
VLBA Sensitivity Upgrade MEMO 23

A Guide to Software Correlation Using NRAO-DiFX Version 1.1

Walter Brisken

National Radio Astronomy Observatory

September 3, 2008

1 Introduction

This manual is intended for many different audiences. Typically a particular reader will only need to be
concerned with a small portion of this guide, but there are a number of cross-references between sections. This
manual assumes some familiarity with Mark5 units, Linux, and the general way in which a VLBI correlator is
used. The following topics are discussed: running NRAO-DiFX, coexistence issues with the VLBA hardware
correlator, explanation of various file/document types, and detailed installation instructions. This manual
will be kept up to date with each official update to NRAO-DiFX. Please report any errors that are found in
this manual to wbrisken@nrao.edu .

1.1 Notation

Text written in typewriter font represents literal text and is to be transcribed verbatim when typing and
text in italics is to be substituted with other text, such as the specific value of the named variable. To
be consistent with this notation, all mention of programs by name or filenames (and portions thereof) are
written in typewriter font.

2 The NRAO Customized DiFX Software Correlator

This document is centered around the NRAO customization of the DiFX [1] software correlator and its
supporting software. The name “NRAO-DiFX” is being given to the collection of support programs and
the modified core of DiFX, mpifxcorr. Much of the contents here applies to other installations of DiFX as
well, but keep in mind that not a lot of effort is made to generalize these instructions. Two things make
the NRAO-customized version different from the stock DiFX distribution. The first is using VLBA style job
scripts as the base for forming the input files for DiFX. The second is allowing correlation straight of the
Mark5 units instead of processing only files that reside on the Unix filesystem. The later is expected to be a
useful extension to many other users, so attempts are made to keep this functionality as general as possible.
Additionally, no attempt is made to support the RPFITS output format. The customized mpifxcorr can be
compiled with or without RPFITS support, however instructions for configuring mpifxcorr with RPFITS
are not provided here. It is the goal of NRAO’s software correlator effort to periodically merge NRAO
extensions to mpifxcorr into the main development tree and to make these features useful in general. Fig. 1
shows the general data flow-path within the NRAO-DiFX software correlator system. All new parts of this
diagram are described within this document.

2.1 NRAO-DiFX 1.0

The version 1.0 series of NRAO-DiFX bases job generation on the .fx (§9.7) files that cjobgen produces.
This ensures a compatibility period during which both correlators can produce visibilities with expectations
of functionally identical results, a feature critical for validation. This strategy also minimizes the required
software effort at its earliest phases. Version 1.0 came with the following features:

1. A complete path from .fx job scripts to .FITS files

1

2. A command-line only interface

3. Documentation (you are reading it now)

4. Support for VLBA and Mark IV formats

5. Correlation directly off Mark5 modules

6. Support for all projects types except those using special modes, such as pulsars, space VLBI, and near
field objects

7. Spectral and time resolution bounded only by practicality

While this version should handle most observations, fast frequency switching and geodesy experiments will
produce a large number of output FITS files which may be annoying to observers and the archive. Version
1.0 was available on February 6, 2008.

2.2 NRAO-DiFX 1.1

Version 1.1 builds on version 1.0 and adds the following features:

1. Used version of mpifxcorr that has gone through code merge with the official version

2. Blanking of data replaced by headers (MarkIV format only)

3. Proper data weights

4. Initial Mark5B support

5. Support for oversampled data through decimation

6. Multicast status information for GUI interface

7. Correlation of moving and near field objects

8. Concatenation of multiple output files into a single or multiple FITS-IDI file(s)

9. Better support for jobs with multiple configuration tables

10. Playback off Mark5 modules with missing disks

11. Support for Amazon based Mark5 units

12. Completely replaced the “Makefile” system with better integrated alternative

13. Generation of delay model polynomials rather than tables, more like VLBA HW correlator

14. u, v, w values are derived from the delay model (and hence include corrections for aberration, near field
observations, and other subtle effects) and are evaluated when writing the FITS file

15. NRAO-DiFX version accountability

16. Validation of data frames prior to decoding

17. Data evaluation (“sniffing”) built into FITS converter

This version was released on September 3, 2008. Features new to version 1.1 are marked with 1.1 .

2

2.2.1 Bugs fixed

Here are listed some of the more important bug fixes:

1. The clock offset was used with the wrong sign in the IM table.

2. Printed precision of some important numbers (RA and Dec) was increased.

3. Autocorrelations were ordered incorrectly for observations with a single polarization.

4. The MarkIV format decoder had a 1 day off bug.

5. The MarkIV format decoder had a 64×fanout sample timing offset.

6. Several causes of crashes were fixed; no known crashes remain.

7. Missing VLBA monitor data was handled badly.

8. Due to OpenMPI peculiarity, some processing nodes would get most or all of the work in some cases,
which cause the work being done on other nodes to be ignored. This was fixed by looking for results
in a round-robin manner.

9. Integrations that contain data from two adjacent scans are stripped when writing FITS files.

10. Allow FITS files larger than 2GiB in size.

2.2.2 Known problems

Known bugs as of the NRAO-DiFX 1.1 release:

1. The last couple (typically 2) integrations of a job (not a scan) tend to have low weight due to a
premature termination of data processing.

2. The data quality “sniffer” does not respect flags.

2.3 NRAO-DiFX 1.2

Version 1.2 is meant to be production usable. In addition to fixing bugs found in earlier versions, the following
features are expected

1. Initial Mark5C support

2. Proper archive integration

3. Pulsar gating support

4. Integration with the DiFX Operator Interface (DOI)

5. Parallel processing of contemporaneous subarrays?

This version is expected by December 31, 2008

2.4 NRAO-DiFX 2.0

Version 2.0 will start allowing correlation of experiments that cannot be represented by .fx files and will be
based mostly on vex files. Many of the programs described in this document will be upgraded or overtaken by
more capable replacements. Other version 2.0 capabilities could include advanced pulsar processing, space
VLBI support, multiple simultaneous phase centers, Science Data Model/Binary Data Format (e.g. EVLA
and ALMA) or measurement set output format, ... Development of the 2.0 capabilities will occur in parallel
with the 1.0 series features.

3

2.5 Other features to implement

Here is a list of other features to add to NRAO-DiFX that are not directly tied to any particular version:

1. Mark5B+ support (frames start at fraction of 1 ns boundaries)

2. Pulsar bins

3. Support for K5 format

4. Fast-forwarding over unneeded data in the native Mark5 module datastream

5. Phase cal extraction

6. Switched power extraction

7. Playback of two independent modules in one Mark5 unit

8. Non-bank-mode Mark5 support

9. Spectral selection between FFT and cross-correlation to allow for greater spectral resolution

10. Conversion of DiFX output to Mark4 correlator format

11. Support for antenna local oscillator offsets

2.6 NRAO-DiFX and AIPS

Only one task in AIPS, FITLD, has to deal with the telescope/correlator specific aspect of the FITS-IDI
files that the VLBA correlator and DiFX generate. The FITS-IDI variant of FITS was first documented in
AIPS Memo 102 [3], and more recently in AIPS Memo 113 [4], which will be generally available shortly. It
has been modified for better support support of DiFX FITS output. In general, these changes make FITLD
less telescope specific so the resulting FITS-IDI files from any NRAO-DiFX installation should be highly
compatible with AIPS. Several changes have been made to the 31DEC08 AIPS as a result of DiFX testing:

1. Correction for digital saturation in auto-correlations is disabled for DiFX FITS files. See [2] for some
details on this correction which is not needed for DiFX data.

2. Support for FITS-IDI files greater than 2 GiB in size.

3. Weather table was not populated properly.

4. FITS files with multiple UV tables would generate incomplete GEODELAY columns in CL tables (not
relevant to DiFX).

It is recommended that your AIPS installation be kept up to date.

3 Cluster configuration

For production correlation, it is suggested that a dedicated user account be created; for the rest of this
document it will be assumed to be “difx”. This account should have few or no other uses in order to ensure
that the environment is not disturbed. The user account must exist on all nodes in the cluster and ssh should
be configured so that no password is required when logging into one node on the cluster from another. This
user account must also exist on the Mark5 units that are used for playback. It is recommended that all
computers in the cluster, including the Mark5s, run the same version of Linux to avoid library compatibility
issues.

All of the nodes in the cluster, including the Mark5s, should be interconnected by a fast network and have
NFS access to the directories from which correlation is to proceed. Complicated network topologies, such as

4

having more than one cluster node attached to more than one network, can lead to unpredictable results as
OpenMPI (the suggested MPI library to use with mpifxcorr) is network aggressive and will use any means
possible to enhance performance, even if such antics are counterproductive. If your network topology is not
simple be aware of any network-related issues and keep in mind that you might need to explicitly specify
which network interfaces to use.

One node should be deemed the “head node”. In general this node should have lots of hard disk space
which is cross mounted to all the others and could serve as the network gateway to the remainder of the
cluster. It is convenient, but not necessary, to locate all of the software and correlation directories physically
on this node to improve the interchangeability of the other nodes. This node can participate in the actual
correlation, either as the manager node, a processing node or both. By default, the head node will always
be the manager node.

4 Environment variables

In addition to environment variables needed at build-time (§11), some others are needed at run time. These
are:

1. CALC SERVER contains the name of the computer running calcServer (§11.8). This is accessed only by
program calcif.

2. DIFX ARCHIVE ROOT points to the base directory of the archive staging area.

3. DIFX GROUP ID the Unix group to use. If set, umask is changed to 002 and all new files/directories
become group writable. 1.1

4. DIFX HEAD NODE contains the name of the cluster head node.

5. DIFX MACHINES points to a file containing a list of cluster members and their capabilities. See §9.4

6. DIFX MESSAGE GROUP (optional) specifies, with DIFX MESSAGE PORT, the multicast group and port to
be used for GUI and monitoring. 1.1

7. DIFX MESSAGE PORT (optional, see above) 1.1

8. DIFX VERSION (optional, but recommended) the version of difx being used, e.g., NRAO-DIFX-1.1 . 1.1

9. GAIN CURVE PATH (optional) points to a directory that contains keyin format files containing gain
curves. This is used only by difx2fits. If not set, difx2fits will not create gain curve tables. This
directory must be readable by the difx user. Every file in this directory will be read, assuming it is a
keyin format gain curve, so nothing else should be stored here. This directory needs to be created by
hand if it does not exist.

10. JOB ROOT points to the base directory that is to contain copies of job scripts of projects to correlate.
This directory must be visible by all nodes on the cluster.

11. DIFX LOG DIR points to the directory where logs shall be written. 1.1

12. MARK5 DIR PATH points to a directory that is used to cache the contents of Mark5 modules. This
directory must be readable and writable by the user running mpifxcorr. This directory needs to be
created by hand if it does not exist. It will get populated automatically. If there are problems with
playback of a module, the files in this directory can sometimes be useful.

13. TESTS points to a path containing test data projects.

5

Like the environment variables described in §11, these should all be set in shell initialization files and should
be set whether the shell is used interactively or not. For the difx user account at NRAO, these are set in
a file called setup difx which is run upon login (see §4.1). Note that this file needs to be run whether the
login is interactive or not; please consult the documentation for your shell if you have problems. To test if
this file is being run in non-interactive sessions, try the following: ssh computername env | grep DIFX and
make sure you see the environment variables you expect to.

4.1 Directory structure and versioning

The directory structure of the NRAO deployment of NRAO-DiFX is outlined in Fig. 2. The aim is to cleanly
programs, libraries, and other version-specific files from data in a way that switching from one version (e.g.,
1.1) to another (e.g., the development version) is simple, accountable, and complete, in order to assure that
a self-consistent set of software is used for an entire project. Each NRAO-DiFX version has its own root
directory, such as /home/swc/NRAO-DiFX-1.1 . All files associated with this version are under this directory.
No data or files associated with any other NRAO-DiFX version shall be placed within.

Setting up a particular version is quite simple. Assuming the bash shell:
. /home/swc/NRAO-DiFX-1.1/setup difx
This script contains the following:

export PATH=/home/swc/NRAO-DiFX-1.1/bin:/users/difx/bin:/bin:/usr/bin
export LD_LIBRARY_PATH=/home/swc/NRAO-DiFX-1.1/lib:/home/swc/NRAO-DiFX-1.1/lib/intel
export PKG_CONFIG_PATH=/home/swc/NRAO-DiFX-1.1/lib/pkgconfig
export JOB_ROOT=/home/swc/difx/projects
export TESTS=/home/swc/difx/tests
export MARK5_DIR_PATH=/home/swc/difx/directories
export CALC_SERVER=swc000
export GAIN_CURVE_PATH=/home/swc/difx/gaincurves
export IPPROOT=/opt/intel/ipp/5.3.3.075/ia32
export DIFX_MACHINES=/home/swc/difx/machines.difx
export DIFX_HEAD_NODE=swc000
export DIFX_ARCHIVE_ROOT=/home/swc/difx/archive
export MANPATH=/usr/share/man:/opt/local/man:/home/swc/NRAO-DiFX-1.1/share/man
export DIFX_VERSION=NRAO-DIFX-1.1
export DIFX_GROUP_ID=vlba_difx
alias src=’pushd /home/swc/NRAO-DiFX-1.1/src’
echo "NRAO-DiFX version 1.1 is selected"

The “difx” account is set up to execute this script upon login. Note that the settings here are useful
for both compilation of the various NRAO-DiFX components as well as using them. Each installed version
of NRAO-DiFX will have its own setup file like this. Selecting which version is to be used is a simple as
running the correct setup file. To change to the development version:

. /home/swc/NRAO-DiFX-trunk/setup difx
It is highly recommended that one set the DIFX VERSION environment variable and make sure that for

each installed version of NRAO-DiFX this is set differently. It may also be desirable to customize this
for your correlator. For example, one may set it to USNO-NRAO-DIFX-1.1 . This string will be stored in
intermediate files and the output FITS files and will be able to identify more exactly where the data were
correlated.

5 Sharing resources with hardware correlator (VLBA Specific)

The Mark5 units attached to the VLBA correlator are used in three different ways for correlation: 1. An
installed module can be played through the VLBA hardware correlator, 2. The CPU(s) inside the Mark5 unit

6

can be used for software correlator processing, and 3. An installed module can be played into the software
correlator. Functions 1 and 2 can be done simultaneously without conflict. Likewise, functions 2 and 3
can also be done simultaneously without conflict. Functions 1 and 3 cannot be done at the same time. In
fact, the software correlator will refuse to use Mark5 units that are currently “Online” with regard to the
hardware correlator. The Mark5 units need to be explicitly set to playback on a particular correlator. See
§§5.1 & 5.2 for instructions. These two functions cleanly stop and start, respectively, the Mark5A program
that is needed for the hardware correlator. It is only the playback of the Mark5 modules that has any chance
of conflict between the software and hardware correlators. The hardware correlator can be correlating, idle,
in standby, or completely off during software correlation.

5.1 Taking a Mark5 unit

Two actions must be taken to safely transfer a Mark5 unit from serving the hardware to serving the software
correlator. Here “safely” implies no loss of data and no need for an unnecessary reboot; if done properly, no
reboots of any computer should be needed. First the Mark5 unit must be taken Offline from the hardware
correlator SYSDISCS screen. Multiple units can be taken Offline simultaneously by highlighting multiple
units. Like usual, units currently assigned to a job cannot be taken offline. Second, the Mark5A program
must be stopped on the Mark5 unit(s). This can be done with the mk5take program (§8.20). For example,
to “take” units 8, 9 and 11, one would issue the following command from the shell prompt

mk5take 08 09 11

Any number of units can be taken offline at once with mk5take. Note — if a Mark5 unit is rebooted,
mk5take will need to be run on that unit again once it comes to life as the Mark5A will be automatically
started on each reboot (except for units fx01 through fx03 which never run the Mark5A program). You may
need to wait 15 seconds or so after reboot is complete for this to work.

5.2 Returning a Mark5 unit

Once a Mark5 unit is again needed for use with the hardware correlator, it must be returned. It is important
to make sure the software correlator is not using the particular Mark5 unit for playback before continuing.
First the Mark5A program must be restarted, which can be done with the mk5return program (§8.19), e.g.,

mk5return 08 09 11

Again, any number of Mark5 units can be returned in one call. After a few seconds the effectiveness of
this can be tested with the mk5status program; all units expected to be used for the hardware correlator
should be in the READY state. Once this is the case, the units can once again be put Online with the
SYSDISCS screen. No reboots should be needed if things go well.

6 Running DiFX at the VLBA correlator

In this section are instructions for using the NRAO adapted DiFX to correlate data that has already been
prepared for correlation by the VLBA hardware correlator. Some aspects of this section may still apply to
correlation of other data. Currently no graphical user interface exists, so these instructions are command
line only; these instructions will change when the operator interface is complete. This section assumes that
the software is properly installed and environment variables are set appropriately for use which will be the
case for correlator operators. While there are several steps in performing the software correlation, nothing
is too complicated. The procedure below does not go into any detail about what is actually happening at
each step, please find details in other sections of this manual. Only steps 9 though 12 below require the
correlator-specific hardware so the pre- and post- correlation steps could all be run by the analysts rather
than operators. In the example that follows, project BM264 segment G will be correlated:

7

1. Log into the head node as user: ssh -l difx $DIFX HEAD NODE

2. Change directories to the job root directory: cd $JOB ROOT

3. Copy the job scripts and monitor data over: getjobs bm264g (§8.9)

4. Enter the project directory: cd bm264g

5. At this time it would be convenient to open another terminal, log into $DIFX HEAD NODE as difx, and
change to the $JOB ROOT directory so that it is easy to monitor the progress in one window while
running the correlation in the other.

6. Generate the DiFX input files: job2difx *.fx (§8.10).

7. Look over the list of jobs to be done: joblist (§8.12).

8. Determine which modules are needed, either by looking at the .fx files or with the use of jobdisks
(§8.11). Install these modules into Mark5 units, making sure not to put two modules that are needed
by the same job into the same unit.

9. Offline the units using the hardware correlator SYSDISCS screen and “take” them (§5.1). Note that if
no hardware correlation is to occur it is okay to “take” all of the Mark5 units for convenience.

10. At this point one could start the correlation of all the jobs with a single command: startdifx
*.input (§8.22), but it is recommended to start just one job first to make sure things are working:
e.g. startdifx job1240.000.input .

11. When output stops and the command prompt is given back, the processing is either done or something
failed. If a job is encountered that requires a module that is not mounted, processing will stop with a
warning that the module could not be found. At this point, you should load the desired module and
again type startdifx *.input to continue processing.

12. When done, return the Mark5 units if they are needed by the hardware correlator (§5.2).

13. Generate fits files for all correlated jobs: difx2fits -d (§8.5).

If a job is encountered and a required module for that job is not installed in a Mark5 unit that has been
“taken”, the correlation process will stop. The needed module will be listed in an error report, or can be
identified using the jobdisks (§8.11) program. Once the module has been installed, start at step 10 again
and the correlation should proceed from where it left off.

6.1 Monitoring the correlation process

Most of the time in correlation is spent running mpifxcorr. This program sends information to the terminal
window in which it runs. As long as output continues at least every 30 seconds, things are probably OK.
Error messages are for the most part fairly obvious; if unusual output is seen and mpifxcorr stops, it is often
a good idea to scroll up several pages as the root of the problem may have scrolled of the page, especially
when using many nodes for correlation.

The easiest way to monitor the progress of correlation is to periodically run jobstatus (§8.13) in a
different window. Make sure the current working directory of the shell is the project directory of the project
being correlated. The use of cpumon (§8.4), mk5mon (§8.18), and errormon (§8.7) will provide additional
feedback. The Difx Operator Interface will supersede these tools.

6.2 Common failure modes

Here is a list of some common failure modes and some hints to identifying and solving them.

8

6.2.1 Module moved

If a required module has been removed or moved since genmachines has run, mpifxcorr will not be able
to correlate. In this case DiFX will fail, spitting out a substantial amount of debug information. You can
try again by running genmachines baseFilename.input to force the recreation of the .machines file. If this
program fails, it will report an error that may aid in diagnostics. Note that this scenario will not happen if
startdifx (§8.22) is used to run the correlator.

6.2.2 Mark5 unit hung

Unfortunately, there are still some instabilities with Mark5 units that result in various kinds of hangs; some
units appear more sensitive than others. Often a failed Mark5 can be identified with the last few lines of
error messages output from mpifxcorr. To verify, first attempt to ssh into that unit. If that is successful,
try running mk5list (§8.17) on that unit to make sure the driver has not become corrupt. If logging into
the mark5 unit works but mk5list fails, try resetting the Streamtor card with:

mk5control reset unitNumber
where unitNumber is, for example, 07 for mark5fx07 or 23 for mark5fx23. The Mark5 state shown in mk5mon
should change to “Resetting”. If it does not, then it is likely a reboot is needed.

If none of the above works, try rebooting the particular Mark5 unit and starting over. Note: as currently
configured, a Mark5 unit will restart the Mark5A upon boot, so you will need to use mk5take to stop that
before attempting software correlation on that unit again. Make sure to give the Mark5 unit enough time
to initialize the Mark5A program before running mk5take (i.e., wait for module lights to cycle).

A possibly more reliable way to identify a hung Mark5 unit is to start a new instance of mk5mon (§8.18)
in a terminal and issue the following command:

mk5control getvsn mark5
A hung Mark5 will not show up in the list of units.

6.3 Correlating data files

The operating instructions up to this point have focused on correlation directly off Mark5 modules. Corre-
lation off files is also supported, as is a mixed mode where files and modules are correlated together. The
scripts described in this document don’t (to date) make correlation of files easy, but it is possible to do so
by hand editing files. It is expected that enhancements to the scripts will make correlation from files much
easier in NRAO-DiFX version 1.1. Two files will need manipulation: .input and .machines. In the .input
file, every entry in the DATASTREAM table that corresponds to a disk file needs the DATA SOURCE value changed
from MODULE to FILE. The .machines file will likely have to be constructed completely by hand. See §9.15
for a detailed description of the format of that file. Note that it is no longer necessary for the data files to
be visible to all cluster computers – they can reside on local drives that are not exported, including USB or
Firewire drives, but this requires that the datastream nodes listed in the .machines file be in the order in
which the antennas are listed in the .input file.
Note: you must use the -n option to startdifx when starting the correlation or the hand-edited .machines
file will be overwritten.

7 Some comments on channels

This section discusses the accountability of channel identification through the entire NRAO-DiFX system.
While much of this discussion will not be of use outside NRAO, the terminology discussed here might help
explain other portions of this document. The subject of this section is baseband channels, not individual
frequency channels that the correlator produces from the baseband channels.

Baseband channels are individual digital data streams containing a time-series of sampled voltages rep-
resenting data from a particular portion of the spectrum from one polarization. Each baseband channel is
assigned a recorder channel number. For a given baseband data format (i.e., VLBA, Mark4, Mark5B, ...) a

9

particular recorder channel number is assigned to a fixed number of tracks or bitstreams. This mapping is
contained in the track row in the format table of the .fx job script and can be different for each antenna.
This mapping is also reflected in the .input file in the datastream table.

DiFX correlates baseband channels from multiple antennas to produce visibilities. From each correlated
baseline, one or two basebands from one telescope will be correlated against one or two basebands of another,
resulting in up to four products for a particular sub-band. This is to allow full polarization correlation. Each
sub-band (called an IF in AIPS) is given a sub-band number; in general 1 or 2 recorder channels map to
each sub-band. Note that an observation can simultaneously observe some sub-bands consisting of only one
baseband and some with two basebands. In cases such as this the matrix containing the visibility products
on a particular baseline will be large enough in each dimension (i.e, polarization product, sub-band) to
contain all of the results, even if this consumes more storage than necessary; flags are written that invalidate
portions of the visibility matrix that are not produced by the correlator.

8 Reference guide to programs and utilities

This section has usage information for the numerous programs and scripts used in the NRAO-DiFX system.
Basic help information for most or all of these programs can be gotten by typing the program name with
either no command line arguments or with a -h option. In the usage descriptions below, arguments in
square brackets [] are optional and can often include multiple different parameters. Cases where 1 or more
arguments of a certain type (such as files) can be passed to the program, the usage instructions will look like
arg1 [· · · argN], with the implication that N arguments of this type were passed. In cases where 0 arguments
of that type is also allowed, that first argument will also be in square brackets. If it is not obvious from the
program name, the software package containing the program follows the section header.

Note that several VLBA specific programs are discussed in this manual that are not documented here,
such as cjobgen, tsm, and plotbp. These are preexisting programs that may be documented elsewhere and
are less likely to be useful outside VLBA operations.

8.1 calcif (package : job2difx) deprecated – do not use

Program calcif takes one or more .calc file created by job2difx and computes an appropriate delay model
(and related quantities) for each for use in correlation. It connects via RPC to a running copy of CalcServer
which must be running on a computer called $CALC SERVER, or on the specified computer if the -s option
is used. If the output files (specified in the .calc file) exist and are current (have newer modification times
than the .calc file, then the files will not be recreated unless the force option is used. Note that the output
files are first assembled in /tmp and moved to the destination directory when they are complete in order to
avoid incomplete files; old versions of the output files are removed before this process begins.

Usage: calcif [options] { -a | calcFile1 [calcFile2 [· · ·]] }

options can be:

-h or --help : print usage information and exit

-y or --yes : needed for calcif to actually run 1.1

-a or --all : run on all .calc files found in the current directory 1.1

-v or --verbose : print more verbose logging/debug info

-f or --force : rerun even if output files exist and are current 1.1

-s server or --server server : connect to server, not $CALC SERVER.

calcFile is a .calc file (§9.14), such as one generated by job2difx (§8.10).

Example 1: calcif job1420.000.calc job1421.000.calc 1.1

10

Example 2: calcif -s kepler job1420.000.calc

Example 3: calcif -a 1.1

The new option -y or --yes is in place to encourage users to use calcif2 rather than calcif, but to
retain the possibility of using the later in cases where it is desired. It is expected that calcif may cease to
exist in future NRAO-DiFX releases. If so, calcif2 may be renamed calcif.

Three files are produced by calcif:

1. .uvw Projected baseline vectors (§9.25)

2. .delay Geometric delays (§9.9)

3. .rate Time derivatives of geometric delays and atmospheric delays (§9.20)

The first two of these are required for correlation and construction of FITS files (§9.12). The later is required
if full model accountability is desired.

8.2 calcif2 (package : job2difx) 1.1

Program calcif2 is intended to completely replace calcif. It is used in the same way as calcif and
boasts some important improvements. Instead of calling CALC for every tabulated model row, calcif2
computes a 5th degree polynomial every 120 seconds (typically), very closely resembling the delay model
generation used at the VLBA hardware correlator. These polynomials are then evaluated at each model point.
This results in a tremendous speedup at negligible loss of accuracy. By default calcif2 will call CALC three
times for each model point and calculates more accurate u, v, w coordinates from delay measurements made
over a small patch of the sky:

(u, v, w) =
(

c
dτ

dl
, c

dτ

dm
, cτ

)
(1)

where l, m are angular coordinates (in radians) relative to the delay center on the sky, τ is the delay at the
delay center and c is the speed of light.

It connects via Remote Procedure Call (RPC) to a running copy of CalcServer which must be running
on a computer called $CALC SERVER, or on the specified computer if the -s option is used. If the output files
(specified in the .calc file) exist and are current (have newer modification times than the .calc file, then
the files will not be recreated unless the force option is used.

Usage: calcif2 [options] { -a | calcFile1 [calcFile2 [· · ·]] }

options can be:

-h or --help : print usage information and exit

-a or --all : run on all .calc files found in the current directory

-v or --verbose : print more verbose logging/debug info

-q or --quiet : print less verbose logging/debug info

-f or --force : rerun even if output files exist and are current

-n or --noaber : don’t perform aberration corrections

-z or --allow-neg-delay : don’t zero delays that are negative (i.e. shadowed)

-s server or --server server : connect to server, not $CALC SERVER.

-o order or --order order : make polynomials with order + 1 terms (default 5).

-i int or ---interval int : make a polynomial every int seconds (default 120).

--override-version ignore difx version clashes

11

calcFile is a .calc file (§9.14), such as one generated by job2difx (§8.10).

Example 1: calcif2 job1420.000.calc job1421.000.calc

Example 2: calcif2 -s kepler job1420.000.calc

Example 3: calcif2 -a -i 60

Four files are produced by calcif2:

1. .uvw Projected baseline vectors (§9.25)

2. .delay Geometric delays (§9.9)

3. .rate Time derivatives of geometric delays and atmospheric delays (§9.20)

4. .im Polynomial interferometer model file, to be used by difx2fits (§9.13)

The first two of these are required for correlation and construction of FITS files (§9.12). The third is required
(unless the fourth is present) in addition if full model accountability is desired. If the fourth file is present,
its contents will override those of the first three when making FITS files.

8.3 CalcServer

Program CalcServer contains the Goddard Space Flight Center CALC package version 9.1, used to compute
geometric delay models for VLBI applications. It is a repackaged version of the same source code that is
used to compute models on the VLBA correlator. It is configured to run as a server. All of its interactions
are via RPC calls from other programs, such as calcif, which could be running on the same or different
computer. This program only needs to be started once on a given machine using the startCalcServer
script. It should probably be set to start automatically upon boot of the machine on which CalcServer
runs. Environment variable $CALC SERVER should be set to the name of the computer on which CalcServer
is running.

Start: startCalcServer

Test: checkCalcServer $CALC SERVER

Stop: killall CalcServer

Note that CalcServer must be installed (with make install) to be usable as the paths for various
files are permanently set in the executables at compile time. At this time it seems CalcServer cannot be
compiled for 64-bit machines.

8.4 cpumon (package : difxmessage) 1.1

Program cpumon is a program that listens for difxLoad messages multicast from the Mark5 units and
displays the information; updating the display as new messages are received.

Usage: cpumon

Make sure the terminal is at least 80 characters wide and is at least as tall as there are computers that
may transmit information. To quit, use ctrl-C, and you may need to enter “reset” at the command line to
get your prompt back. The columns displayed are:

1. Computer name

2. CPU load averaged over 10 seconds

12

3. Memory usage / Total memory

4. Network receive rate (Mbps)

5. Network transmit rate (Mbps)

8.5 difx2fits

Program difx2fits creates a FITS output file from the SWIN format visibilities created by mpifxcorr and
several other files carrying information about the observation. When run, difx2fits requires the following
files to be present:

1. baseFilename.difx/

2. baseFilename.input

3. baseFilename.uvw

4. baseFilename.delay

This minimal requirement means that difx2fits can be used even outside the NRAO DiFX environment,
though it is possible that certain combinations of different configurations within the .input file will not be
properly supported at this time. Several other files are optional and are typically used to populate calibration
and ancillary tables:

1. baseFilename.calc

2. baseFilename.rates

3. baseFilename.im

4. baseFilename.flag

5. flags

6. pcal

7. tsys

8. weather

9. $GAIN CURVE PATH/

With the exception of the gain curve files, all the input files to difx2fits are expected to be in the current
working directory. As the visibility file (.difx) is read, any records that are all zero are omitted. The
number count of these dropped records is reported as “invalid records” when difx2fits finishes writing
the UV table. With difx2fits versions since 2.0 (which is included as part of NRAO-DiFX 1.1) multiple
correlator output files can be combined into a single destination FITS file; this feature is still new, so please
check the results carefully!

Usage: difx2fits [options] { -d | baseFilename1 [· · ·baseFilenameN] [outFile] }

options can be:

-a chanavg or --average chanavg : average chanavg spectral channels

-b chan or --beginchan chan : convert channels starting at zero-based channel chan

-h or --help : print usage information and exit

-n or --no-model : don’t write model (ML) table

13

-o nchan or --outchans nchan : write a total of nchan channels to FITS

-s scale or --scale scale : scale visibility data by scale

-v or –verbose : increase verbosity of output; use twice or thrice to get even more

-d or –difx : run on all .difx files found in the directory 1.1

-k or –keep-order : don’t sort the antennas by name 1.1

-1 or –dont-combine : make a separate FITS file for each input job 1.1

-x or –dont-sniff : don’t generate sniffer output files 1.1

--override-version ignore difx version clashes 1.1

baseFilename is the prefix of the jobfile to convert; it is OK to use the .difx filename instead

outFile is the name of the FITS file to produce; if not provided one will be made based on the project
code

Example 1: difx2fits job9020.000 9020.FITS

Example 2: difx2fits -v -v -d

Unless disabled with the --dont-sniff or -x flag, four “sniffer” output files (.acb, .apd, .wts and .xcb)
will be written for each .FITS file produced. These files are used by difxsniff and its associated programs
to produce data plots that are used to assess data quality.

8.6 difxsniff (package : job2difx)

Program difxsniff is a reimplementation of the analyst’s program sniff.pd to be more appropriate for
software correlation where the sniffer data is generated at the same time as the FITS files. It uses the
same underlying set of plotting programs (plotwt, plotbp, and plotapd) as sniff.pd did. It should be
run in a project directory as it will create a subdirectory (if not existing already) which by default is called
sniffer/refant within the current directory. All files created by difxsniff will be placed in this directory,
overwriting existing files with the same filenames. Unlike sniff.pd, difxsniff is a purely non-interactive
command line program. Note that although .FITS files are provided to difxsniff, it is the associated files
ending in .apd, .wts, .acb and .xcb that are actually read.

Usage: difxsniff [options] refants FITS1 [· · · FITSN]

options can be:

-h or --help : print usage information and exit

refants is a list reference antennas, separated by spaces

FITS is a FITS file created by difx2fits; multiple FITS files can be specified together

Example 1: difxsniff LA *.FITS

Example 3: difxsniff NL FD *.FITS

8.7 errormon (package : difxmessage) 1.1

Program errormon listens for multicast messages of the difxError variety and simply prints their con-
tents to the terminal.

Usage: errormon

14

8.8 genmachines (package : job2difx)

Program genmachines uses the information in a .input file and a file containing information about the
members of the compute cluster (such as the file pointed to by $DIFX MACHINES) to produce a .machines
file (§9.15) needed by mpifxcorr. Note that genmachines is not intended to be run by hand anymore as
startdifx does this, if necessary. If playback directly off Mark5 units is to be done, genmachines will send
a multicast request to all Mark5 units on the correlator requesting an inventory of loaded Mark5 modules.
The mk5daemon process on each unit will respond with another multicast message containing the loaded
modules and the status of the unit, i.e., whether busy or available to be used. This information is collected
by genmachines which will look for availability of all the modules and detect conflicts (i.e., two needed
modules loaded in the same unit). If all needed modules are found and enough resources remain for the
computations, a .machines file and a .threads file are written. Note that the .machines file contains a
certain number of comment lines so that the use of Unix command wc -l can be used to determine exactly
how many processes will be started. It is suggested to run this program immediately before starting the
software correlator to minimize the chance that the Mark5 units change their status or that information
about the modules whereabouts becomes stale; it is thus discouraged to run with *.input.

Usage: genmachines [options] input1 [· · · inputN]

options can be:

-h or --help : print usage information and exit

-v or --verbose : be more verbose

-o or --overheadcores ohc : leave at least ohc on each compute node unscheduled 1.1

-m file or --machinesfile file : use file instead of $DIFX MACHINES

-n or --no-threads : don’t write a .threads file.

input is a .input file; multiple files can be specified, each producing its own .machinesfile

8.9 getjobs (package : job2difx)

Program getjobs can be used to create a new software correlation project directory and copy .fx files (job
scripts) and a cal.vlba file from /home/vlbiobs into the new project directory. If the cal.vlba file is
found, it is gunziped if needed and run through vlog (§8.24).

Usage: getjobs [options] project [rootDir]

options can be:

-h or --help : print usage information and exit

-f or --force : allow overwrite of files

project is the full name of a project, in lower case, including segment

rootDir is the an optional parameter specifying the directory into which the new project directory will
be created. Default is the current working directory if none is provided.

Example 1: getjobs bw088r

Example 2: getjobs bg160 $JOB ROOT

15

8.10 job2difx

Program job2difx takes one or more .fx job script files (created by cjobgen) and creates one or more
.input files. For each .input file created, a matching .calc file is also generated. In almost all cases, this
program will be called with *.fx as input, unless certain jobs (such as clock searches or pilots) are to be
ignored.

A .fx job file can be split into multiple .input files for a couple reasons. The most general reason
is that of an incompatible change of subarrays, a common occurence in geodetic observations. Currently
most of the infrastructure set up around NRAO’s DiFX implementation can only support one subarray;
projects utilizing multiple (possibly changing) subarrays are handled at this stage by dividing those jobs into
multiple smaller ones each containing only one subarray. An integer index are used to identify amongst the
possible multitude of .input files created from one input file: the subjob. The subjob index starts at 0 and
increments each time subarray membership changes in an incompatible manner or when certain frequency
setups change. The new base filename is created by starting with the name of the .fx file, removing the
.fx extension, and adding .subjob.subarray. Each job-specific file (such as .calc, .input, .difx, .uvw, ...)
is this base filename with the appropriate extension appended. Note – NRAO-DiFX 1.0 used two indexes
(subjob and subarray); now one index incorporates both of these functions.

Usage: job2difx [options] jobFile1 [· · · jobFileN]

options can be:

-h or --help : print usage information and exit

-s or --single-config : split jobs at each configuration change 1.1

-p or --multi-pass : turn each separate configurations into interleaved jobs 1.1

-m or --multi-config : attempt to make file with multiple configurations; FLAKEY! 1.1

-v or --verbose : increase verbosity 1.1

A=antList : use only antennas in comma separated list antList

nchan=nChan : override number of output channels

fftsize=nFFT : override FFT size to use

tint=tInt : override integration time (in seconds)

minsub=minSubarraySize : set minimum subarray size (default 3)

spectrunc=specTrunc : set amount of spectral truncation to perform before decimation; legal
values are 1, 2, 4, 8 & 16

jobFile is a .fx file; many can be supplied

Example 1: job2difx *.fx

Example 2: job2difx A=FD,KP,MK *.fx

Example 3: job2difx tint=0.5 nchan=1024 *.fx

Important note: in cases where multiple .fx files are made to cover the same time range due to limitations
of the VLBA hardware correlator (i.e., processing of 512 Mbps recordings), these .fx files must be passed
to job2difx together. In these cases, the output base filename is derived from the .fx file with the lowest
job number.

16

8.11 jobdisks (package : job2difx)

Program jobdisks looks through job files to see which modules (disks) are needed for correlation. It can
read through .fx files, as created by cjobgen, or through .input files, as used by mpifxcorr, though a
mixture of the two is not allowed. There are two modes of operation. By default, a matrix of all modules for
all stations is displayed, with a -- symbol indicating that a particular station is not used in a particular job.
An asterisk (*) indicates a module change. The second mode, instigated with command line argument -c,
summarizes only module changes. Running without any arguments will cause jobdisks to look at job files
within the current directory, prioritizing on .input files if any exist and falling back on .fx files otherwise.
Listings for a subset of jobs can be made by specifying particular files.

Usage: jobdisks [options] [file1] · · · [fileN]

options can be:

-h or --help : print usage information and exit

-c or --changes : print module changes only

file is a .fx or .input file; mixed types are not supported. Multiple input files may be supplied.

Example 1: jobdisks

Example 2: jobdisks job1420*.input

Example 3: jobdisks *.fx

Example 4: jobdisks -c

8.12 joblist (package : job2difx)

Program joblist prints useful information about DiFX correlator jobs to stdout. Six columns of output are
produced:

1. Job file base filename

2. File indicator, showing a particular character for each one of the files associated with that job that is
found within a pair of square brackets, []:

c .calc file (§9.8)

m .machines file (§9.15)

t .threads file (§9.21)

u .uvw file (§9.25)

d .delay file (§9.9)

r .rate file (§9.20)

i .im file (§9.13) 1.1

v .difx file (§9.10)

3. Band code of first scan in file

4. Observation duration of correlation (in minutes)

5. Recording mode triplet; three integers(data rate(Mbps), number of baseband channels & quantization
bits) separated by dashes

6. Comma separated list of antennas

17

One line is printed for each .input file found in the list of directories provided (or current directory if not
listed).

Usage: joblist [options] [dir1] · · · [dirN]

options can be:

-h or --help : print usage information and exit

dir is a directory for which to print job information (default is current shell directory). Multiple
directories can be specified.

Example 1: joblist

Example 2: joblist $JOB ROOT/*

8.13 jobstatus (package : job2difx)

Program jobstatus lists the current correlation progress for each DiFX job in one or more directories. This
program is normally run without any command line arguments from within the project directory. For each
job, the base filename is listed with 5 or 6 additional columns of data. These columns are

1. Observation duration (minutes)

2. Record mode triplet (Mpbs-nChan-nBit)

3. Number of stations in job

4. Speed up factor (ratio of correlation time to observe time), or zero if correlation has not yet begun.

5. Percentage complete

6. Number of minutes remaining (only if Percentage complete isn’t 0% or 100%)

Below these lines, five more lines containing information about the group of jobs as a whole is are presented.
The contents of these lines are:

1. Total job time : Minutes of observe time in listed jobs

2. Fraction complete : Percentage in time through the entire project

3. Job time remaining : Minutes of observation left to be correlated

4. Wall time remaining : Minutes of real time needed to complete jobs

5. Average speedup : Ratio of total correlation time to run time, up to current point

Note that the speedup and time remaining values are estimates and don’t include model calculation, con-
version to FITS, and job startup time.

Usage: jobstatus [options] [dir1] · · · [dirN]

options can be:

-h or --help : print usage information and exit

dir is a directory for which to print job information (default is current shell directory). Multiple
directories can be specified.

Example 1: jobstatus

Example 2: jobstatus $JOB ROOT/*

18

8.14 mk5control (package : mk5daemon) 1.1

mk5control is a program that sends XML messages of type DifxCommand to the mk5daemon programs
that run on the software correlator cluster members. This program is a superset of mk5take and mk5return,
allowing any allowed command to be sent.

Usage: mk5control [options] command unit1 · · · unitN

options can be:

-h or --help : print usage information and exit.

command is the (non-case-sensitive) command to be executed — see list below.

unit is the number of a correlator mark5 unit, a range, all for all software correlator cluster members,
mark5 for all mark5 units, or swc for all software correlator compute nodes.

Example 1: mk5control stopmark5a 07 08 09 11 14

Example 2: mk5control resetmark5 14-24

Example 3: mk5control startmark5a mark5

The list of supported command types is below. All commands are not case sensitive.

• GetVSN Request a Mark5Status XML document to be multicast from the unit

• ResetMark5 Execute SSReset and ssopen — cures many/most mark5 hangs

• StartMark5A Start the Mark5A program (see §8.19)

• StopMark5A Stop the Mark5A program (see §8.20)

• Clear Clear the stat of the Mark5 unit and get the VSNs, can be dangerous if other programs are
currently using the StreamStor card

• Reboot Reboot the machine

• Poweroff Shut down the machine

• StopMk5Daemon Stop the mk5daemon program — you probably never need to do this

• GetDir Extract the directory from the modules in both banks and save to files in $MARK5 DIR PATH

• GetDirA Same as above, but look only at bank A

• GetDirB Same as above, but look only at bank B

• Test Used in debugging — for developers only

8.15 mk5daemon (package : mk5daemon) 1.1

mk5daemon is a program that started automatically at boot time on all of the software correlator cluster
nodes (not only the Mark5 units!) that performs a number of operations in support of the software correlator.

The functions that mk5daemon performs are:

• Logging

All received multicast messages, significant internal functions, and interactions of the Mark5A program
are logged to human readable log files. These log files are restarted at the beginning of each day. By
default these log files are saved in /tmp.

19

• Control of Mark5A

The Mark5A program (written by Haystack) is the principle program used to access the Mark5 systems
at the VLBA stations and the hardware correlator. DiFX directly accesses the StreamStor card via a
library level programming interface. Since only one program is allowed to do this (or face a crash of
varying degree of seriousness), access to the StreamStor card must be carefully managed. One function
of mk5daemon is to maintain knowledge of who “owns” the StreamStor card at a given time to prevent
conflicts. The starting and stopping of the Mark5A program can be requested by two messages of type
DifxCommand : startmark5a and stopmark5a. When these commands are received by mk5daemon, the
requested action is taken unless StreamStor conflict is likely. This type of command and others can be
sent to mk5daemon with the mk5control program (§8.14).

• CPU, memory, and network monitoring

Every 10 seconds, mk5daemon looks in the /proc directory to get information about the CPU load,
memory usage, and network traffic. These numbers are multicast in a DifxLoad message and logged.

• Module VSN and state determination

Receipt of a multicast getvsn command will result in mk5daemon multicasting out a Mark5Status
message containing information on the VSNs of the inserted modules as well as the state of the Mark5
unit. When Mark5A is running, a socket is opened to this program and the bank set? query is issued,
which returns the VSNs, regardless of the activity. When Mark5A is not running, mk5daemon either
directly determines the VSNs through a StreamStor API library call if the Mark5 unit is idle, or doesn’t
respond if the Mark5 unit is busy. With each Mark5Status message that is multicast from mk5daemon
the state of the Mark5 unit is included. See §10 for details on these XML messages.

Normally mk5daemon is started automatically, either by /etc/rc.local or by a script in /etc/init.d .
The command line options supported are:

Usage: mk5daemon [options]

options can be:

-h or --help : print usage information and exit

-l logPath or --log-path logPath : put logs in directory logPath, not /tmp.

-n or --no-mark5a : don’t run Mark5A upon start

Please be sure not to have multiple instances of mk5daemon running at any one time on any individual
Mark5 or correlator unit!

8.16 mk5dir (package : mark5daemon) 1.1

Program mk5dir extracts the directory from a module. Normally one would not call this program directly
but would use the getdir option of mk5control.

Usage: mk5dir [options] { bank — VSN }

options can be:

-h or --help : print usage information and exit

-v or --verbose : increase verbosity: print directory to screen

bank is one of A, B or AB

VSN is a valid 8-character VSN of a loaded module

20

8.17 mk5list

Program mk5list prints to the terminal the VSNs of the modules installed in a Mark5 unit. This program is
largely deprecated at this point and is not normally used in operations but may be convenient for diagnostic
purposes.

Usage: mk5list

8.18 mk5mon (package : difxmessage) 1.1

Program mk5mon is a program that listens for mark5Status messages multicast from the Mark5 units
and displays the information; updating the display as new messages are received.

Usage: mk5mon

Make sure the terminal is at least 110 characters wide and is at least as tall as there are Mark5 units
that may transmit information. To quit, use ctrl-C, and you may need to enter “reset” at the command line
to get your prompt back. The columns being displayed are:

1. Mark5 unit name

2. VSN of module in Bank A

3. VSN of module in Bank B

4. State of the Mark5 unit

5. Playback rate, if playing, in Mbps

6. Playback position, in bytes from beginning of module

7. Scan number of data being played, if playing

8. Scan name of data being played, if playing

8.19 mk5return (package : mk5daemon)

Program mk5return sends a multicast startmark5a command to the mk5daemon program running on the
specified Mark5 units to start a Mark5A process if one is not running. This should be done after use of
the specified Mark5 units for software correlation and before attempting to “Online” or use said units for
hardware correlation. See §5.2 for more information.

Usage: mk5return [options] unit1 · · · unitN

options can be:

-h or --help : print usage information and exit

unit is the number of a correlator mark5 unit, or all for all units.

Example 1: mk5return 07 08 09 11 14

Example 2: mk5return 14-24 1.1

Example 3: mk5return all

21

8.20 mk5take (package : mk5daemon)

Program mk5take sends a multicast stopmark5a command to the mk5daemon program running on the spec-
ified Mark5 units to stop any Mark5A process that is running. Note – before running this, make sure the
Mark5 units to be “taken” are not in use by the hardware correlator and are “Offline”. See §5.1 for more
information.

Usage: mk5take [options] unit1 · · · unitN

options can be:

-h or --help : print usage information and exit

unit is the number of a correlator mark5 unit, a range, or all for all units.

Example 1: mk5take 07 08 09 11 14

Example 2: mk5take 14-24 1.1

Example 3: mk5take all

8.21 mpifxcorr

The core of the DiFX software correlator is the program called mpifxcorr. This program is uses parallel
computing to make correlation practical on a cluster of ordinary computers. This program runs on all the
machines listed in the .machines file that is passed to mpirun — the program that starts mpifxcorr. It
should be initiated from the cluster head node from within the project directory. The usage line below is
appropriate for use with OpenMPI (§11.1) and within the NRAO-DiFX context; other incantations may
provide better results depending on the setup. See the OpenMPI documentation for more details.

Usage: mpirun -np nProcess --bynode --hostfile otherOptions machinesFile mpfixcorr inputFile

nProcess is the number of processes to start; found with wc -l machineFile

machinesFile the .machineFile

inputFile the .input to run; the full path to this file needs to be given, so prepending the file with
‘pwd‘/ is typical

otherOptions can be any additional option to mpirun; startdifx uses the --mca btl ûdapl,openib
--mca mpi yield when idle 1 to suppress some warning messages and be less aggressive on network-
ing

Within the NRAO-DiFX framework, the user should never have to directly start mpifxcorr as this is
done more simply with startdifx or via the Difx Operator Interface.

8.22 startdifx (package : job2difx) 1.1

Starting mpifxcorr generally requires a lengthy command, inspiring the creation of startdifx which
vastly simplifies use of the DiFX correlator. In addition to spawning the mpifxcorr processes, startdifx
can orchestrate some of the preparatory work (for example running calcif and genmachines) and optionally
run difx2fits to create a .FITS file for each job. This program is meant to work within the NRAO-DiFX
environment and would probably require modification to be useful in other situations.

Usage: startdifx [options] input1 [input2 · · ·]

options can be:

22

-h or --help : print usage information and exit

-f or --force : proceed on files even if correlator output already exists and is up to date

-a or --automachines : run genmachines only if no .machines file exits

-g or --genmachines : run genmachines unconditionally (default)

-n or --nomachines : don’t run genmachines

-d or --dont-calc : don’t run calcif even if needed – will skip file

-F or --fits : run difx2fits on output of each job separately

--override-version : ignore potential difx version conflicts

inputN is a .input file, or its prefix

Example 1: startdifx job1420.000.input

Example 2: startdifx -f -n job1420.000 job1421.000

Example 3: startdifx -F *.input

8.23 stopmpifxcorr (package : mpifxcorr)

If software correlation is in progress and it is desired to stop it, it is best to gently stop it rather than killing
it abruptly. In most circumstances this can be accomplished with stopmpifxcorr. This program must be
run on the machine running the manager process of the software correlator. If multiple mpifxcorr processes
are found running on a machine, stopmpifxcorr will not proceed unless the -f option is used.

Usage: stopmpifxcorr [options]

options can be:

-h or --help : print usage information and exit

-f or --first-pid : send stop message to the numerically first process ID found

-q or --quite : don’t produce much output

8.24 vlog (package : job2difx)

Program vlog takes as input a calibration file (cal.vlba; §9.3). It is part of the job2difx package (§11.9).
This file is parsed to produce four files containing formatted arrays that are convenient for use in the
construction of FITS tables: flag, pcal, tsys, and weather (§§9.6-9.23). This program is named after
AIPS task vlog that does nearly the same thing.

Usage: vlog calFile [antennaList]

calFile is the cal.vlba file produced by tsm to be processed.

antennaList is an optional comma-separated list of antennas to process. If omitted, all antennas with
calibration data will be processed.

Running with no command line arguments will print usage information to the terminal and exit. Normally
vlog will be run automatically when getjobs (§8.9) is used to copy jobs.

23

9 Description of various files

In the descriptions that follow, the locations of some files is given as /home/vlbiobs, meaning the directory
/home/vlbiobs/astronomy/mmmyy/project or one of its subdirectories. Here mmmyy is the month and year
of the project’s observation (i.e., jan08) and project is the full project name, with segment, in lower case,
such as bw088n. In what follows, the “software correlator project directory” (sometimes “project directory”)
refers to the directory from which software correlation is to proceed. This directory can be created by
getjobs (§8.9). File names beginning with a period (e.g., .acb) represent file name extensions, typically
(but not always) to job file bases, such as job121.000 . Examples of many of the following file types for a
particular VLBA correlator job are stashed at http://www.aoc.nrao.edu/˜wbrisken/NRAO-DiFX-1.1/ .

9.1 .acb 1.1

When generation of sniffer output files is not disabled, each .FITS file written by difx2fits will be
accompanied by a corresponding .acb file. This file contains auto-correlation spectra for each antenna for
each source. In order to minimize the output data size, spectra for the same source will only be repeated
once per 15 minutes. The file contains many concatenated records. Each record has the spectra for all
baseband channels for a particular antenna and has the following format. Note that no spaces are allowed
within any field. Values in typewriter font without comments are explicit strings that are required.

Line(s) Value Units Comments
1 timerange:

MJD integer ≥ 1 MJD day number corresponding to line
start time string e.g., 13h34m22.6s
stop time string e.g., 13h34m52.0s
obscode:
observe code string e.g., MT831
chans:
nchan ≥ 1 number of channels per baseband channel
x
nBBC ≥ 1 number of baseband channels

2 source:
source name string e.g., 0316+413
bandw:
bandwidth MHz baseband channel bandwidth
MHz

3 to 2+nBBC bandfreq:
frequency GHz band edge (SSLO) frequency of baseband channel
GHz polar:
polarization 2 chars e.g. RR or LL
side:
sideband U or L for upper or lower sideband
bbchan:
bbc 0 Currently not used but needed for conformity

3+nBBC to antenna number ≥ 1 antenna table index
2+nBBC(nchan + 1) antenna name string

channel number ≥ 1 = chan + (bbc − 1) · nchan for chan, bbc ≥ 1
amplitude ≥ 0.0

The above are repeated for each auto-correlation spectrum record. This file can be plotted directly with
plotbp or handled more automatically with difxsniff.

24

9.2 .apd 1.1

When generation of sniffer output files is not disabled, each .FITS file written by difx2fits will be
accompanied by a corresponding .apd file. This file contains fringe fit solutions typically every 30 seconds
for the entire experiment. These solutions are not of calibration quality but are sufficient for use in evaluating
the data quality.

The first line in the file is the observation code, e.g., MT831 .
Each subsequent line has the same format with the following fields:

Key Units/allowed values Comments
MJD integer ≥ 1 MJD day number corresponding to line
hour ≥ 0.0, < 24.0 hour within day
source number integer ≥ 1 source table index
source name string name of source; no spaces allowed
ant1 number integer ≥ 1 antenna table index for first antenna
ant2 number integer ≥ 1 antenna table index for second antenna
ant1 name string name of antenna 1; no spaced allowed
ant2 name string name of antenna 2; no spaced allowed
nBBC integer ≥ 1 number of baseband channels, nBBC

The next four columns are repeated nBBC times
delay ns the fringe fit delay
amplitude ≥ 0.0 the amplitude of fringe fit peak
phase degrees phase of fringe fit peak
rate Hz the fringe fit rate

9.3 cal.vlba

Monitor data that gets attached to FITS files is extracted by tsm into a file called projectcal.vlba where
project is the name of the project, i.e., bg167 or bc120a. A single file contains the monitor data for all
antennas for the duration of the project. The file is left in /home/vlbiobs and is compressed with gzip
after some time to save disk space, resulting in additional file extension .gz. The program getjobs (§8.9)
can be used to copy this file from its original location in /home/vlbiobs and uncompress the file if needed.
A program called vlog (sec §8.24) reads this file and produces files called flag, pcal, tsys, and weather in
the software correlator project directory.

9.4 $DIFX MACHINES

Environment variable DIFX MACHINES should point to a file containing a list of machines that are to be
considered elements of the software correlator. Program genmachines (§8.8) uses this file and information
within a .input file to populate the .machines file needed by mpifxcorr. Because usually only one node
in a cluster has direct access to a particular Mark5 module (or data from that module), the ordering of
computer names in the .machines file is important. Rows in the $DIFX MACHINES file contain up to three
items, the last one being optional. The first column is the name of the machine. The second column is the
number of processes to schedule on that machine (typically the number of CPU cores). The third column is
a 1 if the machine is a Mark5 unit and 0 otherwise. If this column is omitted, the machine will be assumed
to be a Mark5 unit if the first 5 characters of the computer name are ‘mark5’, and will be assumed not to be
otherwise. Comments in this file begin with an octothorpe (#). Lines with fewer than two columns (after
excision of comments) are ignored.

9.5 .flag

The program job2difx may write a .flag file for each .input file it creates. This file is used by difx2fits
to exclude nonsense baselines that might have been correlated. This can occur when multiple subarrays are

25

coming and going. The format of this text file is as follows. The first line contains an integer, n — the
number of flag lines to follow. The next n lines each have three numbers: MJD1, MJD2 and ant. The first
two floating point numbers determine the time range of the flag in Modified Julian Days. The last integer
number is the antenna number to flag — a zero-based index corresponding to the TELESCOPE table of the
corresponding .input file.

9.6 flag

A file called flag is created when program vlog operates on the cal.vlba file. This file contains lists of
antenna-based flags generated by the on-line system that should be applied to the visibility data. This file
contains two kinds of lines. Comment lines begin with an octothorpe (#) and contain no vital information.
Flag lines always consist of exactly 5 fields:

1. Station name abbreviation, e.g., LA

2. Beginning of flagged period (day of year, including fractional portion)

3. End of flagged period (day of year, including fractional portion)

4. Record channel affected; -1 for all record channels, otherwise a zero-based index.

5. Reason for flag, enclosed in single quotes, truncated to 24 characters

The flag rows are sorted first by antenna, and then start time.

9.7 .fx

The program cjobgen is used to create job scripts (with filename extension .fx) for use with the VLBA
hardware correlator. Although the functionality of cjobgen will eventually be replaced, it is convenient to
use the .fx files it creates in the interim as they contain all the information required to calculate a delay
model and drive the software correlator. These files are converted by job2difx (§8.10) to produce .input
files to control correlation and .calc files to drive the delay model generator. Note that there will not in
general be a 1 to 1 relationship between .fx files and .input or .calc files due to combination of multiple
passes and splitting due to frequency changes. The program getjobs (§8.9) can be used to copy these files
from their original location in /home/vlbiobs.

9.8 .calc

The main use of the .calc file is to drive the geometric model calculations but this file also serves as a
convenient place to store information that is contained in the .fx file but not in the .input file and is
needed for .FITS file creation. In the NRAO-DiFX system, one .calc file is created by job2difx (§8.10) for
each .input file. This file is read by calcif (or calcif2) (§§8.1&8.2) to produce a tabulated delay model,
u, v, w values, and estimates of atmospheric delay contributions.

In brief, the parameters in this file that are relevant for correlation include time, locations and geometries
of antennas, pointing of antennas (and hence delay centers) as a function of time and the Earth orientation
parameters relevant for the correlator job in question. Additional parameters that are stuffed into this
file include spectral averaging, project name, and information about sources such as calibration code and
qualifiers. In the NRAO application of DiFX, source names are faked in the actual .input file in order to
allow multiple different configurations for the same source. A parameter called realname accompanies each
source name in the .calc file to correctly populate the source file in .FITS file creation.

The syntax of this file is similar to that of the .input file. The file consists entirely of key-value pairs
separated by a colon. The value column is not constrained to start in column 21 as it is for the files used by
mpifxcorr. There are five sections in the .calc file; these sections are not separated by any explicit mark
in the file.

26

The first section contains values that are fixed for the entire experiment and at all antennas — all data
in this section is scalar. In the following table, all numbers are assumed to be floating point unless further
restricted. The keys and allowed values in this section are summarized below. Optional keys are identified
with a ?.

Key Units/allowed values Comments
JOB ID integer ≥ 1 taken from .fx file

? JOB START TIME MJD + fraction start time of original .fx file
? JOB STOP TIME MJD + fraction end time of original .fx file

OBSCODE string observation code assigned to project
? SESSION short string session suffix to OBSCODE, e.g., A or BE
? DIFX VERSION string version of correlator, e.g. NRAO-DIFX-1.1
? SUBJOB ID integer ≥ 0 subjob id assigned by job2difx (§8.10)
? SUBARRAY ID integer ≥ 0 subarray id assigned by job2difx

START MJD MJD + fraction start time of this subjob
START YEAR integer calendar year of START MJD
START MONTH integer calendar month of START MJD
START DAY integer day of calendar month of START MJD
START HOUR integer hour of START MJD
START MINUTE integer minute of START MJD
START SECOND integer second of START MJD
INCREMENT (SECS) integer seconds between computed model points (inc)

? SPECTRAL AVG integer ≥ 1 number of channels to average in FITS creation
? START CHANNEL integer ≥ 0 start channel number (before averaging)
? OUTPUT CHANNELS integer ≥ 1 total number of channels to write to FITS

> 0.0, < 1.0 fraction of total channels to write to FITS
? TAPER FUNCTION string currently only UNIFORM is supported

DELAY FILENAME string filename, including path, of .delay file to create
UVW FILENAME string filename, including path, of .uvw file to create
RATE FILENAME string filename, including path, of .rate file to create
IM FILENAME string filename, including path, of .im file to create

The second section contains antenna(telescope) specific information. After an initial parameter defining
the number of telescopes, there are nTelescope sections (one for each antenna), each with the following six
parameters. Lowercase t in the table below is used to indicate the telescope index, an integer ranging from
0 to nTelescope - 1. Note that in cases where units are provided under the Key column, these units are
actually part of the key.

Key Units/allowed values Comments
NUM TELESCOPES integer ≥ 1 number of telescopes (nTelescope).

The rows below are duplicated nTelescope times.
TELESCOPE t NAME string upper case antenna name abbreviation
TELESCOPE t MOUNT string the mount type: altz, equa, xyew, or xyns
TELESCOPE t OFFSET (m) meters axis offset in meters
TELESCOPE t X (m) meters X geocentric coordinate of antenna at date
TELESCOPE t Y (m) meters Y geocentric coordinate of antenna at date
TELESCOPE t Z (m) meters Z geocentric coordinate of antenna at date

? TELESCOPE t SHELF string shelf location of module to correlate 1.1

Note that the antenna locations are currently taken from the .fx job script written by cjoggen and are
valid for the date of observation.

27

The third section contains scan specific information. Except for one initial line specifying the number of
scans, nScan, this section is composed of nine parameters per scan. Each parameter is indexed by s which
ranges from 0 to nScan - 1.

Key Units/allowed values Comments
NUM SCANS integer ≥ 1 number of scans (nScan).

The rows below are duplicated nScan times.
SCAN s POINTS ≥ 1 duration of scan in units of inc
SCAN s START PT integer ≥ 0 start time of scan in units of inc since MJD START
SCAN s SRC NAME string systematic name to match that used in .input file
SCAN s REAL NAME string name to use for source in the FITS output file
SCAN s SRC RA radians J2000 right ascension
SCAN s SRC DEC radians J2000 declination
SCAN s CALCODE string usually uppercase letters
SCAN s QUAL integer ≥ 0 source qualifier

The fourth section contains Earth orientation parameters (EOP). Except for one initial line specifying
the number of days of EOPs, nEOP, this section is composed of five parameters per day of sampled EOP
values. Each parameter is indexed by e which ranges from 0 to nEOP - 1.

Key Units/allowed values Comments
NUM EOP integer ≥ 1 number of tabulated EOP values (nEOP)

The rows below are duplicated nEOP times.
EOP e TIME (MJD) MJD + fraction time of sample; fraction almost always zero
EOP e TAI UTC (sec) integer seconds leap seconds accrued at time of job start
EOP e UT1 UTC (sec) seconds UT1 - UTC
EOP e XPOLE (arcsec) arc seconds X coordinate of polar offset
EOP e YPOLE (arcsec) arc seconds Y coordinate of polar offset

The final (completely optional) section has a table for positions and velocites of spacecraft. Each space-
craft is indexed by s and each row thereof by r.

Key Units/allowed values Comments
? NUM SPACECRAFT integer ≥ 0 number of spacecraft (nSpacecraft)

Everything below is duplicated nSpacecraft times.
SPACECRAFT s NAME string name of spacecraft
SPACECRAFT s ROWS integer ≥ 1 number of data rows, nRows for spacecraft s

The row below is repeated nRows times.
SPACECRAFT s ROW r 7 numbers tabulated data — see below

Each data vector of data consists of seven double precision values: time (mjd), x, y, and z (meters), and
ẋ, ẏ, and ż (meters per second). These values should be separated by spaces.

9.9 .delay

The .delay files contain tabulated interferometer model delays for each antenna for an entire DiFX job.
This file type is typically produced by calcif2 within NRAO-DiFX. Note that the values of the delays in
this file have the opposite sign as compared to those generated by CALC and those stored in .FITS files,
that is, a more positive delay implies “closer to the source”; negative delays are behind the Earth center,
and hence for ground-based antennas are below the horizon.

The file consists entirely of key-value pairs separated by a colon. There are two sections in the .delay
file; these sections are not separated by any explicit mark in the file.

28

The first section contains values that are fixed for the entire experiment — all data in this section is
scalar. In the following table, all numbers are assumed to be floating point unless further restricted. The
keys and allowed values in this section are summarized below:

Key Units/allowed values Comments
START YEAR integer calendar year of START MJD
START MONTH integer calendar month of START MJD
START DAY integer day of calendar month of START MJD
START HOUR integer hour of START MJD
START MINUTE integer minute of START MJD
START SECOND integer second of START MJD
INCREMENT (SECS) integer seconds between computed model points (inc)
NUM TELESCOPES integer number of telescopes, nTelescope with delay data

the following line is repeated nTelescope times
TELESCOPE t NAME: string t starts at 0

The second section contains the scan-based information. First is a line indicating the number of scans
to follow. Then for each scan, numbered by s ranging from 0 to nScan - 1, there are 3 lines containing
information about the scan, including the number of sampled points within that scan, nPoint. Finally there
are nPoints + 3 lines containing the tabulated delays (in microseconds), numbered −1 through nPointss +
1, indexed with p. Note that this includes one sample before the start of the scan and at least one after the
scan end, allowing for a quadratic interpolation across the entire scan. This information is summarized in
the following table:

Key Units/allowed values Comments
NUM SCANS integer ≥ 1 number of scans (nScan).

The rows below are duplicated nScan times.
SCAN s POINTS ≥ 1 duration of scan in units of inc (nPointss)
SCAN s START PT integer ≥ 0 start time of scan in units of inc since MJD START
SCAN s SRC NAME string systematic name to match that used in .input file
RELATIVE INC p array; see below nPoints + 3 of these lines per scan

Like for the .rate and .uvw files, the values reported in this file extend one full mode increment (inc)
before and after the actual duration of the scan, and hence will overlap in time by 2× inc with consecutive
scans.

This file is typically produced by calcif2.

9.10 .difx

The SWIN format visibilities written by mpifxcorr are written to a directory with extension .difx. Typ-
ically there will be a single file in this directory, but it is possible that the output data will be split into
multiple smaller files if the first output file gets too large or if correlation is continued from a point midway
through correlation (feature yet to be implemented).

These files contain visibility data records. Each record contains the visibility spectrum for one polarization
of one baseband channel of one baseline for one integration time. Each starts with a text header and is
followed by binary data. The text header uses the typical DiFX parameters format with the “Key” starting
at the beginning of a text line and ending with a colon, and the value starting in the 21st column of text.
The header rows occur in the following order:

29

Key Units/allowed values Comments
BASELINE NUM integer = (a1 + 1) ∗ 256 + (a2 + 1) for a1, a2 ≥ 1
MJD integer date of visibility centroid
SECONDS float seconds since beginning of MJD
CONFIG INDEX ≥ 0 index to .input file configuration table
SOURCE INDEX ≥ 0 index to .delay file scan number
FREQ INDEX ≥ 0 index to .input frequency table
POLARISATION PAIR 2 of (R, L, X, Y) e.g., RR or RL
DATA WEIGHT ≥ 0.0 data weight for spectrum; typically ∼ 1
U (METRES) meters u component of baseline vector
V (METRES) meters v component of baseline vector
W (METRES) meters w component of baseline vector

Following the end-of-line mark for the last header row begins binary data in the form of (real, imaginary)
pairs of 32-bit floating point numbers. The .input file parameter NUM CHANNELS indicates the number
of complex values to expect. In the case of upper sideband data, the first reported channel is the “zero
frequency” channel, that is its sky frequency is equal to the value in the frequency table for this spectrum.
The Nyquist channel is not retained. For lower sideband data, the last channel is the “zero frequency”
channel. That is, in all cases, the spectrum is in order of increasing frequency and the Nyquist channel is
excised.

9.11 .dir

Reading directory information off Mark5 modules can take a bit of time (measured in minutes usually).
Since the same modules are often accessed multiple times, the directories are cached in $MARK5 DIR PATH/ .
In this directory, there will be one file per module that has been used, named VSN.dir, where VSN is the
volume serial number of the module, i.e. NRAO−023. The format of these files is as follows: The first line
contains three fields: VSN, the number of scans on the module, nScan, and either A or B indicating the last
bank the module was installed in. Then there are nScan rows containing information about each scan, each
with 11 columns. Values are floating point unless otherwise noted.

Key Units/allowed values Comments
Start byte 64-bit integer bytes offset of the scan on the Mark5 module
Length 64-bit integer bytes length of the scan
Start day integer MJD the modified Julian day of the scan start
Start time integer seconds the scan start time
Frame num integer frame number since last second tick
Frames per sec integer number of frames per second
Scan Duration seconds the duration of the scan
Frame size integer bytes the length of one data frame, including headers
Frame offset integer bytes the offset to the start of the first entire frame
Tracks integer the number of data tracks
Format integer 0 for VLBA format, 1 for Mark4 format
Name string scan name, usually including the project code and station

Note: The directory format used for NRAO-DiFX differs from that used by the hardware correlator
(found in /home/fxcorr/mark5) and are not interchangeable.

9.12 .FITS

The .FITS files discussed here are produced by difx2fits. They aim to conform to the same table structures
as the FITS-IDI files produced by the VLBA correlator. The format is described in AIPS Memo 102, “The
FITS Interferometry Data Interchange Format”, however, this memo is a bit out of date and the data

30

structures described are not in exact agreement with those made by the VLBA correlator; in all cases the
format of data produced by the VLBA hardware correlator is favored where the two disagree. The tables in
these FITS files have a nearly 1 to 1 relationship with the tables that are seen within AIPS, though their
two letter abbreviations differ. The following tables are produced by difx2fits:

Table Description
AG The array geometry table
SO The source table
AN The antenna table
FR The frequency table
ML The model table
CT The correlator (eop) table
MC The model components table
SO The spacecraft orbit table 1.1

UV The visibility data table
FG The flag table
TS The system temperature table
PH The phase calibration table (pulse cals and state counts)
WR The weather table
GN The gain curve table
GM The pulsar gate model table 1.1

Not all of these tables will always be written.

9.13 .im 1.1

The .im file contains polynomial models used by difx2fits in the creation of FITS files. After a header
that is similar to that of a .rate file, the contents are organized hierarchically with scan number, sub-scan
interval, and antenna number being successively faster-incrementing values. The keys and allowed values
in this section are summarized below: Note that the values of the delay polynomials in this file have the
opposite sign as compared to those generated by CALC and those stored in .FITS files. Keys preceded by
? are optional.

31

Key Units/allowed values Comments
? CALC SERVER string name of the calc server computer used
? CALC PROGRAM integer RPC program ID of the calc server used
? CALC VERSION integer RPC version ID of the calc server used

START MJD MJD + fraction start time of this subjob
START YEAR integer calendar year of START MJD
START MONTH integer calendar month of START MJD
START DAY integer day of calendar month of START MJD
START HOUR integer hour of START MJD
START MINUTE integer minute of START MJD
START SECOND integer second of START MJD
POLYNOMIAL ORDER 2, 3, 4 or 5 polynomial order of interferometer model order
INTERVAL (SECS) integer interval between new polynomial models

ABERRATION CORR

 UNCORRECTED
APPROXIMATE
EXACT

level of u, v, w aberration correction

NUM TELESCOPES integer ≥ 1 number of telescopes (nTelescope)
The row below is duplicated nTelescope times.

TELESCOPE t NAME string upper case antenna name abbreviation
NUM SCANS integer ≥ 1 number of scans (nScan).

Everything below is duplicated nScan times.
SCAN s SRC NAME string systematic name to match that used in .input file
SCAN s NUM POLY ≥ 1 number of polynomials covering scan (nPolys)

Everything below is duplicated nPoly times.
SCAN s POLY p MJD integer ≥ 0 the start MJD of this polynomial
SCAN s POLY p SEC integer ≥ 0 the start sec of this polynomial

Everything below is duplicated nTelescope times.
ANT a DELAY (us) order+1 numbers terms of delay polynomial
ANT a DRY (us) order+1 numbers terms of dry atmosphere
ANT a WET (us) order+1 numbers terms of wet atmosphere
ANT a U (m) order+1 numbers terms of baseline u
ANT a V (m) order+1 numbers terms of baseline v
ANT a W (m) order+1 numbers terms of baseline w

9.14 .input

This section describes the .input file format used by mpifxcorr to drive correlation. Because NRAO-DiFX
1.0 uses a non-standard branch of mpifxcorr some of the data fields will differ from those used in the official
version, either in parameter name or in the available range of values. Currently the parameters must be
in the order listed here. To get the most out of this section it is advisable to look at an actual file while
reading. An example file is stashed at http://www.aoc.nrao.edu/˜wbrisken/NRAO-DiFX-1.1/ . In the
tables below, numbers are assumed to floating point unless otherwise stated.

Note that the input file format has undergone a few minor changes since NRAO-DiFX version 1.0.

9.14.1 Common settings table

Below are the keywords and allowed values for entries in the common settings table. This table begins with
header

COMMON SETTINGS ##!

This is always the first table in a .input file.

32

Key Units/allowed values Comments
DELAY FILENAME string name and full path to .delay file
UVW FILENAME string name and full path to .uvw file
CORE CONF FILENAME string name and full path to .threads file
EXECUTE TIME (SEC) integer seconds observe time covered by this .input file
START MJD integer MJD start date
START SECONDS integer seconds start time
ACTIVE DATASTREAMS integer ≥ 2 number of antennas (nAntenna)
ACTIVE BASELINES integer ≥ 1 number of baselines to correlate (nBaseline)
VIS BUFFER LENGTH integer ≥ 1 the number of concurrent integrations to allow 1.1

OUTPUT FORMAT boolean always SWIN here
OUTPUT FILENAME string name of output .difx directory

Typically, nBaseline = nAntenna · (nAntenna − 1)/2. Autocorrelations are not included in this count.

9.14.2 Configurations table

Below are the keywords and allowed values for entries in the configurations table. This table begins with
header

CONFIGURATIONS ###!

Two indexes are used for repeated keys. The index over datastream (antenna) is d, running from 0 to
nAntenna - 1 and the index over baseline is b, running from 0 to nBaseline - 1.

Key Units/allowed values Comments
NUM CONFIGURATIONS integer ≥ 1 number of modes in file (nConfig)
CONFIG SOURCE string name of configuration
INT TIME (SEC) seconds integration time
NUM CHANNELS integer ≥ 1 number of channels (FFT size, nFFT, is twice this)
CHANNELS TO AVERAGE integer ≥ 1 not yet supported (set to 1)
OVERSAMPLE FACTOR integer ≥ 1 total oversampling factor of baseband data 1.1

DECIMATION FACTOR integer ≥ 1 portion of oversampling to handle by decimation 1.1

BLOCKS PER SEND integer ≥ 1 number of FFT sizes to send at a time to a core
GUARD BLOCKS integer ≥ 0 number of extra blocks to send for overlap
POST-F FRINGE ROT boolean fringe rotate after FFT? Always FALSE here
QUAD DELAY INTERP boolean use quadratic, not linear, delay interpolation
WRITE AUTOCORRS boolean enable auto-correlations; TRUE here
PULSAR BINNING boolean enable pulsar mode; FALSE for now
PULSAR CONFIG FILE string (only if BINNING is True) see § 9.19
DATASTREAM d INDEX integer ≥ 0 DATASTREAM table index, starting at 0
BASELINE b INDEX integer ≥ 0 BASELINE table index, starting at 0

9.14.3 Frequency table

Below are the keywords and allowed values for entries in the frequency table which defines all possible sub-
bands used by the configurations in this file. Each sub-band of each configuration is mapped to one of these
through a value in the datastream table (§9.14.5). Each entry in this table has three parameters which are
replicated for each frequency table entry. This table begins with header

FREQ TABLE #######!

33

The table below uses f to represent the frequency index, which ranges from 0 to nFreq - 1.

Key Units/allowed values Comments
FREQ ENTRIES integer ≥ 1 number of frequency setups (nFreq)
FREQ (MHZ) f MHz sky frequency at band edge
BW (MHZ) f MHz bandwidth of sub-band
SIDEBAND f U or L net sideband of sub-band

9.14.4 Telescope table

Below are the keywords and allowed values for entries in the telescope table which tabulates antenna names
and their associated peculiar clock offsets, and the time derivatives of these offsets. Much of the other
antenna-specific information is stored in the datastream table (§9.14.5). Each datastream of each configura-
tion is mapped to one of these through a value in the datastream table. Each entry in this table has three
parameters which are replicated for each telescope table entry. This table begins with header

TELESCOPE TABLE ##!

The table below uses a to represent the antenna index, which ranges from 0 to nAntenna - 1.

Key Units/allowed values Comments
TELESCOPE ENTRIES integer ≥ 1 number of antennas (nAntenna)
TELESCOPE NAME a string abbreviation of antenna name
CLOCK DELAY (us) a µsec clock error at start of associated .delay file
CLOCK RATE(us/s) a µsec/sec rate at which antenna clock is drifting

9.14.5 Datastream table

The datastream table begins with header

DATASTREAM TABLE #!

The table below uses f to represent the frequency index, which ranges from 0 to nFreq - 1. A second index, i,
is used to cover the range 0 to nBB - 1, where the total number of basebands is given by nBB ≡

∑
f nPolf .

In the NRAO-DiFX system, all sub-bands must have the same polarization structure, so nBB = nFreq ·nPol .

Key Units/allowed values Comments
DATASTREAM ENTRIES integer ≥ 1 number of antennas (nDatastream)
DATA BUFFER FACTOR integer ≥ 1
NUM DATA SEGMENTS integer ≥ 1
TELESCOPE INDEX integer ≥ 0 telescope table index of datastream
TSYS Kelvin if zero (normal in NRAO usage), don’t scale data by tsys
DATA FORMAT string data format
QUANTISATION BITS integer ≥ 1 bits per sample
DATA FRAME SIZE integer ≥ 1 bytes in one frame(or file) of data 1.1

DATA SOURCE string FILE (see §6.3) or MODULE for Mark5 playback 1.1

FILTERBANK USED boolean currently only FALSE
NUM FREQS integer ≥ 0 number of different frequencies for this datastream
FREQ TABLE INDEX f integer ≥ 0
CLK OFFSET f (us) µsec
NUM POLS f 1 or 2 for NRAO usage, all such parameters must be the same
INPUT BAND i POL R or L polarization identity
INPUT BAND i INDEX integer ≥ 1 index to frequency setting array above; nBB per entry

34

9.14.6 Baseline table

In order to retain the highest level of configurability, each baseline can be independently configured at some
level. This datastream table begins with header

BASELINE TABLE ###!

The baseline table has multiple entries, each one corresponding to a pair of antennas, labeled A and B in the
table. For each of nBaseline baseline entries, nFreq sub-bands are processed, and for each a total of nProd
polarization products are formed. Indexes for each of these dimensions are b, f and p respectively, each
starting count at 0. Within the NRAO-DiFX context, all baselines must have the same nFreq and nProd,
though this is not a requirement of mpifxcorr in general.

Key Units/allowed values Comments
BASELINE ENTRIES integer ≥ 1 number of entries in table, nBaseline
D/STREAM A INDEX b integer ≥ 0 datastream table index of first antenna
D/STREAM B INDEX b integer ≥ 0 datastream table index of second antenna
NUM FREQS b integer ≥ 1 number of frequencies on this baseline, nFreqb
POL PRODUCTS b/f integer ≥ 1 number of polarization products, nProdb

D/STREAM A BAND p integer ≥ 0 index to frequency array in datastream table
D/STREAM B BAND p integer ≥ 0 same as abovem, but for antenna B, not A

9.14.7 Data Table

In the following table, d is the datastream index, ranging from 0 to nDatastream - 1 and f is the file index
ranging from 0 to nFiled .

Key Units/allowed values Comments
D/STREAM d FILES integer ≥ 1 number of files nFiled associated with datastream d
FILE d/f string name of file or module associated with datastream d

For datastreams reading off Mark5 modules, nFile will always be 1 and the filename is the VSN of the
module being read.

9.15 .machines

The .machines file is used by mpirun to determine which machines will run mpifxcorr. This is a text
file containing a list of computers, one to a line possibly with additional options listed, on which to spawn
the software correlator process. As a general rule the MPI rank, a unique number for each process that
starts at 0, are allocated in the order that the computer names are listed. This general rule can break down
in cases where the same computer name is listed more than once; the behavior in this case depends on
the MPI implementation being used. MPI rank 0 will always be the manager process. Ranks 1 through
nDatastream will each be a datastream process. Additional processes will be computing (core) processes. If
more processes are specified for mpirun with the -np option than there are lines in this file, the file will be
read again from the top, so the processes will be assigned in a cyclic fashion (again, this depends somewhat
on the MPI implementation and the other parameters passed to mpirun; for NRAO-DiFX with OpenMPI,
this assumes --bynode is used). If the program startdifx is used to start the correlation process, the
number of processes to start is determined by the number of lines in this file. If wrapping to the top of
this file is desired, dummy comment lines (beginning with #) can be put at the end of the .machines file
to artificially raise the number of processes to spawn. Within NRAO-DiFX, this file is typically produced
by genmachines. Keep in mind that this file is directly read by the MPI execution program mpirun and
the format of the file may differ depending on the MPI implementation that you are using. With OpenMPI
appending slots=1 max-slots=1 to the end of each line ensures that a single instance of mpifxcorr is run
on that machine. If both a datastream process and a core process are to be run on the same computer, then
using options slots=1 max-slots=2 might be appropriate.

35

9.16 .log 1.1

When generation of sniffer output files is not disabled, each .FITS file written by difx2fits will be
accompanied by a corresponding .log file. This file contains a summary of the contents of that .FITS file.
It is analogous to the logfile.lis file produced by the old FITSsniffer program. This file is free-form
ASCII that is intended for viewing by human eyes, and is should not be used as input to any software as
the format is not guaranteed to remain constant.

9.17 pcal

A file called pcal is created when program vlog operates on the cal.vlba file. This file contains three
measurements: the cable length calibration, pulse calibration, and state counts. This file contains two kinds
of lines. Comment lines begin with an octothorpe (#) and contain no vital information. Data lines always
contain 8 fixed-size fields:

1. Station name abbreviation, e.g., LA

2. Time centroid of measurement (day of year, including fractional portion)

3. Duration of measurement (days)

4. Cable calibration measurement (picoseconds)

5. Number of polarizations with measurements (hereafter called nPol)

6. Number of sub-bands with measurements (hereafter called nBand)

7. Number of pulse cal tones detected per band per polarization, possibly zero (hereafter called nTone)

8. Number of state count states measured per band per polarization, possibly zero (hereafter called nState)

9. Number of record channels at time of measurement (≤ nPol * nBand)

Following these eight fields are two variable-length arrays of numbers. The first variable-length field is the
pulse cal data field consisting of nPol*nBand*nTone groups of four numbers. The first member of this group
is the recorder channel number (zero-based) corresponding to the measurement. The second member of this
group is the tone sky frequency (MHz). The third and fourth are respectively the real and imaginary parts of
the tone measured at the given sky frequency. The order in which the groups are presented (in ‘C’ language
array syntax, as used throughout this document) is [nPol][nBand][nTone]. Note that if there are fewer than
nPol*nBand record channels, the record channel will be −1 for some groups. The second variable-length field
is the state count data. For each band of each polarization, nState + 1 values are listed. The first number is
the record channel number or -1 if that polarization/band combination was not observed or monitored. The
remainder contain state counts. nState can be either 0 or 2nBit, where nBit is the number of quantization
bits. The order in which these groups are listed is [nPol][nBand].

9.18 .polyco 1.1

A polyco file contains a single polynomial for pulse phase that is valid for a fraction (up to 100%) of
a job file. An additional numeric suffix is appended to the filename specifying the polynomial index for a
particular .pulsar file that shares the same base name. The format of the file is the same as a TEMPO
pulsar file [5].

36

9.19 .pulsar 1.1

Within the scope of NRAO-DiFX, all pulsar configuration files will adopt the .pulsar suffix. There will
be a separate .pulsar file for each pulsar-configuration combination in each
.fx file that is converted to DiFX input file format by job2difx; a series of 4 numbers preceding the suffix
indicates which source number, frequency id, correlator table entry, and configuration the file belongs to.
Multiple subjobs derived from a single .fx file may share .pulsar files.

Key Units/allowed values Comments
NUM POLYCO FILES integer ≥ 1 number of polyco files to look at (nPoly)

The row below is duplicated nPoly times.
POLYCO FILE p string filename of pth polyco file; see § 9.18
NUM PULSAR BINS integer ≥ 1 number of pulsar bins to consider (nBin)
SCRUNCH OUTPUT boolean TRUE for regular “gating”; FALSE not yet supported

The two rows below are duplicated nBin times.
BIN PHASE END b float pulse phase (in periods) of end of bin b
BIN WEIGHT b float ≥ 0 weight to apply to bin b

9.20 .rate

In order to deliver model information to difx2fits that is not needed by mpifxcorr, an additional file is
written by calcif2. The format of this file is most similar to that of the .uvw files, however the payload in
this file is very different. Note that the values of the delays in this file have the opposite sign as compared
to those generated by CALC and those stored in .FITS files.

The file consists entirely of key-value pairs separated by a colon. There are three sections in the .rate
file; these sections are not separated by any explicit mark in the file.

The first section contains values that are fixed for the entire experiment and at all antennas — all data
in this section is scalar. In the following table, all numbers are assumed to be floating point unless further
restricted. The keys and allowed values in this section are summarized below. Keys preceded by ? are
optional.

Key Units/allowed values Comments
? CALC SERVER string name of the calc server computer used
? CALC PROGRAM integer RPC program ID of the calc server used
? CALC VERSION integer RPC version ID of the calc server used

START MJD MJD + fraction start time of this subjob
START YEAR integer calendar year of START MJD
START MONTH integer calendar month of START MJD
START DAY integer day of calendar month of START MJD
START HOUR integer hour of START MJD
START MINUTE integer minute of START MJD
START SECOND integer second of START MJD
INCREMENT (SECS) integer seconds between computed model points (inc)

The second section contains antenna(telescope) specific information. This section is absolutely identical
to the telescope section describe for the .calc file (see second table in §9.8) so its description will be omitted
here.

The third and final section contains the scan-based information. First is a line indicating the number of
scans to follow. Then for each scan, numbered by s ranging from 0 to nScan - 1, there are 5 lines containing
information about the scan, including the number of sampled points within that scan, nPoint. Finally there
are nPoints + 3 lines containing the tabulated data, numbered −1 through nPointss + 1, indexed with p.
Note that this includes one sample before the start of the scan and at least one after the scan end, allowing
for a quadratic interpolation across the entire scan. This information is summarized in the following table:

37

Key Units/allowed values Comments
NUM SCANS integer ≥ 1 number of scans (nScan).

The rows below are duplicated nScan times.
SCAN s POINTS ≥ 1 duration of scan in units of inc (nPointss)
SCAN s START PT integer ≥ 0 start time of scan in units of inc since MJD START
SCAN s SRC NAME string systematic name to match that used in .input file
SCAN s SRC RA radians J2000 right ascension
SCAN s SRC DEC radians J2000 declination
RELATIVE INC p array; see below nPoints + 3 of these lines per scan

Like for the .delay and .uvw files, the values reported in this file extend one full mode increment (inc)
before and after the actual duration of the scan, and hence will overlap in time by 2× inc with consecutive
scans. The RELATIVE INC lines contain triplets of values for each antenna. The first member of the triplet
is the time derivative of the geometric delay, in µs/s. The second and third elements are the estimated dry
and wet atmospheric delay terms, respectively, in µs.

This file is typically produced by calcif2.

9.21 .threads

The .threads file tells mpifxcorr how many threads to start on each processing node. Within NRAO-DiFX,
this file is typically produced by genmachines. The .threads file has a very simple format. The first line
starts with NUMBER OF CORES:. Starting at column 21 is an integer that should be equal to the number of
processing nodes (nCore) specified in the corresponding .machines file. Each line thereafter should contain
a single integer starting at column 1. There should be nCore such lines.

9.22 tsys

A file called tsys is created when program vlog operates on the cal.vlba file. This file contains measure-
ments of the system temperature and name of receiver for each baseband channel. This file contains two
finds of lines. Comment lines begin with an octothorpe (#) and contain no vital information. Data lines
always contain 4 fixed-size fields:

1. Station name abbreviation, e.g., LA

2. Time centroid of measurement (day of year, including fractional portion)

3. Duration of measurement (days); currently set to zero for lack of information

4. Number of baseband channels recorded (nRecChan)

Following these 4 fields are nRecChan pairs, one for each baseband channel. The first element of each pair
is the system temperature and the second is the receiver name (e.g., 4cm, or 7mm).

9.23 weather

A file called weather is created when program vlog operates on the cal.vlba file. This file contains
tabulated values of various meteorological measurements. This file contains two finds of lines. Comment
lines begin with an octothorpe (#) and contain no vital information. Data lines always contain 8 fixed-size
fields:

1. Station name abbreviation, e.g., LA

2. Time of measurement (day of year, including fractional portion)

3. Ambient temperature (Centigrade)

38

4. Pressure (mbar)

5. Dew point (Centigrade)

6. Wind speed (m/s)

7. Wind direction (degrees)

8. Rain (cm)

9. Wind gust (m/s)

9.24 .wts 1.1

When generation of sniffer output files is not disabled, each .FITS file written by difx2fits will be ac-
companied by a corresponding .wts file. This file contains statistics of the data weights, typically dominated
by the completeness of records as determined by the data transport system, over a typically 30 second long
period.

The first line is simply the observe code, e.g., MT831 .
Each additional line in the file is a complete record for a given antenna for a given interval, containing

information for each baseband channel separately. The format of these lines is as follows:

Key Units/allowed values Comments
MJD integer ≥ 1 MJD day number corresponding to line
hour ≥ 0.0, < 24.0 hour within day
antenna number ≥ 1 antenna table index
antenna name string
nBBC ≥ 1 Number of baseband channels
mean weight ≥ 0.0 This column repeated nBBC times
min weight ≥ 0.0 This column repeated nBBC times
max weight ≥ 0.0 This column repeated nBBC times

This file can be used directly with plotting program plotwt or used more automatically with difxsniff.

9.25 .uvw

The .uvw file contains tabulated baseline vectors. The values in this file are interpolated to produce values
valid for integration centroids and included in the visibility file output by mpifxcorr. This file consists
entirely of key-value pairs separated by a colon. There are three sections in the .uvw file; these sections are
not separated by any explicit mark in the file.

The first section contains values that are fixed for the entire experiment and at all antennas — all data
in this section is scalar. In the following table, all numbers are assumed to be floating point unless further
restricted. The keys and allowed values in this section are summarized below:

Key Units/allowed values Comments
START YEAR integer calendar year of START MJD
START MONTH integer calendar month of START MJD
START DAY integer day of calendar month of START MJD
START HOUR integer hour of START MJD
START MINUTE integer minute of START MJD
START SECOND integer second of START MJD
INCREMENT (SECS) integer seconds between tabulated baseline vectors (inc)

The second section contains antenna(telescope) specific information with the following format:

39

Key Units/allowed values Comments
NUM TELESCOPES integer ≥ 1 number of telescopes (nTelescope).

The rows below are duplicated nTelescope times.
TELESCOPE t NAME string upper case antenna name abbreviation
TELESCOPE t MOUNT string the mount type: altz, equa, xyew, or xyns
TELESCOPE t X (m) meters X geocentric coordinate of antenna at date
TELESCOPE t Y (m) meters Y geocentric coordinate of antenna at date
TELESCOPE t Z (m) meters Z geocentric coordinate of antenna at date

The third and final section contains the scan-based information. First is a line indicating the number of
scans to follow. Then for each scan, numbered by s ranging from 0 to nScan - 1, there are 5 lines containing
information about the scan, including the number of sampled points within that scan, nPoint. Finally there
are nPoints + 3 lines containing the tabulated data, numbered −1 through nPointss + 1, indexed with p.
Note that this includes one sample before the start of the scan and at least one after the scan end, allowing
for a quadratic interpolation across the entire scan. This information is summarized in the following table:

Key Units/allowed values Comments
NUM SCANS integer ≥ 1 number of scans (nScan).

The rows below are duplicated nScan times.
SCAN s POINTS ≥ 1 duration of scan in units of inc (nPointss)
SCAN s START PT integer ≥ 0 start time of scan in units of inc since MJD START
SCAN s SRC NAME string systematic name to match that used in .input file
SCAN s SRC RA radians J2000 right ascension
SCAN s SRC DEC radians J2000 declination
RELATIVE INC p array; see below nPoints + 3 of these lines per scan

Like for the .delay and .rate files, the values reported in this file extend one full mode increment (inc)
before and after the actual duration of the scan, and hence will overlap in time by 2× inc with consecutive
scans. The RELATIVE INC lines contain triplets of values for each antenna, representing in order the u, v,
and w components of the baseline vector, all expressed in meters from the earth center.

This file is typically produced by calcif2.

9.26 .xcb 1.1

When generation of sniffer output files is not disabled, each .FITS file written by difx2fits will be
accompanied by a corresponding .xcb file. This file contains cross-correlation spectra for each antenna for
each baseline. In order to minimize the output data size, spectra for the same source will only be repeated
once per 15 minutes. The file contains many concatenated records. Each record has the spectra for all
baseband channels for a particular baseline and has the following format which is very similar to that of the
.acb files. Note that no spaces are allowed within any field. Values in typewriter font without comments
are explicit strings that are required.

40

Line(s) Value Units Comments
1 timerange:

MJD integer ≥ 1 MJD day number corresponding to line
start time string e.g., 13h34m22.6s
stop time string e.g., 13h34m52.0s
obscode:
observe code string e.g., MT831
chans:
nchan ≥ 1 number of channels per baseband channel
x
nBBC ≥ 1 number of baseband channels

2 source:
source name string e.g., 0316+413
bandw:
bandwidth MHz baseband channel bandwidth
MHz

3 to 2+nBBC bandfreq:
frequency GHz band edge (SSLO) frequency of baseband channel
GHz polar:
polarization 2 chars e.g. RR or LL
side:
sideband U or L for upper or lower sideband
bbchan:
bbc 0 Currently not used but needed for conformity

3+nBBC to ant1 number ≥ 1 number of first antenna
2+nBBC(nchan + 1) ant2 number ≥ 1

ant1 name string
ant2 name string
channel number ≥ 1 = chan + (bbc − 1) · nchan for chan, bbc ≥ 1
amplitude ≥ 0.0
phase degrees

The above are repeated for each cross correlation spectrum record. This file can be plotted directly with
plotbp or handled more automatically with difxsniff.

10 XML message types 1.1

The difxmessage library (§11.5) implements a system for sending and receiving messages using XML
format. This section documents the “difxMessage” XML document type that is used for interprocess com-
munication during correlation within NRAO-DiFX. These messages are sent via UDP multicast and are thus
restricted to fit within one standard-sized Ethernet packet (∼1500 bytes). Various logging and monitoring
programs (mk5mon, cpumon, and errormon, all eventually to be replaced by a single interactive operator
interface) can accept these messages and perform actions based on their content. Several different message
types are derived from the following XML base type:

<?xml version="1.0" encoding="UTF-8"?>
<difxMessage>
<header>
<from>from</from>
<to>to</to>
<mpiProcessId>mpiId</mpiProcessId>

41

<identifier>idString</identifier>
<type>messageType</type>

</header>
<body>
<seqNumber>seqNum</seqNumber>
body

</body>
</difxMessage>

The italicized fields are as follows:

from the hostname of the sender.

to the intended recipient of the XML document. Note that this field is typically not included for report-only
messages as it’s intended purpose is for directing commands to particular recipients. Also note that
multiple to fields can be present in a message. Three “shortcuts” are currently allowed: all causes all
receiving programs (such as mk5daemon) on all software correlator cluster members to respond; mark5
causes all Mark5 units to respond; and swc causes all non-Mark5 units to respond.

mpiId the MPI process id of the sender. If there are D (typically 10) datastream processes (i.e. Mark5s
playing back), then mpiId takes on the following numbers:

value mpifxcorr process type
< 0 a process not associated with mpifxcorr
0 the manager process of mpifxcorr

1 to D one of the datastream processes
≥ D + 1 one of the core (computing) processes

idString an additional string identifying the source of the message. For messages sent from mpifxcorr, this
will be the job id, for example job3322.000. Other programs will typically set this field to the name
of the program sending the message.

messageType the type of message being sent:
value description of message type
DifxLoadMessage CPU and memory usage (usually sent by mk5daemon).
DifxErrorMessage an error message.
Mark5StatusMessage status of the mark5 unit and modules.
DifxStatusMessage status of the mpifxcorr program.
DifxInfoMessage correlation progress information.
DifxWeightMessage playback weights for each station being correlated.
DifxCommand a command message.

Each of these message types is described in sections that follow.

seqNum the sequence number (starting at 0) of messages coming from the particular program running on
the particular host. The number advances by 1 for each sent message and can be used to detect lost
packets.

body message contents that are specific to the particular messageType. See sections that follow.

A “C” language library for generating, multicasting, receiving, and parsing XML documents of this type
is used within some of the programs, including mpifxcorr (the core of the DiFX [1] software correlator)
and mk5daemon (a program that runs on each Mark5 unit that is responsible for multicast communication
when mpifxcorr is not running), that transact these XML documents. The default multicast group to be
used is 224.2.2.1 and the default port is 50200, though these can be overridden with environment variables
DIFX MESSAGE GROUP and DIFX MESSAGE PORT respectively.

42

10.1 DifxLoadMessage

This section describes messages with messageType = DifxLoadMessage. These messages contain CPU and
memory utilization information and are voluntarily sent by various nodes of the cluster, to be received by
the operator interface.

The body of this message type contains:

<difxLoad>
<cpuLoad>cpuLoad</cpuLoad>
<totalMemory>totalMemory</totalMemory>
<usedMemory>usedMemory</usedMemory>

</difxLoad>

The italicized fields are as follows:

cpuLoad CPU utilization on the cluster node. It is a floating point value containing the average number of
processes scheduled at one time.

totalMemory total memory on node, in kiB.

usedMemory used memory on node, in kiB.

10.2 DifxErrorMessage

This section describes messages with messageType = DifxErrorMessage. These messages come from mpifx-
corr or the head node agent and contain an error message string and severity code that should be displayed
to the operator and logged.

The body of the message contains:

<difxError>
<errorMessage>message</errorMessage>
<severity>severity</severity>

</difxError>

The italicized fields are as follows:

message a string containing the error message.

severity an integer indicating the severity. The severity scale is based on that from the EVLA and has
values with the following meanings:

value meaning
0 processing has failed; a restart is needed
1 data from one or more station is affected badly
2 data from one or more station may be affected; e.g., low weights
3 minor error of no consequence to ongoing processing
4 informational only

10.3 Mark5StatusMessage

This section describes messages with messageType = Mark5StatusMessage. This message type cones from
either mpifxcorr or a mk5agent (or perhaps another program that makes heavy use of Mark5 units and
wishes to volunteer status information).

The body of the message contains:

43

<mark5Status>
<bankAVSN>vsnA</bankAVSN>
<bankBVSN>vsnB</bankBVSN>
<statusWord>statusWord</statusWord>
<activeBank>activeBank</activeBank>
<state>state</state>
<scanNumber>scanNumber</scanNumber>
<scanName>scanName</scanName>
<position>position</position>
<playRate>playRate</playRate>
<dataMJD>dataMJD</dataMJD>

</mark5Status>

The italicized fields are as follows:

vsnA the VSN of the module in bank A.

vsnB the VSN of the module in bank B.

statusWord a hexidecimal number with the following bits: FIXME TBD

activeBank the active bank, either A or B.

state the state of the Mark5 unit:
state meaning
Opening the StreamStor card is being opened.
Open the StreamStor was successfully opened and is ready for use.
Close the StreamStor has been closed.
GetDirectory the unit is recovering the directory or finding data.
GotDirectory the unit successfully found needed data on the module.
Play the unit is playing back data.
PlayStart the unit is about to start playback.
PlayInvalid the unit is playing data, but the data is invalid.
Idle the unit is not doing anything; no process has control of it.
Error the unit is unusable due to an error.
Busy the unit is busy and cannot respect commands.
Initializing the StreamStor card is initializing.
Resetting the unit is resetting the StreamStor card.
Rebooting the unit is about to reboot.
Poweroff the unit is about to turn off.
NoData the unit is not playing data since there is none that is appropriate.
NoMoreData the unit has played all the data for the job and is stopped.

scanNumber the directory index number for the current scan. This number starts at 1.

scanName the name associated with the current scan.

position the byte position being accessed. Note that this number can be very large (> 246).

playRate the time-averaged playback rate in Mbps.

dataMJD the date stamp (MJD + fraction) of the most recently read data.

10.4 DatastreamStatusMessage

FIXME – to be implemented

44

10.5 DifxStatusMessage

This section describes messages with messageType = DifxStatusMessage. This message type is only pro-
duced by mpifxcorr or the programs immediately responsible for starting and stopping it.

The body of the message contains:

<difxStatus>
<state>state</state>
<message>message</message>
<visibilityMJD>visibilityMJD</visibilityMJD>
<weight antId=antId weight=weight>

</difxStatus>

The italicized fields are as follows:

state the state of mpifxcorr, which must be one of the following:

state meaning
Spawning the mpifxcorr processes are being started (not sent by mpifxcorr).
Starting all the processes are ready to begin.
Running the correlator is running.
Ending the correlator has reached the end of the job.
Done the correlation has completed.
Aborting correlation is stopping early due to an error.
Terminating correlation is stopping early due to signal.
Terminated correlation has stopped early.
MpiDone all of the MPI processes have ended (not sent by mpifxcorr).

message a string containing information for the operator.

visibilityMJD the time-stamp (MJD + fraction) of last completed visibility record.

antId the antenna id for the associated weight, ranging from 0 to Nant − 1.

weight the data weight for the associated antenna, ranging from 0 to 1. Note that in each XML document
of this type there will in general be one weight value for each antenna being correlated.

10.6 DifxInfoMessage

This section describes messages with messageType = DifxInfoMessage. This document type simply contains
information for the operator about the status of correlation. Note that this message type is likely to disappear
as DifxErrorMessage with severity = 4 is essentially the same.

The body of the message contains:

<difxInfo>
<message>message</message>

</difxInfo>

The italicized field is as follows:

message a string containing information for the operator.

45

10.7 DifxCommand

This section describes messages with messageType = DifxCommand. These messages require the to field to
be set and cause the intended recipient to take an action.

The body of the message contains:

<difxCommand>
<command>command</command>

</difxCommand>

The italicized field is as follows:

command the command to execute. Commands are not case sensitive and should be among the following:

command action
GetVSN cause the mark5 unit to multicast loaded VSNs if possible.
GetLoad request CPU and memory usage to be reported.
ResetMark5 cause SSReset and ssopen to be run to reset StreamStor.
StartMark5A start the Mark5A program.
StopMark5A stop the Mark5A program.
Clear reset the mk5daemon; useful sometimes if mpifxcorr crashes.
Reboot causes machine to reboot.
Poweroff causes machine to power down.

11 Installation and upgrade guide

This is a module-by-module installation guide that takes one through the installation of the NRAO adapta-
tion of DiFX. The sections below should be followed more or less in order. Before you begin installing code,
you should take a few moments to prepare your environment. First choose a top level source directory, here
called sourcedir. Also choose an installation top level directory, called prefixdir, which should be visible to
all the nodes in the cluster. Into this directory, subdirectories such as bin, lib, include will be created
containing the installed code from the many packages you will need. At this time four environment variables
need creation or expansion:

1. IPPROOT: §11.2. Set this to something trivial (such as .) until IPP has been installed, then remember
to change it as appropriate.

2. LD LIBRARY PATH, a standard environment variable containing a dynamic library search path. Add
prefixdir/lib and $IPPROOT/sharedlib to this path.

3. PATH, a standard environment variable containing the execution path. Add prefixdir/bin to this path.

4. PKG CONFIG PATH, a search path for package installation information. Add prefixdir/lib/pkgconfig
to this path.

Note that all of these environment variables (in addition to those described in §4) are required at run-time
as well as compile-time, so it is advisable to put these path commands into your shell initialization file and
start a new shell at this point. Note that these variables will be needed not only in interactive shells, but
also non-interactive ones, so be sure that these are set no matter how the shell is invoked.

To download, compile and install the software, you will need the standard gnu tools (gcc, libtool, autoconf,
automake, make, ...), python, subversion, and of course ssh. Be aware that many distributions don’t install
by default all of these needed tools (xubuntu for example installs very few development tools by default.
Relatively few external libraries are used. It also assumes you have an account that allows access to the
subversion repository at https://svn.atnf.csiro.au.

46

The make install steps may require root permission, depending on the prefixdir you have chosen. If so,
become root before each make install. It is advisable not to compile code as root. Be wary of errors along
the way; occasional warnings may be issued, but if the building proceeds, things are probably okay. Please
report any build issues to wbrisken@nrao.edu. Be warned that these instructions may change.

1.1 All of the subversion repositories below point to a NRAO-DiFX-1.1 branch of the repository. This
is in order to provide a relatively stable source tree that allows development to continue on the main
development branch (called trunk). In order to check out code that is on this development branch, simply
replace branches/NRAO-DiFX-1.1 with trunk in all of the svn commands below. Caveat emptor: the trunk
branch code may at any time refuse to compile, be unstable, lack documentation, or produce incorrect results.
Don’t let this stop you if you are an intrepid developer or want to see ongoing development in progress!

If you do not have SVN access, .tar.gz files are available from http://www.aoc.nrao.edu/˜wbrisken/NRAO-DiFX-1.1/.

11.1 OpenMPI

The core of DiFX uses Message Passing Interface (MPI) for inter-node communication. Many MPI libraries
exist; we choose to use OpenMPI as it is simple to install, runs well, and appears to have good community
support.

1. Download the latest source distribution from http://www.open-mpi.org/ (ver. 1.2.7 as of this writing)

2. Decompress the contents into perhaps sourcedir; enter the newly created directory

3. ./configure --prefix=openmpiprefix where openmpiprefix could be the same as prefixdir, but does
not have to be.

4. Run make and finally make install to put the parts where they belong.

11.2 Intel Performance Primitives

Intel CPUs support an increasing variety of vector math instructions. The Intel Performance Primitives
(IPP) makes exploiting these capabilities on any recent generation CPU simple. An inexpensive license must
be purchased to make use of these. More information can be found on http://www.intel.com.

Once installed, set environment variable IPPROOT to point to its install prefix, which will look something
like: /opt/intel/ipp/5.3.3.075/ia32; you want to choose the directory containing lib, include, etc.
Remember to change this in your shell initialization file as well. This install directory should be visible to
all nodes in the cluster.

11.3 FFTW

The FFTs performed by mpifxcorr are done using the Intel Performance Primitives library, but FFTs
done in an optional piece ofdifx2fits and the utility m5spec that comes with mark5access use FFTW,
a standard, fast, freely available FFT library. This library is probably installed for you with any modern
Linux distribution, but you should check to make sure it is recent enough; version 3.0 and up are supported,
but version 3.1.2 or newer is recommended. If this library is not installed and the extra functionality that
requires FFTW is not installed, follow the instructions below:

1. Download the latest source distribution from http://www.fftw.org (ver. 3.1.2 as of this writing)

2. Decompress the contents into perhaps sourcedir; enter the newly created directory

3. ./configure --prefix=prefixdir

4. Run make and finally make install to put the parts where they belong.

47

11.4 difxio

Parsing of text files can be tedious. The library difxio makes parsing difx-style files simple. It also contains
functionality to completely represent the configuration of a DiFX correlation, simplifying format conversions.
To install:

1. cd sourcedir

2. Check out the subversion repository:
svn co https://svn.atnf.csiro.au/difx/common/difxio/branches/NRAO-DiFX-1.1 difxio
Note: don’t forget the difxio at the end of the line!

3. Enter the new directory cd difxio

4. View the README file. Note the next 5 instructions only need to be done once in this directory, even
after updating the repository. You can man the commands if you want to know what they do.

5. aclocal

6. libtoolize --copy --force

7. autoconf

8. autoheader

9. automake -a

10. Generate the Makefile: ./configure --prefix=prefixdir

11. Build it: make

12. Install it: make install

You can test for successful installation by running pkg-config --cflags difxio. If you get a sensible
answer, things are probably good. If you wish to upgrade the installation:

1. cd sourcedir/difxio

2. Get updates from the repository: svn update

3. Build it: make

4. Install it: make install

Note that doing this upgrade may break other packages that depend on it, such as difx2fits and calcif,
forcing a recompile of these programs.

11.5 difxmessage (optional) 1.1

The library difxmessage implements in the C language XML generation and parsing and multicast sending
and receiving functionality that is used for communication between various parts of the NRAO-DiFX system.
See §10 for details on the XML documents supported. The communication model is based on that of the
EVLA. This package is optional; if not built, you will not be able to use mk5daemon or any program packaged
with it, or genmachines. To install:

1. cd sourcedir

2. Check out the subversion repository:
svn co https://svn.atnf.csiro.au/difx/common/difxmessage/branches/NRAO-DiFX-1.1 difxmessage

48

3. Enter the new directory cd difxmessage

4. View the README file. Note the next 5 instructions only need to be done once in this directory, even
after updating the repository. You can man the commands if you want to know what they do.

5. aclocal

6. libtoolize --copy --force

7. autoconf

8. autoheader

9. automake -a

10. Generate the Makefile: ./configure --prefix=prefixdir

11. Build it: make

12. Install it: make install

You can test for successful installation by running pkg-config --cflags difxmessage. If you get a
sensible answer, things are probably good. If you wish to upgrade the installation:

1. cd sourcedir/difxio

2. Get updates from the repository: svn update

3. Build it: make

4. Install it: make install

Note that doing this upgrade may break other packages that depend on it, such as mpifxcorr and
mk5daemon, forcing a recompile of these programs.

11.6 mark5access

mark5access is a library to parse various VLBI baseband data formats, including Mark4, VLBA, and Mark5B,
with other formats to be added. This is needed to decode these various formats from within mpifxcorr. To
install:

1. cd sourcedir

2. Check out the subversion repository:
svn co https://svn.atnf.csiro.au/difx/common/mark5access/branches/NRAO-DiFX-1.1 mark5access

3. Enter the new directory cd mark5access

4. View the README file. Note the next 5 instructions only need to be done once in this directory, even
after updating the repository.

5. aclocal

6. libtoolize --copy --force

7. autoconf

8. autoheader

9. automake -a

49

10. Generate the Makefile: ./configure --prefix=prefixdir

11. Build it: make

12. Install it: make install

You can test for successful installation by running pkg-config --cflags mark5access. If you get a
sensible answer, things are probably good. If you wish to upgrade the installation:

1. cd sourcedir/mark5access

2. Get updates from the repository: svn update

3. Build it: make

4. Install it: make install

Note that doing this upgrade may break other packages that depend on it, such as mpifxcorr, forcing a
recompile of these programs.

11.7 mpifxcorr

The core of the DiFX software correlator is mpifxcorr. Installation and running this program requires that
MPI (§11.1), IPP (§11.2), difxio and mark5access all be installed. To install:

1. cd sourcedir

2. Check out the subversion repository:
svn co https://svn.atnf.csiro.au/difx/mpifxcorr/branches/NRAO-DiFX-1.1 mpifxcorr

3. Enter the new directory cd mpifxcorr

4. View the README file. Note the next 4 instructions only need to be done once in this directory, even
after updating the repository.

5. aclocal

6. autoconf

7. autoheader

8. automake -a

9. Generate the Makefile: ./configure --prefix=prefixdir CXX=openmpiprefix/bin/mpicxx

10. Build it: make

11. Install it: make install

If successfully installed, the command which mpifxcorr should return prefixdir/bin/mpifxcorr. If you
wish to upgrade the installation:

1. cd sourcedir/mpifxcorr

2. Get updates from the repository: svn update

3. Build it: make

4. Install it: make install

50

11.8 calcserver

The Goddard Space Flight Center CALC package version 9.1 is used to calculate the delay models needed
for time-alignment of the raw data. This software is wrapped in a program that exposes the capabilities of
CALC via a Remote Procedure Call (RPC) and this program runs as a server. An environment variable
CALC SERVER should be set that contains the name of the computer running calcserver. Within NRAO-
DiFX, the only program that makes use of this server is calcif2 (§8.2). To install:

1. cd sourcedir

2. Check out the subversion repository:
svn co https://svn.atnf.csiro.au/difx/utilities/calcserver/branches/NRAO-DiFX-1.1 calcserver

3. Enter the new directory cd calcserver

4. View the README file.

5. aclocal

6. libtoolize --copy --force

7. autoconf

8. automake -a

9. Generate the Makefile: ./configure --prefix=prefixdir

10. Build it: make

11. Install it: make install

11.9 job2difx

The job2difx package contains several programs that are useful for DiFX input file creation and managing
correlation. These programs are designed to work together with others in the NRAO customized software
correlator system. The calcif program which creates .uvw, .delay, and .rate files from an input file (the
.calc file – generated by job2difx) is also contained in this package. To install:

1. cd sourcedir

2. Check out the subversion repository:
svn co https://svn.atnf.csiro.au/difx/utilities/job2difx/branches/NRAO-DiFX-1.1 job2difx

3. Enter the new directory cd job2difx

4. View the README file. Note the next 4 instructions only need to be done once in this directory, even
after updating the repository.

5. aclocal

6. autoconf

7. autoheader

8. automake -a

9. Generate the Makefile: ./configure --prefix=prefixdir

10. Build it: make

51

11. Install it: make install

If successfully installed, the command which job2difx should return prefixdir/bin/job2difx. Several
other programs should also be installed, including: calcif, genmachines, getjobs, jobdisks, joblist,
jobstatus, difxsniff, mk5take, mk5return, and vlog. If you wish to upgrade the installation:

1. cd sourcedir/job2difx

2. Get updates from the repository: svn update

3. Build it: make

4. Install it: make install

11.10 difx2fits

The initial NRAO adaptation of DiFX is designed to interface as seamlessly as possible into our existing
infrastructure and habits. This means generation of FITS-IDI output files for compliance with AIPS. The
program difx2fits takes many input files (see Fig. 1) and produces a FITS file for every DiFX input file.
To install:

1. cd sourcedir

2. Check out the subversion repository:
svn co https://svn.atnf.csiro.au/difx/utilities/difx2fits/branches/NRAO-DiFX-1.1 difx2fits

3. Enter the new directory cd difx2fits

4. View the README file. Note the next 4 instructions only need to be done once in this directory, even
after updating the repository.

5. aclocal

6. autoconf

7. autoheader

8. automake -a

9. Generate the Makefile: ./configure --prefix=prefixdir

10. Build it: make

11. Install it: make install

If successfully installed, the command which difx2fits should return prefixdir/bin/difx2fits. If you
wish to upgrade the installation:

1. cd sourcedir/difx2fits

2. Get updates from the repository: svn update

3. Build it: make

4. Install it: make install

52

11.11 mk5daemon (optional) 1.1

The optional package mk5daemon relies on package difxmessage and is only really needed for installations
requiring playback off Mark5 modules. Root permission is required for proper installation and running of
this program. See §8.15 for a description of the main program, mk5daemon, that comes with this package.
Other useful scripts are included here. To install:

1. cd sourcedir

2. Check out the subversion repository:
svn co https://svn.atnf.csiro.au/difx/utilities/mk5daemon/branches/NRAO-DiFX-1.1 mk5daemon

3. Enter the new directory cd mk5daemon

4. View the README file. Note the next 4 instructions only need to be done once in this directory, even
after updating the repository.

5. aclocal

6. autoconf

7. autoheader

8. automake -a

9. Generate the Makefile: ./configure --prefix=prefixdir

10. Build it: make

11. Install it: make install

12. Ensure that this program starts at boot. This requires the following to occur on each computer in
the cluster. Note that the instructions may vary depending on your operating system. The pro-
gram is likely to get started before NSF is started, so mk5daemon should be installed locally on each
compute in the cluster. On each machine, run as root: cp prefixdir/bin/mk5daemon localdir ; echo
localdir/mk5daemon >> /etc/rc.local . Here localdir is a directory on the particular machine, such
as /usr/bin This only needs to be run

If successfully installed, the command which mk5daemon should return prefixdir/bin/mk5daemon. If you
wish to upgrade the installation:

1. cd sourcedir/mk5daemon

2. Get updates from the repository: svn update

3. Build it: make

4. Install it: make install

5. Copy it to the local disk (as root): cp -f prefixdir/bin/mk5daemon localdir

53

12 Acknowledgements

Many people have helped in significant ways to get NRAO-DiFX where it is today: Craig West for getting
me interested in software correlators to begin with; Adam Deller for writing DiFX and helping adapt it to
the needs of NRAO-DiFX; Steve Tingay and Matthew Bailes for allowing/encouraging Adam to write DiFX
and helping support some of my travel in Australia; Chris Phillips for contributing code, bug reports, bug
fixes, and ideas; Walter Alef for hosting the first DiFX workshop in 2007; Miguel Guerra for helping define
the XML structures and his work on the upcoming operator interface; Claire Chandler, Jon Romney and
Craig Walker for project oversight, advice, and voices of reason; Steven Durand for buying me computer and
Mark5 equipment; David Boboltz, Mark Claussen, Vivek Dhawan, Alan Fey, Vincent Fish, Ed Fomalont,
Miller Goss, Amy Mioduszewski, John Morgan, Roopesh Ojha, Loránt Sjouwerman and Craig Walker for
working directly with or examinating the output of NRAO-DiFX and providing valuable feedback; Eric
Greisen for making AIPS work well with NRAO-DiFX output; John Benson for working with me to get
data into the VLBA archive; David Halstead and James Robnett for useful discussions on clustering; Doug
Gerrard, Bob McGoldrick, Adrian Rascon and K. Scott Rowe for assembling and maintaining the correlator;
Juan Cordova, Paul Dyer, Lisa Foley, Heidi Gerhardt, Ken Hartley, Alan Kerr, Jim Ogle, Paul Padilla,
Peggy Perley, Tony Perreault, Betty Ragan, Meri Stanley and Anthony Sowinski for providing operations
assistance; and Emma Goldberg for helping me work around the idiosyncrocies of LATEX and convince it to
typeset this document. If I left anyone of this list that should be there, and there are probably several of you
in that catagory, I apologize — let me know and I’ll make sure to add you for the next version’s document.

13 Contact information

Please contact Walter Brisken <wbrisken@nrao.edu> for any problems with the documentation or software
described in the manual.

References

[1] DiFX: A software correlator for very long baseline interferometry using multi-processor computing envi-
ronments, Deller, A. T., Tingay, S. J., Bailes, M. & West, C., 2007, PASP 119, 318.

[2] Summary of the b-factor for the VLBA FX correlator, Kogan, L., VLBA Scientific Memo 12.

[3] The FITS Interferometry Data Interchange Format, Flatters, C., AIPS Memo 102.

[4] The FITS Interferometry Data Interchange Convention, Greisen, E., AIPS Memo 113 in prep.

[5] Tempo, http://www.atnf.csiro.au/research/pulsar/tempo/

54

antennas

cjobgen

calcif2
 job2difx

mpifxcorr

difx2fits

 archive

monitor data baseband data

job script (.fx)

.input .uvw
.delay

 visibilities (.difx/)

FITS-IDI (.FITS)

Ver. 10 2008/08/26

.calc

Native
Mark5
Access

Existing

New

.rate

.im

TSM vlog

weather
tsys
pcal

flags

 antenna
gains

 difxsniff

cal.vlba

 gen-
machines

.machines

.threads

 2 files

 4 files

calcserver

DiFX
Operator
Interface

 2 files

.acb

.xcb

 4 files

.apd

.wts

Figure 1: The NRAO-DiFX software correlator block diagram as implemented for the VLBA

55

/home/swc/ difx root directory: a 1.5 TB partion on swc000

difx/ all data related to operations ends up under this directory

archive/ staging area for data going to archine

directories/ cached Mark5 module directories; environment variable
MARK5_DIR_PATH points here

NRAO-120.dir

NRAO-123.dir

VIPSU-05.dir

gaincurves/ directory of symlinks to gain curve files; environment
variable GAIN_CURVE_PATH points here

gain.ar symlink to /home/jansky3/vlbaops/TCAL/gain.ar

projects/ active project data; environment variable JOB_ROOT
points here

bc120e/

mt831/

tests/ active test data; environment variable TESTS points here

NRAO-DiFX-1.1/ version 1.1 files; set prefix to this during installation

bin/ ver 1.1 programs

calcif2

job2difx

mpifxcorr

startdifx

lib/ libraries for ver 1.1

setup_difx script to set environment for version 1.1

src/ frozen source code for ver 1.1

calcserver/

difx2fits/

difxio/

difxmessage/

job2difx/

calcif/

mark5access/

mk5daemon/

mpifxcorr/

openmpi-1.2.7/

NRAO-DiFX-trunk/ development branch

bin/ programs

lib/ libraries

setup_difx script to set environment for development version

src/ source

Figure 2: The directory structure of the VLBA software correlator. This figure showing the organization of
the NRAO-DiFX directory structure is not comprehensive, but is hopefully complete enough to illustrate
the general layout. For example, only the major top level subdirectories of NRAO-DiFX-trunk are shown.
Entries ending in ‘/’ are themselves directories.

56

