"Bottom-Up" design using assembly language produces 
systems that fit the computational resources like a glove, 
but that glove fits only one hand. Expansion, equipment 
updates, and software maintenance are all much harder to 
accomplish in "tailored" systems. We are witnessing these 
problems now with the VLA. "Bottom-Up" design in higher 
level languages (FORTRAN) usually suffers from this same 
kind of inflexibility, but, to a lesser degree.

We've put up with these limitations of flexibility up 
to now partly because the cost of computers was much higher, 
and partly because we did not foresee the expansions that 
are now being implemented. We, also, underestimated the 
work required to achieve expansions (see VLA Computer Memo 
172, "Whatever happened to the Pipeline?").

Low cost memory supporting large virtual address 
spaces, combined with low cost distributed intelligence have 
changed the economics of systems' design considerably. In 
today's designs, initial hardware costs are much less 
important because the costs for expansion, equipment 
upd,ates, and software maintenance are an order of magnitude 
greater than those initial costs. This will be true for the 
VLBA as well. "Bottom-Up" conservatism just dosn't pay off 
any more. Initial results always look good, but the 
headaches downline aren't worth it.

As a "Bottom-Up" designer works up from the machine 
level code, solutions to different problems tend to present 
themselves. The designer tends to jump on these solutions 
in the context of the narrow constraints of the problem at 
hand. Because the designer has less of a feel for how these 
constraints might change with changes in the overlaying 
structures (due to evolution or expansion of the design), 
the solutions tend to be rigid, and soon the system starts



Page 2

to "look" like the designer. In other words, the solutions 
that the designer tends to pick shape the system in such a 
way that the system mimics the designers style instead of 
modeling natural human systems. Everyone ends up having to 
learn that designer’s style.

THE ALTERNATIVE

The alternative is to face the economic facts of today. 
We must specify a system that is modular and has provisions 
for expansion. We should weight CPU cycle economy at a much 
lower priority and memory use economy at an even lower 
priority. Finally, we should use a "Top-Down" design 
technique that stresses flexibility at all levels.

Actually, "Top-Down" is not the right euphemism, 
"Global-In" would be more appropriate. You start the design 
effort with all the goals, requirements, and limitations 
that apply. These include the scientific objective, 
available resources, and the design techniques themselves. 
Although this memo is primarily meant to discuss design 
techniques, there are many interesting factors in the other 
two categories that shape the kinds of "design techniques" 
that will be required. Thus, this "design environment" is 
indeed a "global", inter-relating environment.

This "Global, Inter-relating Design Environment" is 
used by the designer to guide the decisions he makes at each 
step in the design process. The designer works from this 
global environment towards the hardware core. He produces a 
design matrix that starts with the "Global, Inter-relating 
Design Environment" and ends at specific hardware functions.

Some of the more interesting factors involved in the 
VLBA Data Acquisition System's "Global, Inter-relating 
Design Environment" are:

1. Possible connection to non-VLBA antennas.
2. Possible rapid changes to any major module.
3. Availability of new "systems design" software

and hardware.
4. Possible expansion to include the VLA,

an OAE (Orbital Array Element), or the 
IBA (Intermediate Baseline Array).

5. Unknown future scientific requirements.
6. Unknown future hardware advances.
7. Newly emerging standards (IEEE 802.x, GKS,

BitBus).
8. Possible use of software and hardware

modularization techniques that will 
produce "generic" modules that can be 
used for new NRAO telescope projects,
(like the OAE, IBA, or the MMA).

9. Possible extension of the above generic
concept to include all telescope systems.



Page 3

A possibility that protends a "standard11 
human interface to astronomical instruments. 

10. ad infinitum...

Of course, the "Bottom-Up" designer also works within 
this environment. But, by the time he reaches the level 
where these factors are blatently important, he has 
invariably boxed himself in. The "Top-Down” designer has 
another problem. When he fails, it is usually at the point 
where he realizes that the hardware can't function up to his 
idealized model. In both cases it's "back to the drawing 
board" for the designers.

The "Top-Down" designer can protect himself by making 
sure that his hardware system will always be able to handle 
his design structures. This means flexible hardware and 
software. Unfortunately, extreme flexibility is always 
extremely expensive.

The only way to keep things cheap is to use common 
standards; standards that, through the magic of "volume 
manufacturing", produce cheap products and a pool of 
available talent to implement and maintain those products.

The connection between standards and flexibility comes 
when the "Top-Down" designer starts to modularize his 
system. A module is a collection of software and/or 
hardware functions that are logically connected in some way 
(i.e., they collectively serve some larger function). 
Modularization can increase flexibility if the interfaces 
between modules are well defined and the implementations of 
those modules are independent of those interfaces. This 
independence means that a module can be updated (a new 
algorithm or a new piece of hardware is substituted) without 
changing the interface; and, thus, not affecting the rest 
of the modules. As long as an improved module serves the 
exact function as the old module it will replace, the 
interfaces to that module are not changed. -This stability 
means that the interfaces between modules are the most 
logical places to use existing standards. If high level 
interfaces are used, powerful standards can be employed 
which can support unexpected future needs. Standards can 
only be used for a subset of module interfaces, but this 
subset includes some of the most cost sensitive areas of the 
design: graphics, communications, and peripheral busses. 
The following standards (de facto and real) are candidates 
for these interfaces: GKS, IEEE 802.3(Ethernet), Multibus, 
BitBus.

Flexibility becomes important within a module. No 
apriori assumptions to module intelligence or future module 
expansion should be made. Thus, a module may start out as a 
"dumb module" in the design matrix, but it is not limited to 
that fate. If advances in radio astronomy indicate that



Page 4

some new function requiring intelligence should be placed at 
that module, then it should be possible to do so easily. 
This feature recognizes the trend towards distributed 
intelligence and cheap micro-controller hardware.

The resources are available today to build this type of 
distributed, extendable system at a cost comparable to 
single processor systems of comparable CPU power. The real 
savings comes, downline, when functions are added or 
hardware is replaced.

Using the above approach, the concept of "loading" 
becomes much less important. "Loading" is the "Bottom-Up" 
designer’s word for dividing up tasks between processors in 
a distributed intelligence system. Because of their bias, 
"Bottom-Up" designers tend to load processors such that each 
processor is used to capacity. That means dividing 
processor chores into chunks that fit the processors and 
have very little resemblance to "natural" divisions of the 
tasks. (Natural divisions occur in natural systems. 
Natural systems are systems, put together by humans, that 
are modularized in a way that is easily understood by 
humans, and, that modularization reflects the divisions put 
into other, similar and more familiar human systems.)

The "Top-Down" designer intentionally modularizes his 
system to reflect the "natural" divisions in the system. 
Unfortunately "natural systems" don’t divide themselves up 
to be conveniently controlled by increments of processor 
power. A module where it would be "natural" to put a 
processor may not effectively use up a whole processor. And 
if a processor is used up by a module, that is bad because 
there is no room for expansion. In this last situation the 
"Top-Down" designer looks for additional natural divisions 
within the module (nested modules), so that the chores 
within that module can be distributed between additional 
processors.

Since every module will use different levels of 
intelligence, it might seem smart to use different 
processors with different levels of power for each module. 
Unfortunately, the real world of software maintenance steps 
in to shatter this idea. The alternative is to use flexible 
"processor systems". Memory, CPU's, and 10 elements can be 
changed and expanded easily using these systems, but 
software needs only marginal changes. Of course, the system 
must be able to handle the most complicated modules; thus, 
some of the smaller intelligent modules will underwork even 
the minimum processor configuration. If a processor is 
sitting in a wait state for 20 minutes until an interrupt 
occurs, it is not committing a "mortal sin", especially if 
that lazy processor makes the system more reliable or easier 
to maintain and expand.



Page 5

I think NRAO is having a problem with the semantics of 
distributed intelligence: "How many computers will we 
need? . Well, that depends on how you define computer. 
Larry D Addario believes that our bus system is not a 
computer, although each of the 10 cards used in the bus 
system has a CPU and ROM code, responds to 10, and could, if 
programmed, do much more than we are presently asking of it. 
In order for this not to be a computer, we must use it only 
as a bus 10 card and we must cast the ROM code in iron.

But the specification of our bus system does include 
the ability to add functions. New system functions that 
require micro-controller level inteligence, that also 
require quick servicing turn-around times the standard bus 
system can't handle, that would require a small addition to 
the bus 10 card's code or an aditional dedicated 
micro-controller, will appear. Under this scenario the ROM 
code would be changed and a new "bus 10 card type" would be 
implemented. The result will be a growing list of "dumb 
modules" turned "smart modules" who must either talk "bus" 
(i.e., we maintain many bus drivers) or interface to the bus 
10 cards themselves (same problem, just twice as much work 
and twice the number of computers!).

Expansion using this rigid design is limited to the 
capability of the initial computer. Expansion requiring 
additional computer resources is the pits and the addition 
of distributed intelligence is even worse using this rigid 
formula. Instead a better way to view this system is to 
define two levels of intelligence. One level would be of 
the "microcomputer" scale and would be used for the larger 
scaled modules, would be few in number, and would be 
centrally located within the module's physical space (i.e., 
the telescope drive computer would be located in the 
telescope base, the tape computer would be located in the 
tape racks, etc.). A second level of intelligence would be 
of the "micro-controller" scale and would be a fully 
developed intelligence system (with high level language 
support, debugger, standard 10, etc.). This second level 
intelligence system can be located in any module and it will 
have many different activities to perform although a major 
function will be to handle communication of control and 
monitor data (among other things) between the level two 
systems and the level one systems.

This two tiered hierarchy of computational resources 
solves the problem of the lazy processor by allowing a whole 
different selection of processor power. A lazy module can 
be implemented using inexpensive "level two" intelligence, 
while busy modules can be implemented using "level one" 
intelligence.

Does a system exist that offers this kind of 
flexibility? Where two levels of processing power exist and 
standard interfaces between both levels and within the



Page 6

levels exists both in hardware and software? Can it be 
true?

It is true. Intel's iAPXx86/310 series of computers 
combined with Intel's "BitBus" DCM system provides just such 
a system.

COUNTING COMPUTERS

If we use our present bus design we will end up with a 
bus 10 card at up to 40 locations (more?). Every monitor 
and control module will have its own bus 10 card. This 
sounds, at first, elegant, but is hard to implement. The 
multiplicity of nodes makes bus communication harder to 
control and time.

Of course, modules that require local intelligence or 
any other intelligent control (via communication with other 
modules) should always require a separate bus 10 card. 
Modules that report monitor status only, or "report only" 
modules, should be divided into "clusters" (examples: all 
report only modules in one rack, or all report only modules 
in the receiver box, or all report only modules in the 
weather station). Each cluster should be serviced by one 
bus 10 card. Connection of status bits and analog voltages 
would be delivered to the cluster bus 10 card via a 
"physical connection standard". The clusters would be 
designed to allow these physical connections to be short, 
physically reliable connections.

A further reduction in the number of bus 10 cards can 
be made by readjusting the scope of certain modules. No 
doubt Larry envisions a bus 10 card in each separate 
video-converter module, ala MKIII. This degree of overkill 
actually reduces flexibility and reliablility. Since all 
the video converters must be grouped into a large video 
conversion module (for RF distribution ease, etc.), that 
larger super-module becomes a logical place for the bus 10 
card. If a physical connection standard (mentioned in the 
last paragraph) already exists, then connection of the 
individual VC's to the "level two intelligence system" is 
straight forward.

Using the above design criteria, the new total number 
of computers (using my definition of a computer), is less 
than half the number Larry envisions.

Bus traffic is reduced in my model because control is 
localized and commands are sent at a higher level. Also bus 
overhead is reduced because there are fewer nodes that must 
be polled.



Page 7

LAST THOUGHTS

I should point out that the hardware I mentioned 
earlier can be used to implement a system very much like the 
one Larry envisions. Except for a few minor details (like 
differences in the minimum message size), BitBus does 
exactly what our bus does. If we use a single iAPX286/310 
computer for each remote station and BitBus cards for the
10, the system will fit our present design formula at 
comparable cost. But, we can include the extra features 
provided by the full BitBus support system (languages, 
debuggers, standard 10, etc.). If we decide to design an 
"expandable" system, the above collection of hardware and 
accompanying software tools would be invaluable.

RELEVANT READING

Dahl, O.J., E.W. Dijkstra, and C.A.R Hoare, "Structured Programming", 
Prentice-Hall, Englewood Cliffs, N.J., 1972.

(The OLD TESTAMENT)

Myers, Glenford J., "Software Reliability, Principles and Practices", 
Wiley-Interscience, John Wiley and Sons, New York, N.Y., 1976.

(The NEW TESTAMENT)

Dijkstra, E.W. , "Programming Considered as a Human Activity", 
"Structured Programming", and "The Humble Programmer", 
can be found together in: "Classics in Software 
Engineering", edited by E.N. Yourdon, Yourdon Press,
New York, N.Y., 1979.

Parnas, D.L., "On the Criteria to Be Used in Decomposing Systems 
into Modules", Communications of the ACM, Vol. 5, No. 12, 
December 1972, pp. 1053-58.

Parnas, D.L., "Designing Software for Ease of Extension and
Contraction", IEEE Transactions on Software Engineering,
Vol. SE-5, No. 2, March 1979, pp. 128-137.

Britton, K.H., R. A. Parker, and D. L. Parnas, "A Procedure
for Designing Abstract Interfaces for Device Interface 
Modules", IEEE Proceedings of the Fifth International 
Conference on Software Engineering, March, 1981, 
pp. 195-203, IEEE Computer Society Press.

Yourdon, E., "Top-Down Design and Testing", IEEE Tutorial:
Software Design Strategies, 2nd ed., G.D. Bergland 
and R.D. Gordon editors, 1981, pp. 57-78, IEEE 
Computer Society Press.

Buhr, R.J.A., "System Design with Ada", Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1984.

(The Future!)


