
I VLB ARRAY MEMO No. g> |
SOFTWARE RELATED STANDARDS FOR THE VLBA PROJECT 

('Standards as implemented for Monitor/Control Software - 1985 July)
B. G. Clark

This document covers standards for documentation, coding, and 
updating procedures for the VLBA real-time systems, including those run 
in the station computer, the array control computer, the correlator 
control and archive writer computers, and any other computers in the 
system whose entire software effort exceeds a few pages of code. It 
includes firmware as well as software, and command files as well as 
code. It does not cover any software development efforts downstream of 
the archive writer (which have their own standards) with the possible 
exception of programs that run on archive writer files to assist in the 
diagnosis or control of the correlator.

Section I. Documentation.

Module specific documentation will be found in the module to which 
it applies, set off by delimiters as discussed below. In addition, 
there may be program system documentation, which will be a separate file 
with a filetype of .TXT.

A. Program module descriptions. These will consist of the 
following sections.

1. A statement of purpose and overview, hereafter referred to as a 
synopsis, delimited as described below.

2. References as applicable, especially references to 
datastructure documentation.

3. Functional description, including
a. description of function and use of all arguments to a

subroutine
b. description of all run-time switches or optipns
c. algorithms used
d. timing or memory use if important
e. exte’rnal subroutines called

4. Statement of testing performed before initial submission and at 
each major revision.

5. Audit trail, giving revision number, programmer, date, and a 
brief (less than 80 character) description of the change, delimited as 
described below.

6. Keywords and index lines for making machine constructed indices 
to software, delimited as described below.

7. A statement of the program's language and required environment.
8. A version number, of the form x.y (x is major revision, y is 

minor revision, for instance version 1.0 for an original submission; 
version 1.10 follows version 1.9 if needed). This version number shall 
be accessible to the program via the macro facility of the language.

B. Datastructure descriptions. These will consist of the 
following sections.

1. A statement of purpose and overview.
2. A description of each item. This may optionally consist of 

comments intermingled with the actual declarations of the structure. In 
this case, the documentation section is the whole module.

3. A list of known programs using the structure.



4. Audit trail, language, environment, index line, and keywords as 
above.

C. Program system descriptions. These will consist of 
descriptions of how various modules can fit together to make a 
subroutine package, or how several programs work together to meet the 
needs of their users.

D. Documentation delimiters.

There are three levels of documentation: The documentation area, 
which for complicated main programs, might run many pages; the synopsis, 
which would contain sufficient information for a programer to use a 
subroutine or decide if he wants to steal the code of a main routine, 
and which should have a goal of perhaps ten or fifteen lines; and the 
index, which would have a one-line entry, filed under various keywords.

Documentation and synopsis material is delimited by start and stop 
indicators. Synopsis material is automatically included in the 
documentation file.

In addition to the above, there will be a language indicator, a 
version number associated with the program, indicated by an appropriate 
delimiter, and an audit trail, indicated.by start and stop delimiters.

The beginning of a file serves as a beginning of synopsis 
delimiter. All delimiters start in the first character of a record 
except as indicated below. ALL delimiters are reserved, so that the 
documentation processor need not know what language the module is 
written in. For convenience of the various languages, though, serveral
delimiters with the same meaning are allowed.

C FOR BAL PAS

Start of documentation: /*+ C+ *+

End of documentation: C ~ •I

Start of synopsis: /*++ C++ *++ I++

End of synopsis: --
Note: end-of-documentation

C-
also

tr
ends synoj

Start of audit trail: ++$ C+$ *+$ ++$

End of audit trail: c-$ *-$

Index line indicator: XX cx n XX
Note: only one per file permitted; must be 80 characters or less.

Keyword indicator :: C : *: ::
Keywords separated by blanks or commas, only first 8 characters of 
each used. Filename is automatically a keyword.

Language indicator: LANGUAGE: C
CLANGUAGE: FORTRAN

^LANGUAGE: ASSEMBLER
LANGUAGE: PASCAL



Note: only one per file permitted.

Version indicator #define version
<tab or blanks> PARAMETER VERSION

<tab, blanks, .> IDENT (or IDNT) 
CONST VERSION

Note: only one per file permitted.

Section II. Coding standards.

It is recognized that no one language will be suitable for all 
applications; however, unless there are strong considerations otherwise, 
modules should be coded in C. In any event, the language should be one 
of the following: Macroassembler, Fortran, Pascal, or C.
Macroassembler should not be used in VAXs or 68000s except in 
subroutines.

A. General considerations.

As much as possible the terms '’Program module" and "Program source 
file" should be made interchangeable. That is, only one externally 
visible program module should be included in a file, as stated below.

The module should begin with the documentation area as described 
above. The programname declaration and the declaration of the arguments 
of a subprogram should be included within the documentation area.

Unless there are good and specific reasons to the contrary, all 
integers should be 32 bit (that is, the C int declaration and the 
Fortran Integer*2 declaration are to be avoided, in favor of the long 
and Integer*4 declarations.

All error messages which may be seen by the user should include the 
name of the module in which they are generated.

2. Layout.
a. Except in macroassembler modules, the block structure of 

the program shall be indicated by suitable indentation. The programmer 
who modifies a module should seek to conform with the convensions of the 
originator rather than employing his personal style.

b. Important comments (those applying to more than four or 
five lines of code) should occupy a line by themselves, with a blank 
line preceding and following.

3. Datastructures. Datastructures used in more than one module, 
or datastructures likely to be generally useful, or complex 
datastructures used extensively within a module should not be declared 
in the module, but included by an include statement from a separate 
file.

4. Modularization. Program modules should be included in separate 
source files. Separately callable subprograms should be considered 
separate modules. Separate subprograms should be included in a module 
only if it is inconceivable that they would be called from outside the 
main routine of the module.

5. Subroutine packages. Subroutines that are part of a package



should be declared by the inclusion of a declaration file rather than 
separate declaration within the module.

B. Declaration modules.

Declaration modules are used to define macros, subroutine 
parameters, and datastructures. Declaration modules should not be 
nested (that is, a declaration module should not include an include or 
//include statement).

1. Macro modules. Macro names should bear a visible relationship 
to the module name.

2. Subroutine declaration modules. These modules should be used 
to declare subroutine packages only. Modules declaring a single 
subroutine lead to a proliferation of modules that is more confusing 
than inline declarations. The existence of a subroutine package 
declaration module implies the existence of a subroutine package 
documentation file.

3. Datastructure declaration modules.
a.) For macroassembler consist of equates and macros which 

generate only equates.
b.) For Fortran, consist of variable declarations and either 

a named common declaration following, or an equivalenced array 
following. All variable names consist of the first two letters of the 
name of the common or array, and a four character identifier. That is, 
the named common /SOURCE/ might include real variables SORA and SODEC, 
and the character variable SONAME.

D. Fortran.

No extensions beyond ANSI standard Fortran 77 should be used except 
IMPLICIT NONE, INCLUDE, and inline comments. Arithmetic IFs and 
assigned GOTOs are considered obsolete and should not be used. 
EQUIVALENCE should be used only in datastructure declaration modules as 
described above.

E. Pascal.

No extensions to standard Pascal should be used except as 
explicitly stated in the module header (the most useful being the 
ability to set a pointer to a declared structure, the ability to do 
arithmetic on pointers, character string extensions, and direct access 
I/O). Record structures should not be declared within separately 
compilable modules but by //INCLUDES of structure declaration files. 
Structures should be passed between modules (both for input and for 
output) by including pointers as parameters, rather than by including 
the structure itself as a parameter.

F. C

Structures passed to subprograms should not be declared internally 
within the subprogram, but should be //included.

G. Macroassembler



Macroassembler internal subroutines should, unless strong reasons 
exist to the contrary, use the Fortran, Pascal, or C linkage conventions 
as appropriate.

III. Update procedures.

A. Module residence conventions.

The fundamental copy of all source code will be in 
VAX3::[VLBSOFT.CODE]^ Secondary copies will be maintained as needed on 
CVAX, PHOBOS, and the VME-10. Source code will be entered into the 
secondary copy areas only by means of copies from the primary area. It 
is not permitted to do simultaneous or independent copies to the 
secondary areas.

The fundamental copy of all documentation will be in 
VAX3::[VLBSOFT.DOC].

Relocatable object code will be generated in [VLBSOFT.CODE], and 
the relocatable object libraries will be found here also. There will be 
one relocatable library for each language, rather than separating 
libraries by function. There are two exceptions: libraries purchased 
as a unit from an outside vendor will be maintained as a separate 
library, and routines which are hardware specific, and for which more 
than one type of hardware is likely to be used (for instance, terminal 
formating routines) can be kept in separate libraries.

The area [VLBSOFT.OLD] will contain copies of the relocatable 
libraries prior to the last periodic update. In addition, for each 
program submitted for update, the previous version of source, object, 
and, if appropriate, load module, will be copied into [VLBSOFT.OLD] from 
[VLBSOFT.CODE].

The area [VLBSOFT.NEW] will contain source, object, object 
libraries, and load modules from programs submitted for update, but not 
yet incorporated by a periodic update.

On the Versados systems, a subsidiary copy of the source code and 
individual relocatables will be maintained in area 9000. Object 
libraries and load modules will be maintained in area 0.

B. Module naming conventions

Unfortunately, because the Versados only supports two letter file 
types, different conventions have to be used on that system from that of 
the VAX. The VAX convention for file types is as follows:

C source code C
Fortran source code FOR
Pascal source code PAS
Macroassembler source code, macros,

equates MAR
Pascal structure or data definitions PDC 
Fortran named common declarations FCM
C structure or data definitions H
C macros H
Module documentation DOC (A file.DOC file will be

extracted from the p 
program file)



Package documentation TXT
VAX command files COM 
Versados command files CF

The following file types will be used on Versados systems:
C source code C 
Fortran, Pascal, Macroassembler source

code SA
Macroassembler macros or equates SM
Pascal structure or data definitions PS
Fortran named common declarations FC
C structure or data definitions H
C macros H
Command files CF

C. Command files.

Command files are subject to the same update procedures as source 
code files, and should be submitted along with the source files when a 
program is originated. Command files should have the same name as the 
program module. The single command file associated with the module 
should, if the module is a subroutine, produce relocatable object. If 
it is a main program, it should compile the main program and linkedit 
with appropriate libraries, producing both relocatable-object and a load 
module. Command files need not be submitted if no parameters or 
switches need be supplied to the compiler or linker, irrespective of 
wwhat directory or process the module is being compiled from

All specification of the directories from which INCLUDE files or 
object libraries are to be found is to be specified in command files,
NOT in the program text. Command files submitted for system update 
should not contain specific references outside the area in which the 
program is being compiled and linked (except, on the Versados systems, 
explicit references to area 0 may be included). The programmer working 
on an existing program will make up his own command file with pointers 
to the appropriate libraries, etc, which- he does NOT then submit with 
the program.

Sysgen command files for all dedicated VLBA computers are also 
subject to the requirement of format submission, as are any special 
routines written for incorporation in the systems.

D. Procedure for submitting for update.

For an existing program, one should first type the file 
VAX3::[VLBSOFT.NEW]CHECKOUT.TXT, which will list all modules currently 
being worked on and modules submitted for update. One then finds the 
appropriate copy of the module and copies it into his own area, and 
sends by VAXMAIL to VAX3::VLBSOFT a statement of which module he is 
working on.

When he has completed work on the relevant source and documentation 
(at least including updating the audit trail in the documentation area), 
he finds a copy of the update submission form in
VAX3::[VLBSOFT]UPDATEFRM.TXT, fills it out, and sends it by VAXMAIL to 
VAX3::VLBSOFT. When the spirit moves him, the maintainer of 
VAX3::[VLBSOFT.NEW] will copy the relevant files into that area and 
transmit an acknowledgement by VAXMAIL to the sender. He may then



compile the module and update libraries and load modules in that area.
He will at that time produce a command file which will, when executed in 
[VLBSOFT.CODE], produce the new, updated [VLBSOFT.CODE]. The commands 
to relink the main programs for included subroutines will be generated 
from the documentation for those main programs. Programmers MUST 
include accurate statements about included subroutines in this 
documentat ion.

E. Procedure for executing periodic update.

Updates will occur at fixed intervals; however, the spacing of 
intervals may change from time to time. Adequate notice to those 
involved will be provided.

The update will involve the following steps:
1). Initial operations in VAX3:
a). The relocatable libraries and all source, object, load, and command 
files expected to change in the course of the update will be copied from 
[VLBSOFT.CODE] to [VLBSOFT.OLD].
b). All ASCII files will be copied from [VLBSOFT.NEW] to magnetic tape 
for permanent record.
c). The new ASCII files will be copied from [VLBSOFT.NEW] to 
[VLBSOFT.CODE].
d.) [VLBSOFT.CODE] will be updated by

i-.) Compilation of subroutines and updating of libraries, and 
ii.) Recompilation and relinking of main programs.

e.) [VLBSOFT.DOC] will be updated by copying the documentation files 
into it.
f.) The contents of [VLBSOFT.NEW] will be deleted, and the other 
[VLBSOFT] areas purged.
g.) [VLBSOFT.*] will be backed up on magnetic tape.
h.) The maintainers of the subsidiary code areas will be informed of 
update completion and the names of the command files used in the update.
2.) Maintainers of subsidiary code areas in other VAXs will perform 
updates as appropriate, using the command files supplied.
3.) Maintainers of Versados areas will perform updates as best they 
can, using the VAX command files as reference.

F. Strictures against use of software outside the herein described 
system.

In many applications in real-time systems it is more important to 
know just what is running than it is that it is right. Therefore, only 
that code that has been through the update procedure will be used for 
production purposes. If the code absolutely will not work, the use of 
ad hoc fixes should not be used, but one of the following: 1) If an 
error in the last update caused a main program to cease working, the 
update for that program may be rescinded by copying the appropriate 
files from [VLBSOFT.OLD] into [VLBSOFT.CODE] (and equivalent copies on 
Versados systems). 2) If an error in the last update caused an 
important subroutine to quit working, the update should be rescinded in 
toto, by restoring [VLBSOFT.CODE] from the backup tapes. 3) If a 
hardware change or some such causes things to stop working, a full 
update should be done on an emergency basis.

No module will be accepted initially without appropriate 
documentation. No module will be accepted for update without 
incrementation of the version number and entry in the audit trail.



Documentation is fundamental. Programmers are enjoined not even to 
admit the existence of a module before the documentation is in 
existence.

IV. Common subprograms.

An index to existing subroutines will be maintained in 
VAX3::[VLBSOFT.DOCJPROGINDEX.TXT. Programmers are strongly urged to use 
programs from this list instead of doing their own. Similarly, they are 
urged to submit programs in a form to be maximally useful to others. 
(This often takes the form of submitting the routine in several useful 
pieces, with a master routine that calls them in succession).


