
yip fittRAY MEMO

October 11, 1984

From:
Joseph J. (Jay) Johovich
NRAO-VLBA Control and Monitor

To:
VLBA Memo Series

This paper was originally presented to the "Green
Computer Conference" in April, 1984.

Bank

Page 2

Crisis in Radio Astronomy

There is a crisis in radio astronomy, and it is part of
a problem that is pandemic in science. It concerns the
tools we choose to use for computation; specifically the
languages, operating systems, and hardware.

In regard to languages, I would like to quote Dr.
Kenneth 6. Wilson from a paper that appeared in the
January, 1984 issue of the "Proceedings of the IEEE, vol.
72, no. l". The paper's title is "Science, Industry, and
the New Japanese Challenge".

"There is a very serious barrier that is today blocking
the whole process of computerization of science and
subsequent exploitation of this computerization in industry.
This barrier occurs in the way that the scientific computer
programs are written. When scientists explain their work to
each other, they do this using a mixture of mathematics and
human language (the standard language for scientists the
world over is currently English). The most effective
scientific expositions are carefully broken down into
chapters of a textbook or sections of a scientific article
which fellow scientists can master chapter by chapter or
section by section. Unfortunately, the current language
predominantly used by scientific programmers to address
computers, namely Fortran, is neither a human language nor a
mathematical language. The worst aspect of Fortran is that
the ideas underlying a Fortran program get all jumbled up in
the Fortran description. Many different ideas usually are
needed to build major scientific programs, which the
scientist would normally explain in separate chapters.
However, each and every line of a Fortran program typically
draws on many of these ideas at once, making documentation
or reading or modification of a Fortran program an endlessly
difficult, time-consuming, and frustrating task. To make
matters worse, there is a very great pressure to optimize
these programs to minimize their running costs; this
optimization is usually done relative to a specific
computing system, including its precise arrangements for
data storage and graphics display. Both the writing of
Fortan and its optimization are highly error-prone
processes; full confidence in these programs can rest
heavily on twenty years of usage of them, combined with
hundreds of man-years spent improving and optimizing these
programs and then discovering and removing errors.

"There are two consequences of the 'Fortran barrier*.
The first is that programs presently running on a specific
mainframe often cannot be moved to a more powerful
supercomputer even when growing usage of the program has
made the mainframe inadequate, even when a major product
line is at stake. The effort and the delays involved in
moving the program and then re-establishing confidence in it
are too overwhelming to contemplate. The second consequence

Page 3

is that there is now a very major reluctance to build new
industrial applications programs, just because of the
enormity of such tasks. This is especially true in cases
where it is not certain that present computers are powerful
enough to handle the application, once the program is
established..."

Dr. Wilson goes on to say: "... Modern computer
science has started to develop a startling array of ideas
for easing the difficulties of interacting with a computer.
These ideas include many different language frameworks;
they also include ideas from the so-called artificial
intelligence community...

"Unfortunately, recent developments in computer science
followed a long period of gestation during which modern
computer science became very isolated from the many worlds
of specific computer applications and from the computer
manufacturers. This isolation seems to exist whether the
computer scientists live in universities, industrial
laboratories, or whatever. Computer scientists speak a
language which is unintelligible to the average scientific
programmer or computer designer. Because of this isolation,
the strange languages and other products of computer science
do not fully meet the needs of specific application areas
and are largely ignored by the real scientific world..."

Dr. Wilson concludes his comments on the "Fortran
barrier” with this recommendation:

'Another very critical need is for universities to
experiment with new ways to train students to write
software. The parallel architectures to come will seriously
strain the current Fortran-based frameworks for building
scientific software. It is especially important that
universities that combine top-quality science and computer
science departments encourage interdisciplinary projects
combining both computer scientists and scientists to attack
the Fortran barrier."

It is unfortunate that Dr. Wilson frames his remarks
in the context of the "Japanese Threat". But if some
healthy competition can induce change in the scientific
community, I am all for it.

The problem extends beyond the Fortran barrier. The
whole scientific community is being sucked in by sexy
software, software permanently locked into the "old
technology":

Page 4

* UNIX

(Pipelines are good, but not good
enough! The UNIX system does not work
well with "Super-computer”
architectures, or in true
multiprocessing environments because the
basic structures of UNIX were not
designed for them)

* VAX

(What's so hot about the VAX? SOFTWARE!
Hardware systems abound that can outrun
the VAX at fractions of the cost)

* FORTRAN

(Computational systems an order of a
magnitude larger than those in use today
will not be programmed in FORTRAN! Some
will be programmed in languages like
Ada)

Fortunately, the "new technology" is rapidly becoming
available. Driving that "new technology" is a philosophical
framework that has contributed much to our understanding of
computational systems. By far the most important
contribution is the concept of the "object".

OBJECTS

The ability to create in a scientific environment is
directly related to the tools the scientist uses.

Mathematical notation is a prime example. Before the
standardization of formula representation, mathematicians
labored to explain their ideas. The notation not only
helped to communicate those ideas, it provided a framework
for manipulating mathematical concepts with just a pencil
and a piece of paper. The notation itself helps us to
create new mathematical concepts, and even new notations...

The job of computer programming became much easier when
the ability to program a computer in mathematical notation
first appeared; For-Tran, for "formula translator".
Fortran gave the computer programmer the power of
mathematical notation. And today, we even have programs
that manipulate the symbols of mathematical notation for us
(SMP).

Page 5

Every science has its own notation. That is because
each branch of science views the world with a different
conceptual framework. Although we all, at times, use
mathematics, our larger ideas are framed using patterns that
can only be described using non-mathematical notations.
These notations help us to manipulate these larger ideas
with dexterity.

The computer scientist knows this. It has been the job
of the computer scientist to transform these notational
conventions to machine level actions. Fortran was the first
step Cl * 11 agree, it was the most important step, due to the
ubiquitousness of mathematical notation).

Most programmers were willing to continue this
transformation process, but, in the 1960's some computer
scientists decided to look at the way we program computers.
The end result is a notational system for expressing the
conversion of notational systems to computer models.
Although the system of computer notation is still very much
in flux, one essential element has come forth: the object.

The concept of the object is a fundamental structure
that allows ALL concepts to be represented in a cohesive,
manageable manner. It is atomic, it is modular, it forms
the basis for the task, the sub-program, the procedure,
types, elements, bytes and bits! And, of course, it can be
applied in the other direction as well; to higher level
structures that we have yet to imagine.

The concept of the object is the most powerful tool
that computer science has had to offer us. It is a tool
that will revolutioni2e science in every field, by allowing
us to emerge from the morass of 10 computing. It is the
tool that will allow us to "manipulate concepts like we now
manipulate bits".

The object is expressed in programming languages using
the following concepts:

1. Modularization

2. Task-task communication

3. Strong typing (creation of new types)

4. Separate compilation of modules

5. Information hiding (implementation hiding)

6. Scope rules

Presently there is only one language that supports all of

Page 6

the above features and can still boast that it is a "real”,
potentially useful, language; and that language is Ada.

Hardware designs that support objects are now becoming
available, and will, soon, be quite common. But, because of
the simplicity of our systems, we do not yet need extensive
object support in hardware. That support is now provided by
operating system utilities and compiler software. Of
course, if the language does not support objects, true
object programming becomes very expensive. In terms of
programmer support and complexity, forcing unqualified
languages into an "object” mold is an exasperating task. I
think that the SAIL experience fits that description. But,
that early failure was because SAIL was an immature
technology, and experimental at that; not because the
concepts that drove you to use SAIL were incorrect. We have
the chance to try again, this time with a technology that is
mature, standard, and supported. And it will only get
better!

