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tThe holography measurements give the phase error distribution at the antenna aperture. Thisdistribution is a result of both main dish and subre
e
tor errors.The separation of these two sour
eof errors 
ould help to address dire
tly to the sour
e of errors. A rotation of the subre
e
tor mayhelp at this separation. The four possible ways to use the rotation are analyzed. They are:1.Least square �tting using more than two rotations.2.Fitting polynoms to the di�eren
e rotated-non rotated subre
e
tor.3.Integration of the di�eren
e.4.Fourier analysisThe 
ontribution of the main dish and subre
e
tor to errors at the dish aperture 
an be separatedusing the holography measurement with rotation of the subre
e
tor only having had additional appri-ori information about the sear
hing fun
tions. This information is the value of the sear
hing fun
tionalong a given radius (method of integration of the di�eren
e measurement) or the mean value of thesear
hing fun
tion along the 
ir
les of all radiuses (method of the Fourier analysis).Using more than one rotation of the subre
e
tor 
an not ex
lude the requirement ofthe appriori information.1 The approa
h to the problemThe holography measurements of the phase error at the antenna aperture at polar 
oordinate system 
anbe represented by the following equation:�(r; �) = 'main(r; �) + 'subr(r; � +��i) (1)where 'main(r; �) is the main dish 
ontribution to the phase error;'subr(r; �) is the subre
e
tor 
ontribution to the phase error;��i is the rotation value of the subre
e
tor;i = 1,2,3...N; N is number of rotations.The problem whi
h we need to solve is:Having the measurement des
ribed by the equation 1 restore the fun
tions 'main(r; �) and 'subr(r; �).The number and values of the subre
e
tor rotations 
an be 
hosen arbitrary.1



Having subtra
ted the pair of equations 1 with di�erent i we 
an 
ome to the following equations:�(r; �; i = k)� �(r; �; i = l) = 'subr(r; � +��k)� 'subr(r; � +��l) (2)�(r; � ���k; i = k)� �(r; � ���l; i = l) = 'main(r; � ���k)� 'main(r; � ���l) (3)The measurements (the left part of the equation 2) at the equation(2) represent the subre
e
tor
ontribution.The measurements (the left part of the equation 3) at the equation 3 represent the main dish 
ontribution.In prin
iple the problem of the separation is solved using equations 2 and/or equations 3. Buta
tually there are problems on the way.2 The least square method ( as I understand it).Let's 
onsider the least square method of separation. This method was o�ered by Craig Walker. Divideea
h 
ir
le at the polar 
oordinate system by n identi
al se
tor. Then we have 2n unknown values onthe 
ir
le at the equation 1 - n for 'main(r; �) and n for 'subr(r; �). If we have the measurements(equations 1) for three di�erent subre
e
tor rotations then we have 3n equations for the 2n unknownvalues. So it looks like we have enough equations to �nd the solution for both 'main(r; �) and for'subr(r; �). But the question is whether the all 3n equations are independent.To answer on this question let's 
onsider equation (2) or equation (3) instead of equation (1). Then we
an say that there are 2n (the third di�eren
e is linear 
ombination of the �rst two) equations for the nunknown values. Again it looks like there are more equations than number of variables. But it is 
learthat the value at the initial angle 
an not be found be
ause any addition to its value will be subtra
ted.Therefore the number of independent equations is less than n and least square method 
annot be used.3 Fitting polynoms to the di�eren
e measurementNow let's 
onsider another modi�
ation of appli
ation of the least square method. This method waso�ered by Barry Clark. Lets represent the fun
tion 'subr(r; �) by the polynom at the Cartesian 
oordinatesystem X,Y: '(r; �) = Xi+k�N aikX iY k (4)Let's use the polynom representation of the fun
tion 'subr(r; �) for the spe
ial rotation at ��k = 0 and��l = 180degree. Rotation by 180 degrees is equivalent to 
hanging the sign near X and Y. So if we usethe polynomial representation then the 
oeÆ
ients aik for i+k = even will be eliminated at the equation(2). That means that the 
oeÆ
ients aik with i+ k = even are not available from the measurements and
an not be derived. Su
h 
oeÆ
ients are for instan
e: a00; a11; a02; a20:::If we use 90 degrees rotation instead of 180 degrees then the 
oeÆ
ients with even �rst index willbe eliminated but 
oeÆ
ients with odd �rst index will be not. In parti
ular the 
oeÆ
ient a11 will beavailable but the 
oeÆ
ients a02; a20 still not. It is simple to prove that the 
oeÆ
ients a02; a20 are notavailable using any value of the sub-re
e
tor rotation. Probably (de�nitely) there are many 
oeÆ
ientswhi
h will be eliminated using any rotation.But be
ause the 
oeÆ
ients a00; a02; a20 are not available from the di�eren
e measurement the methodof polynom �tting 
an not be used for restoration of the main dish and subre
e
or 
ontribution to theholography measurement. 2



4 Using the Fourier analysis.Let's rewrite the equation 2 marking the left side of the equation as DIFF (r; �) the result of measure-ment, and simplifying the right side:DIFF (r; �) = '(r; �) � '(r; � +��) (5)where �� is the the rotation of the subre
e
or at the se
ond measurement relatively the �rst one;r is the radius of the given 
ir
le.The both fun
tions DIFF (r; �) and '(r; �) are periodi
 by � with period 2�. Therefore the both fun
tions
an be represented by the Fourier series.'(r; �) = 1Xn=0Cn(r) exp(jn�)Cn(r) = 12� Z 2�0 '(r; �) exp(�jn�) d� (6)DIFF (r; �) = 1Xn=0Dn(r) exp(jn�)Dn(r) = 12� Z 2�0 DIFF (r; �) exp(�jn�) d� (7)Substituting (6) and (7) into (5) and 
omparing the relevant 
oeÆ
ients we 
an �nd the Fourier 
o-eÆ
ients of the sear
hing fun
tion '(r; �) through the Fourier 
oeÆ
ients of measured fun
tionDIFF (r; �):Cn(r) = Dn(r)1� exp(jn��) (8)The equation (8) 
an be used to �nd 
oeÆ
ients Cn(r) for any n ex
ept n = 0 be
ause Dn(r) = 0 forany r and the denominator at the equation (8) is equal zero also if n = 0. So the equation (6) 
an berewritten as: '(r; �) = C0(r) + 1Xn=1Cn(r) exp(jn�)Cn(r) = 12� Z 2�0 '(r; �) exp(�jn�) d�;n � 1 (9)Thus we 
an re
onstru
t the fun
tion '(r; �) from the measurement of the di�eren
e fun
tion with a

u-ra
y of 
onstant (on ea
h 
ir
le) C0(r). The 
onstant C0(r) 
an not be found from the given measurementof the di�eren
e fun
tion DIFF (r; �). The 
onstant C0(r) is the mean value of the sear
hing fun
tion'(r; �) along the 
ir
le of radius r.If we 
an derive the 
onstant C0(r) from somewhere we 
an restore the sear
hing fun
tion'(r; �) from the measurements of the di�eren
e fun
tion DIFF (r; �). If not, the sear
hingfun
tion '(r; �) 
an not be restored even if we have the measurements of the di�eren
efun
tion DIFF (r; �) for more than one rotations.5 Integration of the di�eren
e measurement.Looking at the equation of the di�eren
e measurement (eqn # 2) we 
an say that if we have evenonly one rotation measurement and know the initial value of the unknown fun
tion 'subr(r; �) along3



any radius, we 
an restore the all fun
tion integrating the di�eren
e. Indeed, if we know the values of'subr(r; � = 0) and all di�eren
es with the step ��, then 'subr(r; � = ��) 
an be found as the sum ofthe initial value and the measured �rst di�eren
e; 'subr(r; � = 2��) 
an be found as the sum of thepreviously found value and the measured se
ond di�eren
e and so on.If we know the initial values of 'subr(r; � = 0) along a radius and all di�eren
es with the step ��, thenthe fun
tion 'subr(r; �) 
an be found with the step of angle ��. It is 
lear that the only rotation of thesubre
e
tor should be small to have enough resolution at the edge of the aperture and therefore thenumber of steps 
overed the whole 
ir
le will be big. For example the number of steps will be 360 forthe step value 1degree. Be
ause the 
urrent value of the fun
tion is found as the previous value plus themeasured di�eren
e the noise of the solution will be a

umulated as pnumber of steps. In parti
ular thelast value of the restored fun
tion for step=1degree will have the rms of noise p360 � 20 times biggerthan the �rst value.The noise problem 
an be partially solved if we 
arry out several rotation of the subre
e
torsay 180,90,45, 22,11,6,3,2,1. In this 
ase the noise will be in
reased at the worst 
ase byp9 = 3 times.6 Con
lusionThe 
ontribution of the main dish and subre
e
tor to errors at the dish aperture 
an be separatedusing the holography measurement with rotation of the subre
e
tor only having had additional apprioriinformation about the sear
hing fun
tions. This information is the value of the sear
hing fun
tion alonga given radius (method of integration of the di�eren
e measurement) or the mean value of the sear
hingfun
tion along the 
ir
les of all radiuses (method of the Fourier analysis).Using more than one rotation of the subre
e
tor 
an not ex
lude the requirement of theappriori information.
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