
VLB ARRAY MEMO No. V - t e

Selection Criteria for the VLBA Database

JONATHAN D . ROMNEY
National Radio Astronomy Observatory

Charlottesville, Virginia

1985 September 9

In t r o d u c t io n
Selection of a database management system for the VLBA will require a careful survey

and evaluation process if we are to realize all the potential benefits of maintaining the
Array’s operational data in such a system. Broadly considered, the selection procedure
must determine an optimal match to our requirements as currently understood without
overly constraining the flexibility of reorganization and potential for expansion which will
surely be required in the future.

In an earlier memorandum (VLBA Memo 469) I outlined at a fairly abstract level the
structure of a VLBA database and its interfaces to the Array’s subsystems. One impor
tant feature of our application which will be a major determinant in selecting a database
management system is the dual requirement for extremely flexible access to a diverse, but
“reasonably5* sized, body of general information, as well as infrequent, rapid, but fairly
straightforward access to a voluminous array of specialized monitor and status data. The
latter requirement is also discussed in detail in Clark’s VLBA Memos 278 and 396. While
these two requirements tend to drive the optimal choice of database management system
in rather different directions, nevertheless there are important intersections between the
two data sets involved. Because of this I hope it will be possible to accommodate both
requirements within one system.

The objective of the present memorandum is to suggest the criteria we should apply in
evaluating candidate management systems for the VLBA database. For this purpose it will
be necessary first to continue the tutorial on database systems begun in Memo 469, and
also to discuss further the possible approaches to supporting the large volume of monitor
data returned to the operations center from the remote antenna sites.

D ata M o d els
The previous memorandum on this topic considered the fundamental elements and

basic attributes of database management systems in general. A primary characteristic of
all systems is the interpolation of an abstract conceptual data model between the user and
the physical storage constructs. And one of the chief distinctions among these systems lies
in the types of conceptual structures and relationships encompassed in the data model.
Virtually all database management systems support one of the three fundamental models
outlined in the following paragraphs.

1

In the relational model, the stored information is always visualized as residing in one
or more two-dimensional tables. In relational terminology, the table represents a relation,
and consists of a number of tuples (conventionally visualized as “rows” of the table), each
of which specifies — uniquely — one or more attributes (“columns”), whose values are
members of a domain. Some analogies may be illuminating here: the tuples and attributes
would correspond to records and fields in a standard fixed-format file, and to material
items and their characteristics in the physical world. Every attribute value in every tuple
is atomic, and is potentially identifiable. Information about the relationships among data
elements is represented only through the identity of particular attribute values among
several tuples, and is not explicitly encoded.

Both exceedingly simple and broadly applicable, this basic structure underlies the
frequent claim that the relational model provides the most flexible and “user friendly”
approach to the database. Beyond these obviously advantageous features, however, the re
lational concept supports a mathematically complete higher-level relational algebra capable
of manipulating entire relations as its elements. Indeed, all retrievals against a relationally-
structured database can be expressed in terms of set-level operations such as select, which
forms a subset of a relation containing only those tuples which satisfy a given condition;
project, in which a subset of attributes is formed and redundant tuples eliminated; and,
perhaps most fundamentally, join, which merges two relations into a new table containing
the information in both for those tuples where equal values (or some other condition) occur in specified attributes.

These characteristics make relational systems most suitable for applications which
emphasize frequent and possibly complex retrieval queries, expeditious migration into new
applications, and ease of reorganization. The close analogy between the relational structure
and the tabular organization of spreadsheet data also makes these systems natural candi
dates for supporting communication between a central database and personal computers.
The advantages of the relational model are evidently becoming widely acknowledged for
both scientific and business applications, to the extent that this trend can no longer be
dismissed as “CSBS”. Indeed, “relational” has become a new software buzzword: some
systems advertised as relational or “relational-like” are in fact hybrids, which will be discussed further below.

The flexibility and convenience of the relational approach carries a price in computing
resouces, of course, although it is certainly possible to optimize the storage architecture
toward the most common or critical retrievals. Relational systems appear to be considered
rather prodigal in this regard, and this has led to the development of database machines
which implement the relational model in specialized hard- and software. These machines
provide extremely efficient data storage and access, and reduce the burden on the host to
formulating and transmitting queries and receiving the results of retrievals.

The hierarchical model adopts a very different visualization: that of a tree structure.
In this organization a fundamental entity, the root, is logically connected to one or more
dependents, which in turn are superior to sub-dependents, etc., so that the structure is
explicitly asymmetric. These relationships are encoded by index pointers or links embedded
in the database. A sequential-file analogy would require indexed, variable-length, self-
identifying records — a considerable complication over the relational case.

2

While quite rigidly limited, this structure facilitates very efficient retrievals along the
allowable paths. (In some cases this may approach the most efficient of all retrieval systems:
the hard-coded stand-alone program.) Thus, the hierarchical model is most appropriate for
applications involving repetitive, highly structured access to data organized in standard
formats. However, introduction of new relationships, unforseen when the database was
created, can be accomplished only as a major programming task. And although it is
possible to pose queries in a higher-level relational algebra against a hierarchical database,
this does not arise naturally from the underlying structure, and can be supported only
with additional complexity.

Not surprisingly, heirarchical database systems excel in applications where the model
is a good representation of the relationships inherent in the data. When the relationships
are well established from the beginning, and flexibility is not a major requirement, the
dividend in efficiency would recommend this choice. There seems to be general agreement,
though, that application of a hierarchical system where the model is inapplicable, or where
new relationships may need to be supported, confronts the user with difficulties attributable
more to the model than to the operations supported.

Finally, the network model is best viewed as a generalization of the hierarchical
structure. The asymmetry of the hierarchy is relieved by allowing multiple links between
“superiors” and dependents; again the links encode explicitly the relationships among data
elements. This form of database management system is the subject of some thoroughly
developed standards issued by the CODASYL DBTG.

The network supports more naturally the many-to-many structure typical of a complex
application, but at the cost of another increment of complexity beyond the hierarchical
model. Efficient retrieval paths can be provided for a wider variety of queries with advance
planning, but the task of reprogramming or restructuring to accommodate new applications
is correspondingly more difficult.

Som e St r u c t u r a l D etails
An important concept applicable to all three models is that of the data dictionary,

effectively an auxiliary database containing the conceptual and physical schemata which in
turn describe the database entities and their mapping to physical storage. Every database
has such a dictionary, if only as scribblings on paper, but a “dictionary-driven” system
integrates the dictionary into the database itself, and takes advantage of this self-describing
feature to facilitate access, as well as validation and restructuring operations.

The popularity of the relational model, in particular the power of the relational al
gebra, has provoked the development of hybrid systems — often termed “born-again”
relational implementations — which basically provide a hierarchical data structure with
a relational front end. As noted earlier, there is a complexity penalty in supporting
relationally-phrased queries against a hierarchy, and since the relational operations do not
arise naturally from the underlying structure each must be implemented as a special case.
Thus, relational purists tend to find the algebra incomplete. On the other side, this hybrid
approach makes available to the user the efficient, record-oriented, lower-level hierarchical
data access facility, which in specialized circumstances can be used to advantage.

3

Another important distinction among relational systems concerns the index structures
which are built for efficient retrieval, which in inverted-Iist systems are available to the user.
This departure from the “pure” relational concept makes possible some enhancements in
efficiency; many queries can be answered directly from the indexes without any reference
to the database itself.
T he E x t e n d e d D a t a ba se

In some contexts it is useful to broaden the scope of the conceptual database to include
ordinary “flat files” in the host processor supporting the database management system.
While external to the database itself, these files can be indexed or otherwise described
from within the database to facilitate relatively efficient access to a small subset of a large
data volume. This “extended database” concept violates some of the fundamental tenets
presented in Memo 469 — chiefly data independence and integrity — but may represent
a worthwhile compromise when efficiency is at a premium.

Two specific features available in some database systems provide substantial support
for this approach. The first is a record management interface which makes the facilities of
the host operating system’s record-oriented I/O facility available to the database program
mer. The database itself can then serve as an extensive index to a much larger volume of
data in the extended database; operating on the index alone, complex retrieval operations
can specify only those data actually required for access through the record management
interface.

Secondly, some relational systems have a fast load/unload feature which implements
rapid transfer between the database and plain fixed-format sequential files. This operation
eliminates the repetitive processing of commands and most of the indexing overhead in
volved in individual insertions or retrievals of the same tuples. A sort of “virtual database”
approach is then possible in the case of large data structures where accesses are infrequent
and confined to well-defined blocks.
Q u ery L a n g u a g e s

My discussion of database management system features in Memo 469 slighted some
what the important area of the system’s interfaces to application programs and interactive
users. Besides the relatively straightforward subprogram-call linkage, most vendors offer a
non-procedural, “English-like”, “fourth-generation language” . While the final phrase can
be dismissed as commercial puffery, and English-likeness is probably a dubious virtue, non
procedural specification of a retrieval or other operation is an important concept, closely
associated with the relational algebra discussed above. In a non-procedural program, the
user specifies globally what result is to be achieved, without having to describe the pro
cedure by which this is accomplished. These “4GL” facilities are generally available to
interactive users as well. In both cases, this approach is oriented to non-technical users,
and/or to applications where manipulations of the database predominate.

Similar advanced tools may also be available to the database administrator for spec
ifying the data dictionary. In this case the source version from which the dictionary is
compiled can provide a valuable documentation tool.

4

The range of available database management systems is so broad that I have had to
adopt two basic requirements in order to make a market survey a tractable proposition.
One arises directly from our decision some time ago to select VAX processors operating
under VMS as the hosts for both the array and correlator control systems. Since the VLBA
database will have major interfaces to both these systems (and will presumably be resident
in one or the other of these computers) a clear requirement follows that the database
management system be supported under VMS on VAX processors. This restriction does
eliminate many candidates, but a surprisingly large number remain.

Perhaps more controversially, I have also considered only relational systems. I am
convinced that the range of applications suggested in Memo 469 requires the flexibility
and adaptability of a relational model, and that selecting a hierarchical system as a more
efficient alternative would lock us out of numerous attractive applications and vitiate much
of the saving we might achieve in programming effort. In fact, my early investigations
included a number of “born-again” relational systems which I had not previously realized
were actually hybrids, and this may offer a valuable option for our particular case. Also
included as relational were database machines (actually only one is VMS-compatible at present).

E valuatio n C r iteria

More than a dozen well-established database management systems meet the two basic
requirements proposed in the previous section. I have not yet completed a survey of this
field. The next stage, however, should be an evaluation of suitable candidates from the
field to arrive at a short list for further consideration, possibly including tests under a
trial license. I am soliciting input here from all areas of the VLBA project on criteria
and weights for this evaluation. The following commentary proposes some possible criteria
(drawn from several evaluations by other organizations and from my own investigations)
which I would like to see discussed. Comments or additional suggestions are welcome.

Trial license. Some vendors offer a trial license, typically for 60 days. (Others only
grudgingly allow a “15-day acceptance” , which I would regard as next to useless.)
This might be an attractive option for evaluation of the short list, but only if we are
prepared to devote a significant level of programming resources over the next half-year
to creating and testing a realistic simulation of VLBA operations.
Support under VMS 4-0 and subsequent versions. This is an obvious necessity, but
also an obvious informal claim by all candidates. Should we try to require it as a
condition of purchase? We will be a relatively minor customer, and may have to
accept the vendors’ conditions.
Network communications. The VLBA database will have to support frequent trans
actions to and from both the array- and correlator-control subsystems; (at least) one
of these systems will run in a remote host, so that the database management system
will have to support host-to-host networking efficiently, including remote updates as

B asic Se le c t io n C riteria

5

well as retrievals. Further, some maintenance operations will require access via the
(non-VMS) nodes at the individual VLBA stations.
Subroutine-call interface to C and Fortran. One such program-level interface is essen
tial, of course, and should be convenient since it will form a primary point of contact
with the database for both the array- and correlator-control software. Interfaces to
both our chosen languages would be a convenience.
Conflict resolution and concurrency control. A satisfactory database management
system must provide sufficient lockouts to prevent concurrent updates to database
elements, and must avoid the “deadly embrace” where two or more processes are
waiting for each other to complete. Lockouts at several levels will be necessary, ranging
from the entire database to individual tuples or records.
Security and integrity features. The VLBA will be, unavoidably, heavily dependent on
computer storage of its operational data. The database management system should
contribute to minimizing the vulnerability to hacking and crashes of all types by
providing user access controls, backup/restore and journaling facilities, and blocking
of commands with a deferred commit to modification of the database.
RMS interface & Fast load/urdoad. These facilities were mentioned above, under
“extended database” (RMS refers to the VMS-specific Record Management Services).
Either or both will provide valuable support for the high-volume aspects of our appli
cation.
Data dictionary. A dictionary-driven structure, described under “structural details”
above, is likely to be a more efficient system.
PC links and commonality. A number of database systems support data transfers
between PCs and a supermini like the VAX, and/or provide the same user interface
on both. This may be an attractive way to allow for growth in interactive use without
loading either of the planned VAX processors.
Views. A “view” is a logically-defined relation which can be referenced for efficient
retrieval, but is not actually stored as such. This technique will be of particular value
in implementing repeated complex retrievals at the program-call level — e.g., as will
be necessary to configure the correlator.
Flexible reconfiguration. It should be possible to create relations representing a new
conceptual structure of stored data, and then copy information into this from existing
relations, without having to update program-level calls or stored queries which access
unchanged information. Some implementations, evidently, require that the entire
database be unloaded and then reloaded into the new structure.
Efficient implementation of floating-point values. Much of the VLBA’s data will be
in this form, which should be supported using VAX floating-point types.
*Fourth-generation” language. Such a feature seems to be of marginal value in both
our program-interface and interactive applications. The array- and correlator-control
programs will be complex real-time systems, which interact with the database in a

6

fairly peripheral way; our chosen languages are certainly more appropriate for this
case. And I presume that interactive users within NRAO will feel as much at home
with mathematically-oriented set-level manipulations as with their English translations.
Compilation facility for the query language. The query language is usually oriented
toward interactive applications, and interprets input queries. Some languages provide
as well a compilation facility which stores the interpreted queries for future routine
use. This is likely to be an important benefit for our application, where we must
support program-level retrievals as well as routine and ad-hoc interactive queries.
Screen forms for entry and retrieval. A “screen” is essentially a displayed repre
sentation of a tuple in some relation of the database. Screen facilities provide an
extremely flexible and readable vehicle for sequential display of retrieved tuples, and
a convenient tool for ad-hoc entries or updates of limited volumes of data.
Graphics facilities. Almost all vendors advertise “graphics”, but frequently mean
by this little more than pie charts and perhaps histograms. Simple line plots of one
variable against another — an easier programming task, one would think — are often
not supported. Insistence on graphics suitable to our needs will significantly restrict
the range of choices available.

St r a t e g ie s f o r M o n it o r D ata (continued)
The difficulties and requirements posed by the large volume of station monitor data

were considered in some detail in Memo 469. I proposed there that we refrain from entering
the bulk of these values into the database, but instead sort the data as received, entering
only those required for later analysis or for current near-real-time diagnosis. The remainder
would be buffered in large sequential files from which long-term averages would be extracted
periodically; those specific values — if any — required for post-real-time study would have
to be re-sorted and entered before use. Some points raised in more recent discussion of
this proposal should be considered further here.

First, the record-management interface and fast load/unload facilities described above
under “extended database” might almost have been intended to support the proposed
scheme. These features reduce the difficulties of post-real-time filling to a single additional
programming task which finds and loads the required data.

A second topic is the suggestion by Ewing that some economies might be realized
by combining several monitor values (a time sequence of fixed length, say) into a single
item. The per-transaction overhead would be reduced by this approach, although the total
data volume and 1/O bandwidth would probably not be affected significantly. After some
thought, however, I believe the gain in efficiency using such a scheme is unlikely to make
possible the wholesale entry of the entire volume of monitor data. The volume itself is a
major problem; most database systems incorporate limits on the number and/or length
of records (or tuples) which are supported, and at a minimum become significantly less
efficient as these dimensions are strained. Further, the proposed packing would make the
individual values inaccessible for such likely operations as limit testing.

7

Finally we should reconsider the entire question of graphics. A good integrated graph
ics facility was one of the advantages we initially hoped to exploit by maintaining the
VLBA’s monitor data in a commercial database management system. While this is clearly
still an important priority, it appears that the sort of graphics we had in mind are not
widely available. We should explore as an alternative the use of a separate specialized
graphics package, either a commercial version or one in the public domain. A database
system supporting the fast load/unload, combined with such a graphics element, could
offer us more flexibility and a much wider range of choice.

8

