
VLB ARRAY MEMO No. S Z Z
(860109 )

PHASE SWITCHING, FRINGE ROTATION, AND THE ORTHOGONALITY 

OF WALSH FUNCTIONS AND SQUARE WAVES 
A. R. Thompson and J. Granlund

January 2 , 1986

I. Interaction Between Phase Switching and Fringe Rotation

During the VLBA design review meeting held at Green Bank, September 

10-11, 1985, the question of the interaction of phase switching and 

fringe rotation was briefly discussed. The phase switching is chiefly 
required to eliminate the effect of offsets in correlator outputs, 
which result mainly from offsets in the quantization thresholds in the 

samplers. With phase switching, these offsets become multiplied by the 
phase-switching waveforms applied to the two antennas, which are orthogonal. 
Thus the unwanted offsets are reduced to very small levels by the 

averaging of the visibility. However, if  the fringe rotation is applied 

after the sampling and quantization of the data, the unwanted component 
of the correlator output is further multiplied by the fringe rotation 

waveform, which is a simulation of a sinewave at the natural fringe 
frequency. A spurious response can occur if the fringe rotation waveform 
is not orthogonal to the product of the phase switching waveforms.

If the phase switching waveforms are Walsh functions, their product 

is another Walsh function. During the discussion of phase switching 
and fringe rotation at the review meeting, Dick Thompson noted that 

certain Walsh functions can be described as products of two or more 

harmonically-related square waves. Suppose that the product of the 
switching waveforms is such a Walsh function. Then when the fringe 
frequency becomes equal to that of one of the square wave components, it 
is still orthogonal to the product, and no spurious response will 
occur. Is  it possible to choose Walsh functions that are orthogonal to 
all fringe-frequency waveforms? Further thought shows that it is not 

possible. This is shown by John Granlund* s analysis in part II  of this 
memorandum, which proves that no Walsh function is orthogonal to all 
square waves. (The orthogonality with square waves rather than sine- 

waves was considered here for mathematical convenience.) The same 

result can be visualized rather simply by considering that Walsh functions, 
being periodic, can be expressed as a summation of Fourier-series 

terms. I f  the fringe frequency becomes equal to one such tern a spurious 

response can occur. Thus, as Barry Clark pointed out, to avoid the 

possibility of interaction between fringe rotation and phase switching 

the lowest Fourier component of the Walsh functions should be higher 
than the maximum fringe frequency. The maximum fringe frequency, for 
which we consider the Hawaii-St. Croix baseline at 86 GHz, is approximately 

200 kHz. Phase switching at frequencies greater that 200 kHz would 
hardly be practicable, and would certainly complicate the operation of 
the array.

The question of interaction between phase switching and fringe rotation 

is  largely avoided if  fringe rotation is performed before the sampler, 
i . e . ,  by phase shifts in a local oscillator. One then has only to 

consider the residual fringe frequencies produced by signals arriving



from different directions within the antenna beam; these residual 

frequencies will not exceed 60 Hz. However, the simplification of the 

phase switching that occurs when the fringe rotation is performed 
before the sampling should not be a major factor in the choice of 

location of the fringe rotators. The fringe frequency in VLBI observations 
is usually high enough that phase switching is unnecessary. The time 
intervals during which the fringe frequency goes through zero for any 
antenna pair are short, and phase switching could be applied to individual 
antennas for short periods to cover such times. The control computer 
could select a switching frequency that would not cause problems by 
interaction with the fringe frequencies for any baselines involving the 
particular antenna. Thus by applying phase switching only when necessary, 
it should be possible to avoid unwanted interactions. The principal 
questions upon which the location of the fringe rotators should rest 

are, first, whether they can be implemented without degradation of 
astrometric measurements and, second, what will be the resulting cost 

saving in  the correlator.

II . Orthogonality of Walsh Functions and Square Waves.

The set of sequency-ordered Walsh functions numbered from 0 through 
2n-1, with n a positive integer, is an orthogonal and complete set of 

what 1*11 call clocked functions with 2n intervals. Because this set 
is completef no clocked function with 2n intervals, and thus no square 
wave that is  itself a clocked function with 2n intervals, is orthogonal 

to each member of the set unless that function or square wave is identically 

zero. Much more to the point, the n-set of all square.wavea is itself 

a complete set of clocked functions with 2n intervals. It follows that 
no non-trivial clocked function with 2n intervals, and thus none of the 

first 2n Walsh functions, is orthogonal to each member of the n-$et. o£ 
all souare waves. Definitions and discussions of the underlined terms 

follow.

Clocked function. A clocked function 

with N intervals assumes a fixed value 

throughout each of N consecutive and 
equal time intervals; elsewhere it is 

identically zero. It is completely 
specified by these N values and its 
duration. For Walsh functions and 

square waves, the values are restricted 
to +1 and -1. In these cases, it will 

be convenient to represent a clocked 

function with 5 intervals as h— ++, 

for example.

Orthogonal. Two clocked functions with N intervals and the sets of 

values {ak} and (bk) are orthogonal if

*
K. G. Beauchamp, Walsh Functions and Their Applications. London: 

Academic Press, 1975.
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N

akbk= °*
k=1

Because the values of* Walsh functions and square waves are restricted 
to +1 and -1, N must be even if a pair of such functions is  to be 
orthogonal.

Complete. A set of clocked functions with N intervals is complete if 

an arbitrary clocked function with N intervals can be expressed as a 
weighted sum of the members of the set. Clearly the set must contain 
at least N members, and it would be redundant if it contained more; we 

shall limit to N members sets of clocked functions with N intervals. 
Let the values of the k clocked function in the set be contained in 

left-to-right order in the row vector ai. , and from these vectors form 
the N x N matrix —J

CA] =

t i l

Let fx_i contain the ordered values of the arbitrary clocked function to 

be fitted, and let jW, contain the required weights for the weighted sum, 

also in order. Then the linear equations to be solved for the weights, 
in matrix form, read

and have the solution

Lw.=jc1x [A]"1 .

This unique solution will fail to exist if and only if | [A] I , the 

determinant of [A], vanishes.
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The case in which each member of the set of N clocked functions with N 

intervals is  orthogonal to every other member is easy to check. Consider 
the matrix product

[B] - [A] x [A]t ,

in which [A]^ is the transpose of [A], [B] is diagonal in this case, 
with each diagonal element consisting of the sum of N squares. The 
determinant |[B]| cannot vanish if none of the clocked functions of the 
orthogonal set is identically zero. But

![B]| = |[A]|2 ,

so |[A]| cannot then vanish either. This shows that every set of N 

mutually orthogonal —  and non-trivial —  clocked functions with N 

intervals is complete. A complete set, however, need not have mutually 
orthogonal members.

Beauchamp (&£. cit. ) introduces the clocked function set consisting of 
8 mutually orthogonal block pulses and proceeds to argue that this is 

not a complete set! There are two reasons for this discrepancy:
First, Beauchamp insists that a set of functions —  clocked functions, 
perhaps —  is not complete unless an arbitrary function can be fitted 

arbitrarily well by a weighted sum of members of the set. It is clear, 
then, that each of his complete sets must contain infinitely many 
members. Second, once the 8 mutually orthogonal block pulses have been 
chosen as the first 8 members of the set of block pulses, these original 
8 cannot be removed or reshaped, and evidently all additions to the set 

must have the same pulse width and duration as the first 8. We are not 

fettered by these difficulties. Even with N not a power of 2, the set 

of N mutually orthogonal block pulses is a complete set in the sense of 

this memo. Herein, a complete set of clocked functions with N intervals 
is one that spans the space of values of an arbitrary clocked function 
with N intervals.

It has been noted that, for two Walsh functions or square waves to be 

orthogonal, the number of intervals N must be even. For such clocked 
functions with values restricted to +1 and -1, the largest number of 

mutually orthogonal functions that can be found is the highest power of 
2 contained as a factor in N. If a complete and mutually orthogonal 
set of such functions is to exist, N must then itself be a power of 2.

A proof of this bound on the number of orthogonal functions uses two 

facts about the orthogonality, displayed by the matrix [B] defined 

above, of a set of mutually orthogonal clocked functions with N intervals. 
First, changing the sign of the k *̂1 value of each member of the set 
does not change [B] and thus does not affect the orthogonality of the 

set. Second, modifying, in the same way, the order in which the values
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of all functions appear changes neither [B] nor the orthogonality of 

the set. In seeking mutually orthogonal functions for the set of 
clocked functions with N intervals, the first fact offers the option 
that the first function may contain all +*3. If +++ +++ +++ +++

it is  to be orthogonal to this first function, 
the second function must then have N/2 values of 

+1 and N/2 of -1. The second fact allows these

values to be ordered so that the +*s appear +++ + + + -----

first. If  additional functions orthogonal to 

the first two exist, they can be constructed 

by seeking a new clocked function with N/2 
intervals that is orthogonal to the clocked 

function with N/2 intervals and having the —  all 
+ 1 —  values of the first half of the first function.

The search will succeed if  and only if  N/2 is even.

The new function will have N/M values of +1 and N/4 
values of -1, which will be ordered, using the second 
fact, with the + 's  first. If the search succeeds, the 

number of clocked functions with N intervals will be
doubled again by adding a twin to each function + + + --+ + + ---
already found. In the twin, the all + 1 values of + + + -----+++

the original function in its first and last N/2
intervals are replaced by the values of the new function, and the all 

-1 values are replaced by those values with signs changed. The extended 

set of clocked functions with N intervals is  again seen to be mutually 

orthogonal.

Starting with the first men be r of the set of mutually orthogonal functions 

and repeating the process outlined above until it fails, produces 

log2 (hi^aest power of 2 contained as a factor in N) doublings of the set 
size. Thus the size of the final set is  the highest power of 2 contained 
as a factor in N. The constructive proof that has been used has generated 
only one of the possible sets of mutually orthogonal functions. The 

others can be generated from this set t?y using the two facts noted above.

n-set of all square waves. For N = 2n, the n-set of all square waves 

will be chosen to be a complete set of clocked functions with 2 n intervals, 

in such a way that each function is a square wave. For n = 1, 2, and 3 
the chosen function values are arranged in the rows listed below.

n = 1 n = 2 n =

+ + + + + + (1) + + + + + + + +

+ - + + - - (2) + + + + - - - -
+ - - + (3) + + + - - - - +

+ - + - (M) + + - - - - + +

(5) + - - - - + + +

(6) + + - - + + - -

(7) + - - + + - - +

(8) + - + - + - + -
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The members of the 1-set of chosen functions are seen to be mutually 

orthogonal, as are the members of the 2-set, so these two sets are 

complete. The members of the 3-set are not mutually orthogonal, but 

the following set of weighted sums of its rows is orthogonal:

( 1) + + + + + + +
1/ 2[ ( 2) - ( 3) ] 0 0 0 + 0 0 0 -  
1/2[(3)-(M)] 0 0 + 0 0 0 - 0

1/2[(i|)-(5)] 0 + 0 0 0 - 0 0
1/2[(5)+ (2)] + 0 0 0 - 0 0 0

( 6 )  +  + -------- +  +  -  -
( 7 )  + - - + + - - +
( 8 )  + - + - + - + -

The values resulting from these weighted sums can be +1, 0, or -1, 

which explains the entries 0 above. The set of weighted sums is seen 
to be mutually orthogonal and thus complete. A complete set has been 

produced from weighted sums of the 3—set members, so an arbitrary 

clocked function with 2’  intervals can be expressed as a weighted sum 

of the members of the original 3-set: The 3-set of all square waves is 
therefore complete.

For n = 1», each function of the 3-set is extended to 21* intervals by 
copying it  a second time as, for example

Then the number of members of the set is doubled -- to 2  ̂ —  by adding 
the following "phase-shifted" versions of the square wave with period 
2 intervals:

+ + + + + + + + -- -- -- -- 

+ + + + + + + -- - . - - - - -  +

+ + + + + + -- « -  -- -- + +

+ + + + + -- -- -- --. + + +

+ + + + -- -- -- -- + + + +

+ + + -- -- -- -- + + + + +
+ + -- -- -- -- + + + + + +

+ -- -- -- -- + + + + + + +

For consistency, these additions should appear between rows (1) and (2) 

of the 3-set. In this 4-set, the 4 square waves with a period of 8 

intervals are not mutually orthogonal, and neither are the 8 square 
waves with a period of 16 intervals. Subsets of square waves with 

periods of 8 intervals or more are not mutually orthogonal. If the 

arguments of the previous paragraph are to be used to prove that the 
4-set of square waves is complete, each such subset must be treated 

with the weighted-sum technique of the previous paragraph. But these 
arguments apply again to the 4-set of all square waves and show that 
it, too, is  a complete set.

Proceeding inductively in this manner, it must be concluded that for 

all n > 0 , the n-set of all square waves is complete. Then no. non-trivial 

clocked function —  or Walsh function —  with 2n intervals is orthogonal 
to every member of the n-set of all square waves.
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