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Cover illustration. 

(Top) A computer-generated perspective drawing of a synthesis image 
of the radio source 3C10. a galactic supernova remnant. This image 
was obtained from VLA observations at 1381 MHz. 
(Bottom) A perspective drawing of the visibility data from which this 
image of 3C10 was derived. The visibility data are samples of the inverse 
Fourier transform of the distribution on the sky of the radio emission 
from this object. (Only the visibility amplitude is represented in this 
drawing.) 

(These data were provided by Tim Cornwell.) 
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PREFACE 

1. The Purpose of the Course. 

The NRAO Summer School on Synthesis Imaging held in Socorro from August 5th to 
9th, 1985 was the second occasion on which NRAO staff prepared a series of lectures for 
serious students of synthesis imaging and image processing. NRAO operates one of the 
world's most powerful synthesis telescopes—the Very Large Array (VLA)—and is building 
another—the Very Long Baseline Array (VLBA). The main purpose of this course, like 
that of its predecessor in 1982, was to inform potential users of these telescopes about the 
principles on which synthesis instruments operate, about the subtleties of data acquisition, 
calibration and processing associated with them, and about techniques for getting the best 
results from them. 

As such, it is aimed primarily at radio astronomers who are relative newcomers to the 
field of synthesis imaging, e.g., beginning graduate students or those whose research has 
hitherto not employed synthesis techniques. The subject matter is also of interest to people 
outside the traditional radio astronomy community—to astronomers whose expertise is pri¬ 
marily in observations at shorter wavelengths, to astrophysicists who wish to interpret the 
data from synthesis telescopes, and to researchers employing Fourier methods or deconvolu¬ 
tion techniques in other fields of imaging, such as physics, medicine or remote sensing. We 
have therefore confined the detailed discussion of topics relating to NRAO's instruments to 
a few portions of the course, and have attempted to emphasize general principles wherever 
possible. 

Nevertheless, the lectures reflect the~close association of the lecturers with NRAO's 
instruments, especially with the VLA. We hope that readers will find this a generally bene¬ 
ficial influence, as the VLA is an environment in which many boundaries of image processing 
techniques in radio astronomy are being pushed back, and as many of you will be reading 
these notes because you intend to use the VLA for your own research. Those of you with 
broader interests will, we hope, find the VLA-specific sections of these lectures easy to 
identify and to skip over, if you wish. 

The lectures do not appear here exactly as given. These written versions were prepared 
after the lecturers had reviewed comments from the course participants and from other 
NRAO staff. Difficult points have been explained in greater detail, and additional material 
that could not be covered within the time constraints of the live lectures has been added. 
We have also standardized notation and rearranged material where we felt that this made 
the course as a whole more coherent. 

2. Subject matter. 

The first lecture, by Barry Clark, develops the fundamental principles and equations of 
synthesis imaging, with particular attention to the assumptions which underlie them. The 
second, by Richard Thompson and the third, by Larry D'Addario, discuss the practical im¬ 
plementations of instruments to image the radio sky based on these fundamental principles. 
These lectures are written from the standpoint of the engineers who build the instruments, 
and are essential reading for anyone wishing to understand how the design of a synthesis 
array interacts with the quality and credibility of the data which are obtained from it. The 
fourth lecture, by Carl Bignell and Rick Perley, reviews the many instrumental, atmospheric 
and environmental effects that must be calibrated or compensated before the data from a 
synthesis array are ready to be passed to the imaging procedures. 

ix 



The fifth lecture, by Dick Sramek and Fred Schwab, describes the primary computa¬ 
tional steps involved in making an image from the data collected by a synthesis array. It 
forms the basis for all of the subsequent discussions. 

The sixth lecture, by Pat Crane and Peter Napier, examines the factors that affect the 
sensitivity of synthesis images to various kinds of structure, with particular attention to the 
calculations relevant for the VLA. 

The next five lectures examine the imperfections of the "dirty" images made by the 
straightforward techniques of Lecture 5, and discuss the battery of methods that radio 
astronomers bring to bear on diagnosing and suppressing these imperfections. The seventh 
lecture, by Tim Cornwell, reviews the strengths and weaknesses of deconvolution algorithms 
currently in use in astronomy. The eighth, by Bill Cotton, describes procedures for dealing 
with the problems faced when some of the simplifying assumptions made in Lecture 1 are 
violated, and for reducing the computing requirements of some difficult imaging cases. The 
ninth lecture, by Tim Cornwell, treats the powerful technique known as "self-calibration" 
whereby data obtained from the source itself are used to calibrate its own image. The tenth 
lecture, by Ron Ekers, describes some common image defects, how to recognize what causes 
them, and how to eliminate or reduce them. The eleventh lecture, by Rick Perley, discusses 
the techniques that are now available for extremely high-fidelity imaging in the presence of 
initially corrupted data from synthesis arrays. 

The next two lectures treat important special topics in radio interferometry. The 
twelfth, by Jacqueline van Gorkom and Ron Ekers, discusses problems specific to spectral 
line synthesis; the thirteenth, by Craig Walker, describes the special features of synthesis 
imaging with arrays of antennas that are not physically connected—very long baseline 
interferometry (VLBI). 

The fourteenth and fifteenth lectures, by Ed Fomalont and Arnold Rots, treat different 
aspects of image analysis; that is, the extraction of useful information from the final images 
once they have been computed. 

The sixteenth and final lecture, by Alan Bridle, describes an orderly approach to using 
the information from the previous lectures when planning and executing observing programs 
at the VLA. 

3. Terminology and Notation. 
Some of the terminology used in these lectures departs from the established traditions 

of radio astronomy—in ways that we hope will reduce confusion for newcomers to this 
field. The process of image construction in radio astronomy has been known for decades as 
mapping, not imaging, as here. Generations of radio astronomers have regarded isophotal 
maps (contour maps) as the prime display of their data, and have adopted the term map 
because of the analogy with topographical mapping. In most other fields of research, the 
distribution of intensities across a field of view is described as an image, however, and we 
were persuaded to use the more common terminology throughout this course despite the 
radio astronomy tradition. 

The distinctions between images made by radio telescopes and by telescopes operating 
at other wavelengths are minor compared with the impediment to understanding that comes 
from using different terminology in different applications. We have therefore used "image" 
in most places that "map" would occur normally in the radio astronomy literature, with a 
few exceptions, e.g., when describing contour displays, or when discussing techniques such 
as fringe rate mapping, which determine the layout of a source without imaging it. 

We have also generally avoided the traditional term "aperture synthesis" for the imag¬ 
ing technique, as most modern synthesis telescopes have no equivalent aperture. The com¬ 
mon term "Earth rotation synthesis" also seems unnecessarily restrictive, as many of the 



principles described here can be employed without making use of Earth rotation to generate 
the sampling pattern. We have therefore adopted the brief term "synthesis", which may be 
thought of as a shorthand for "Fourier synthesis", throughout. 

Finally, we found no a priori standard among the lecturers about the sign of the phase 
term in the Fourier transform integral, or about the direction termed the "forward" or 
the "inverse" Fourier transform. To make the course internally consistent (and so, we 
hope, to minimize confusion), we converted the notation and language of all lectures to the 
convention that was adopted initially by the majority. This defines the forward transform 
direction as that with the positive sign of the phase, which in these notes is the transform 
from the spatial frequency domain to the image domain. This convention is common in 
mathematics texts, but the reader should note that it is the inverse of the convention 
most commonly found in the engineering literature. The reader will therefore encounter 
the opposite convention in some of the referenced literature, but we hope the internal 
consistency of these lectures will avoid confusion. 

4. Some NRAO Lore. 

There are references to NRAO internal publications and to NRAO software throughout 
this course. This is inevitable, given that many important topics covered by the Summer 
School are not published in the regular literature or in textbooks. These references will 
also be important further reading for those of you who eventually pursue an interest in 
synthesis imaging to the point of making observations with the VLA or VLBA. Copies of 
memoranda in the various VLA technical and scientific series are available on request from 
Alison Patrick at NRAO, P.O. Box O, Socorro, NM 87801, USA. 

The reader will also find frequent references to software in the <AIPS' package. This is a 
software system for calibration, imaging and analysis of astronomical data that is tailored to 
the needs of synthesis imaging (though parts of it are much more general). (AIPS' stands 
for Astronomical Image Processing System, and both the software and documentation 
describing it can be obtained on request from Nancy Wiener, NRAO, Edgemont Road, 
Charlottesville, VA 22903-2475, USA. 

RICHARD A. PERLEY 

FREDERIC R. SCHWAB 

ALAN H. BRIDLE 

XI 
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OPENING REMARKS 

I would like to welcome you to the Macey Center on the campus of the New Mexico 
Institute of Technology in Socorro for our second summer course on Radio Astronomical 
Imaging with Synthesis Telescopes. 

Why have another course on "Synthesis Imaging"? Synthesis radio telescopes are play¬ 
ing an increasingly important role in radio astronomy. The VLA has been in full operation 
since 1981, two major new synthesis telescopes are under construction—the Australia Tele¬ 
scope and the VLBA—and further synthesis telescopes are being planned (e.g., QUASAT 
and NRAO's millimeter wavelength array). It is our intention to keep this discussion suffi¬ 
ciently general to apply to any of these instruments, although almost all examples will be 
taken from the VLA. Synthesis telescopes are unusually powerful and are very flexible, but 
they are so different from the conventional telescopes which form images directly in their 
focal planes that they may at first seem more difficult to understand. However, once the 
underlying principles are clear you will be able to exploit their flexibility. 

The VLA is a national facility. National observatories make it possible to concentrate 
resources into single large instruments, but they also deprive many of you of the educational 
experience of building and using your own telescope. One aim of this course is to try 
to compensate for the imbalance between the very large number of users who have little 
opportunity to obtain hands-on experience and the relatively small number of our staff who 
often feel they get more hands-on experience than they need. 

Especially in the area of image processing, there have been many new developments 
which have not been included in any existing textbook or course material on radio astron¬ 
omy. Examples are the enhancements of images through deconvolution algorithms such as 
'CLEAN' and MEM, the removal of atmospheric blurring by the application of antenna- 
based self-calibration, and the techniques used for the production and processing of spectral 
line synthesis data. These topics will be covered during this course, and the lecture notes 
will be made available to you. 

This is also a rich field for cross-fertilization between disciplines. Many of you and 
many of the users of the VLA are not radio astronomers, and as soon as you can penetrate 
the barrier of the jargon of this subfield you will find that many of the underlying principles 
apply in a wide range of situations. Obvious examples include: optical interferometry, 
adaptive optics, and indirect imaging in medicine, radar, seismology and other fields. 

The vast majority of observations made with the VLA use it as an analytic tool to 
observe known phenomena and to make specific measurements relating to a hypothesis 
about the object or class of objects under study. The information we cover in this course 
will provide the background needed to plan for this type of observation. We will describe 
techniques which will enable you to extract all the useful information in your data and to 
get it into a form suitable for interpretation, and we will try to indicate how to do this in 
a reasonable amount of time. Fundamental to an observational science is the quality of the 
results produced. The NRAO engineering staff will do everything they can to make the 
instrument work reliably, however it is the observers who are ultimately responsible for the 
results which they publish. A basic knowledge of the instrument is important in order to 
recognize erroneous results and to have confidence in the integrity of the final product. 

It is well known that major discoveries, especially in radio astronomy, have been 
driven by instrumental developments. The VLA represents such a major instrumental 
development—with sensitivity, resolution, speed and sky coverage far greater than any pre¬ 
vious radio telescope. New and exciting discoveries should be possible with such a telescope, 
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but in order to be able to recognize the unexpected you must understand the instrument 
well. The most likely reason for an unexpected result is an error of some kind. If you 
throw out everything unusual, assuming it is erroneous, you may miss something impor¬ 
tant. On the other hand, if you spend a great deal of time investigating every possible 
error you will never get much done. With an understanding of the basic principles by which 
these telescopes work you will be in a much better position to discriminate against errors 
and to recognize the unexpected. In his book Cosmic Discovery (Basic Books, New York, 
1981), Martin Harwit argues that national facilities are unlikely to make major discoveries. 
Through courses such as these we hope to show that this need not be true. 

RONALD D. EKERS 
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1.   Introduction and Basic Theory 

BARRY G. CLARK 

l. INTRODUCTION 

It is appropriate for this specialized workshop to start with a survey of the derivation 
of the main principles of synthesis imaging, paying particular attention to the assumptions 
that go into them. This is because an appreciable part of the workshop to follow will discuss 
the problems which arise when these assumptions are violated under the conditions of the 
observation the astronomer wants to make. At the same time, I will cast this introduction 
into the terminology of modern optics, in an attempt to stay abreast of current fashions in 
physics. 

The fundamental reference for the basics of modern optics is the excellent textbook 
Principles of Optics, by Born and Wolf; their Chapter X is especially relevant to this work¬ 
shop. An excellent discussion of synthesis imaging, employing this modern terminology, 
is given by J. L. Yen (1985) in Chapter 5 of Array Signal Processing (S. Haykin, ed.). A 
broader view of radio telescopes, again from a viewpoint of Fourier optics, but taking a 
somewhat historical perspective, is given in Radiotelescopes by Christiansen and Hogbom 
(1985, Second Edition); their Chapter 7 discusses synthesis methods. The alternate view¬ 
point on radio interferometers, from the perspective of the electrical engineers who originally 
developed them, is explicated in Swenson and Mathur (1968). 

2. FORM OF THE OBSERVED ELECTRIC FIELD 

I will start with the most general formulation of the subject, and, one by one, introduce 
the simplifying assumptions until reaching the simple, elegant theoretical basis that is, after 
all, sufficient for much of radio interferometry. In the most general case, an astrophysical 
phenomenon occurs at location R (the boldface symbols indicate vectors, in this case a 
position vector). This phenomenon causes a time-variable electric field, which I will denote 
as E(R, t). Then, Maxwell's equations say that an electromagnetic wave will propagate away 
from that point and will eventually arrive at a point where an astronomer may conveniently 
observe it, say the point r. 

It is inconvenient for a number of reasons to deal with general time-variable electric 
fields. If we have a finite time interval of a varying field, we may express the magnitude 
of the field as the real part of the sum of the Fourier series in which the only time-varying 
functions are simple exponentials. Because of the linearity of Maxwell's equations (in the 
cases of astrophysical interest, anyway) we may deal with the coefficients of this Fourier 
series, rather than with the general time-varying field. The coefficients of this Fourier series, 
which I will call Et/(R), are called the quasi-monochromatic components of the electric field 
E(R,t). Note that the fields E„(R) are complex quantities, and it is useful to think of them 
as such at all times. It leads to a more elegant formulation of the theories to consider this 
complex nature to be physical reality rather than a mathematical convenience. 

In what follows, I consider only a single quasi-monochromatic component, realizing that 
the total response is the sum of the responses to all the components. In fact, the response 
of an instrument can be made arbitrarily close to that of a single quasi-monochromatic 
component, by inserting filters in the early, linear, parts of the instrument. 
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The linearity property of Maxwell's equations allows us to superpose the fields produced 
at a test location by the various source points, 

E^r) = fffPy{Rtr)Ev{R) dxdydz. (1-1) 

The integral is to be taken over all of space. The function P1/(R,r) is called the propagator, 
and describes how the electric field at R influences the electric field at r. 

At this point, I begin to introduce the simplifying assumptions. The first assumption 
may be considered to be merely pedagogical, in the sense that it is not really needed at 
all, and is made only to avoid complicating the equations to the point that their physical 
meaning is obscured. For the moment, I shall ignore the fact that electromagnetic radiation 
is a vector phenomenon, and treat it as if it were simply a scalar field, measured at any 
point by a scalar quantity E. That is to say, I shall ignore, for the moment, all polarization 
phenomena. This enables the multiplication in Equation 1-1 to be regarded as ordinary 
scalar multiplication, and the propagator P to be an ordinary scalar function (not a tensor 
function as a complete derivation would have it). 

The second simplifying assumption is that the sources of interest to astronomers are 
a long way away. The practical implication of this is that we have to give up all hope of 
describing the structure of the emitting regions in the third dimension, in depth. All we 
may measure is the "surface brightness" of the emitting phenomenon. One convenient way 
of expressing this assumption is to replace the field strength E at the source with the field 
strength at a convenient point distant from both us and from any source of radiation. We 
may conceive of a "celestial sphere", a very large sphere of radius |R|, within which there 
is no additional radiation, and all that we may learn about the distribution of the source of 
the fields is the distribution of the electric field on the surface of this sphere, which I will 
call ^(R). 

The third simplifying assumption is that the space within the "celestial sphere" is 
empty. For this case, Huygens' Principle tells us that the propagator takes a particularly 
simple form, and we can write 

/e2wiv\R—r\/e 
£,(»)    |R_r|     dS. (1-2) 

Here dS is the element of surface area on the celestial sphere. 
Equation 1-2 is the general form of the quasi-monochromatic component of the electric 

field at frequency i/ due to all sources of cosmic electromagnetic radiation. This is all we 
have; we can measure only the properties of this field ^(r) to tell us about the nature of 
things at large in the universe. 

3. SPATIAL COHERENCE FUNCTION OF THE FIELD 

Among the properties of EV{T) is the correlation of the field at two different locations. 
The correlation of the field at points ri and rj is defined as the expectation of a product, 
namely ^(ri,^) = (^(rx)^*^)). The raised asterisk indicates the complex conjugate. 
We can then use Equation 1-2 to substitute for EV(T), writing the product of the integrals 
as a double integral over two separate surface element dummy variables: 

/  ft __ gla-w/IRi-i^l/c f,-2xiv\Tl2-T2\/c \ 
Kfiur,) = (|| C(R1)f;(Ra)_]1__] |Ri_ra[      «, dSt) . (1-3) 
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The fourth simplifying assumption is that the radiation from astronomical objects is 
not spatially coherent; i.e., that (£i/(Ri)£*(R2)) is zero for Ri ^ R2. Exchanging the 
expectation and the integrals in Equation 1-3 then gives: 

(|g,(R)lW |R_ri| |R_ra|      <»• (1-*) 

Now write s for the unit vector R/|R| and It,(a) for the observed intensity |R|2(|(f„(s)|2). 
The second assumption (the great distance to the sources and to the celestial sphere) can 
then be used again to neglect the small terms of order |r/R|, and to replace the surface 
element dS on the celestial sphere by |R|2c2n, so that Equation 1-4 becomes: 

IC(ri,rs) w f Iv(s)e-2iriva<ri-T^e dfl . (1-5) 

Observe that Equation 1-5 depends only on the separation vector ri — rj of the two 
points, not on their absolute locations ri and rj. Therefore, we can find out all we can 
learn about the correlation properties of the radiation field by holding one observation 
point fixed and moving the second around; we do not have to measure at all possible pairs 
of points. This function V„ of a single (vector) separation ri — r2 is called the spatial 
coherence function, or the spatial autocorrelation function, of the field Eu[r). It is all we 
have to measure. 

An interferometer is a device for measuring this spatial coherence function. 

4. THE BASIC FOURIER INVERSIONS OF SYNTHESIS IMAGING 

A second interesting point about Equation 1-5 is that the equation is, within reason¬ 
able, well-defined limits, invertible. The intensity distribution of the radiation as a function 
of direction s can therefore be deduced in certain cases by measuring the spatial coherence 
function ^ as a function of ri — rj and performing the inversion. 

There are two special cases of a great deal of interest. In fact, it is usually argued that 
any actual case is so close to one of these two special cases that the invertibility properties 
(although not necessarily the effort required to perform the inversion) must be essentially 
similar. Since there are two forms of interest, there are two alternate forms of our fifth (and 
final) simplifying assumption. 

4.1. Measurements confined to a plane. 
First, we could choose to make our measurements only in a plane; that is, in some 

favored coordinate system, the vector spacing of the separation variable in the coherence 
function, conveniently measured in terms of the wavelength A = c/t/, is ri — rj = A(u, v,0). 
In this same coordinate system, the components of the unit vector s are (/, m, y/1 — I2 — m2). 
Inserting these, and explicitly showing the form, in this coordinate system, of the element 
of solid angle, we have 

V^u, v,w = 0) = Jj /„(/, m)y/l_li_mii * dm. (1-6) 

Equation 1-6 is, clearly, a Fourier transform relation between the spatial coherence 
function Vv(u,v,w = 0) (with separations expressed in wavelengths), and the modified 
intensity /„(/, m)/y/l — I2 — m2 (with angles expressed as direction cosines). Now we are 
home free. Mathematicians have devoted decades of work to telling us when we can invert 
a Fourier transform, and how much information it requires. 
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4.2. All sources in a small region of sky. 
The alternate form of the fifth simplifying assumption is to consider the case where all 

of the radiation comes from only a small portion of the celestial sphere. That is, to take 
s = SQ + v, and neglect all terms in the squares of the components of a. In particular, the 
statement that both s and So are unit vectors implies that 

1 = |s| = S'S = So*So 

= so • so + 2so • <r + <r • a 

» 1 + 2so • a, 

i.e., SQ and a are perpendicular. If we again introduce a special coordinate system such 
that so = (0,0,1), then we have a slightly different offspring of Equation 1-5: 

V^ti, v, w) = e-2*iw J J /„(/, m)e-2,r*(ttI+,'m) dl dm. (1-7) 

Here, the components of the vector ri — rj have been denoted by (u, v, w). It is customary 
to absorb the factor in front of the integral in Equation 1-7 into the left hand side, by 
considering the quantity Vv(u, v, w) = e2**wVl(u, v, w), which we see is independent of w: 

V„{u, v) = ff /„(/, m)e-2wi(ul+vm) dl dm. (1-8) 

Vv(u,v) is the coherence function relative to the direction SQ, which is called the phase 
tracking center. 

Since Equation 1-8 is a Fourier transform, we have in particular, the direct inversion 

/„(/, m) = ff Vv{u, v)c2*«(«'+««) du dv. (1-3) 

The relationship between the two different forms of the assumption used here and in 
Section 4.1 can be seen from the symmetric role played in liquation 1-5 by the two vectors 
s and Ti — rj: the form used in Section 4.1 results from saying that the vectors ri — r2 lie 
in a plane; the form used here results from saying that the endpoints of the vectors s lie in 
a plane. 

4.3. Effect of discrete sampling. 
In practice the spatial coherence function V is not known everywhere but is sampled at 

particular places on the u-v plane. The sampling can be described by a sampling function 
S{u, v), which is zero where no data have been taken. One can then calculate a function 

/?(/, m) = ff Vv(u, v)S(u, v)e
2*W+<"») du dv. (1-10) 

Radio astronomers often refer to l5>(/,m) as the dirty image; its relation to the desired 
intensity distribution /v(/,m) is (using the convolution theorem for Fourier transforms): 

I? = It,*B, (1-11) 

where the in-line asterisk denotes convolution and 

B(l, m) = /Y S{u, v)c2,r«(«l+«m) du dv (1-12) 

is the synthesized beam or point spread function corresponding to the sampling function 
S(uyv). Equation 1-11 says that ID is the true intensity distribution / convolved with the 
synthesized beam B. Lecture 7 discusses methods for undoing this convolution. 
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4.4. Effect of the element reception pattern. 
An additional minor alteration must be made to the above for convenience in practical 

calculation. In practice, the interferometer elements are not point probes which sense the 
voltage at that point, but are elements of finite size, which have some sensitivity to the 
direction of arrival of the radio radiation. That is, there is an additional factor within the 
integral of Equation 1-2, and hence of Equations 1-4, 1-5, 1-6, 1-7 and 1-8, of ^^(s) (the 
primary beam or normalized reception pattern of the interferometer elements) describing 
this sensitivity as a function of direction. For explicitness, Equation 1-8 is rewritten below, 
with this factor included: 

V*(ti, v) = ff AV{1, m)Iv{l, m)€-2*»(«'+«'»0 dl dm. (1-13) 

The V„(u, v) so defined is normally termed the complex visibility relative to the chosen phase 
tracking center. 

It is clear that dealing with the element directivity Av should be postponed to the 
final step of deriving the sky intensity, and that then it should simply divide the derived 
intensities (if all elements have the same reception pattern). This division will, however, 
not only produce a better estimate of the actual intensities in this direction, but will also 
increase the errors (of all types) in directions far from the center of the element primary 
beam, where one is dividing by small numbers. 

Although the factor Av looks like merely a nuisance, it is actually the reason that the 
second form of the final assumption (used in Section 4.2) is so acceptable in many practical 
cases—AV(B) falls rapidly to zero except in the vicinity of some So, the pointing center for 
the array elements. 

5.   EXTENSIONS TO THE BASIC THEORY 

Two simple extensions to this basic theory are worth mentioning at this point. 

5.1. Spectroscopy. 
First, consider the case of observing a spectral line. Here the appearance of the sky 

may change quite rapidly as a function of frequency, and one would like to make synthesis 
images at a large number of closely spaced frequencies. Clearly, one can do this by inserting 
narrowband filters into the early, linear, parts of the interferometer, and simply repeat 
the processing for each frequency, either seriatim or simultaneously. However, there is a 
technically more attractive approach. With current technology, it is attractive to implement 
the latter portions of the interferometer in digital hardware. In this technology, it is quite 
inexpensive to add additional multipliers to calculate the correlation as a function of lag. 
Admitting a range of quasi-monochromatic waves to the interferometer, we can write an 
expression for the correlation as a function of lag, noting that for each quasi-monochromatic 
wave, a lag is equivalent to a phase shift, i.e., a multiplication by a complex exponential 

V(u, v, r) = f V{u, v, i/Je2"^ di/. (1-14) 

The above is clearly a Fourier transform, with complementary variables i/ and r, and can 
be inverted to extract the desired V(u, v, u). Since, in this digital technology, one is dealing 
with sampled data, I give the sampled form of the inversion below: 

V^u, v, nAi/) = £ V(u, v, mAr)e-2,rimnA,/ Ar. (1-15) 
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The fact that we are dealing with sampled data is of some interest, and we should stop and 
inquire about how the Fourier sampling theorem is to be applied. Examining the above, 
in its full complex form, we see that the replication interval is l/Ar in frequency, so that 
the band of frequencies must be limited, before sampling, to a total bandwidth of less than 
this, to avoid loss of information in the sampling process. 

This is different from the statement one usually encounters, in which a prefiltering to 
1/2Ar is required to preserve the information in the sampling process for a signal (actually 
it is usually stated, equivalently, as requiring a sampling interval of 1/2B, where B is the 
prefilter bandwidth). This factor of two difference is due to the complex nature of the 
quantities we have been dealing with—the V(u, v, i/) are complex numbers, calculated by a 
complex multiplication of the complex field quantities. Complex multipliers and complex 
samplers require at least twice as many electronic components as devices that produce a 
real number, and the resulting doubling of the hardware permits us to sample a factor of 
two less often. 

However, one can also develop this theory from the conventional viewpoint of dealing 
with real numbers only. Here the 2B sample rate is required, and maintains all the infor¬ 
mation in the signals. We can exchange this faster sampling rate for the double hardware 
needed to produce the complex version of the signals. The real parts of the various V(u, v, v) 
are derived from the part of the correlation function that is even about r = 0, and the odd 
part supplies the imaginary part of V{u,v,v). 

Finally, if one derives the spectrum in this manner, one can, clearly, convert back to the 
single continuum channel at zero lag simply by summing the derived frequency-dependent 
V. This process clearly results in a complex number, even though each measurement was 
only a real number. The process of transforming a real function into a complex one by 
Fourier transforming and then transforming back on half the interval is called a Hilbert 
transform, and is an alternate method to implementing complex correlators. 

5.2. Polarimetry. 
Now, in a final remark, let me look back to Section 2, to the first simplifying assumption, 

that of a scalar field. Actually, the electromagnetic field is a vector phenomenon, and 
the polarization properties carry interesting physical information. For the case of noise 
emission, one must be a bit careful about the definition of polarization. A monochromatic 
wave is always completely polarized, in some particular elliptical polarization, in that a 
single number describes the variation of the fields everywhere. For electromagnetic noise, 
polarization is defined by a correlation process. One picks two orthogonal polarizations and 
analyses the radiation of the quasi-monochromatic waves into the components in these two 
polarizations. Then the polarization of the quasi-monochromatic wave is described by the 
2x2 matrix of correlations between these two resolutions into orthogonal components. For 
instance, if we pick right and left circular polarization as the two orthogonal modes, then 
the matrix 

ABB*)  (RI*)\ 
\(LB*)    {LL*)) (1-16) 

describes the polarization. This can be related to more familiar descriptions of polarization. 
For instance, the Stokes parameters have the intensity /, two linear polarization parameters 
Q and U, and a circular polarization parameter V related to the above numbers in simple 
(and more or less obvious) linear combinations: 

I Q-iU    I-V J l       ' 
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The complex correlation functions on the celestial sphere are preserved in the spatial 
coherence functions that interferometers measure. That is, one can derive, for instance, 
the distribution of (RR*) on the sky by measuring the coherence function of R on the 
ground, and so forth for the other components of the matrix in (1-16). Since the intensity 
is the quantity in which one is always interested, one usually forms the sum of the R and 
L coherence functions before transforming to the sky plane, which one can always do, since 
the relations are linear. One can choose to do the same with the other Stokes parameters, 
or one can calculate the transforms of the mutual coherence between R and L to find 
the distribution of (RL*) on the sky, and later note that this is, in terms of the Stokes 
parameters, Q + iU. 
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2.   The Interferometer in Practice 

A.  RICHARD THOMPSON 

The theoretical basis of interferometry has been discussed in the previous Lecture, 
and here we are concerned with some practical effects that modify the response. Other 
discussions of the interferometer response can be found in Swenson and Mathur (1968), 
Fomalont (1973), Fomalont and Wright (1974), Meeks (1976), and Christiansen and Hogbom 
(1985); a detailed and extensive review is given by Thompson, Moran and Swenson (1986). 
Synthesis arrays, which produce images by Fourier synthesis from measurements of complex 
visibility, can be analyzed as ensembles of two-element interferometers. Many of the effects 
can therefore be understood from a discussion of the properties of a two-element instrument. 

1.   RESPONSE OF AN INTERFEROMETER 

A simplified block diagram of an interferometer is shown in Figure 2-1. The two 
antennas point toward a distant radio source in a direction indicated by unit vector s. b 
is the interferometer baseline, and the wavefront from the source reaches one antenna at a 
time Tg later than the other. r0 is called the geometrical delay and is given by 

Tg = h'8/C, (2-1) 

where c is the speed of light. The signals from the antennas pass through amplifiers which 
incorporate filters to select the required frequency band of width Ai/. The component in 
which the signals are combined is the correlator, which is a voltage multiplier followed by a 
time averaging (integrating) circuit. If the input waveforms to the correlator are Vi(t) and 
Vjf*), the output is proportional to 

(Vi{t)V3(t)), (2-2) 

where the angular brackets denote a time average. We can represent the received signals 
by Fourier components of the form V^t) = vicos2xi/(t — Tg) and Va(t) = vj cos 2x1/*. The 
output of the correlator is then 

r(Tg) = vi V2 cos 2xi/r0. (2-3) 

Tg varies slowly with time as the earth rotates, and the resulting oscillations of the cosine 
term in Equation 2-3 represent the fringe pattern. We may assume that these oscillations 
are sufficiently slow that the fringes are not significantly attenuated by the averaging (an 
expression for the fringe frequency is given in Section 8). In contrast, the component at 
frequency 2i/ generated in the multiplication is effectively filtered out. Note that the term 
viVj, which represents the fringe amplitude, is proportional to the received power. 

We now express the interferometer output in terms of the radio brightness integrated 
over the sky. Let 1(a) represent the radio brightness in the direction of unit vector s at 
frequency i/. The brightness is also sometimes referred to as intensity and is measured in 
Wm~3Hz~1sr~1. Note that / refers to the component of the radiation that is matched 
to the polarization of the antennas, which we assume are identically polarized. The way in 
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T„ = b-s/c 

V! COS 2ir v(t-Tg) 

Integrator 

Vg cos 2v vt 

■Correlator 

r(Tfl) 

Figure 5—1. Simplified schematic diagram of a two-element interferometer. 

which the antenna polarization is varied to explore the total radiation field is considered 
in Lecture 4. The signal power received in bandwidth Av from the source element d£l is 
A(s)7(s)Ai/dn, where A(s) is the effective collecting area in direction s, which we assume 
to be the same for each of the antennas. The resulting output from the correlator is 
proportional to the received power and to the cosine fringe term. Thus, omitting constant 
gain factors, we can represent the correlator output for the signal from solid angle dfl by 

dr = A(s)/(s)Ai/dncos2xi/r9. 

In terms of the baseline and source position vectors we can write 

= At/ f A(s)/(s) 
Js 

2xi/b*s 
cos du. 

(2-4) 

(2-5) 

The integral in Equation 2-5 is taken over the entire surface S of the celestial sphere, 
subtending 4x steradians, but in practice the integrand usually falls to very low values 
outside a small angular field as a result of the antenna beamwidth, the finite dimensions 
of the radio source, and other effects which restrict the field of view (see Sections 10 and 
11, and Lecture 8). We assume that the bandwidth Av is sufficiently small that variation 
of A and / with 1/ can be ignored. Two further assumptions have been made in deriving 
Equation 2-5. First, the source must be in the far field of the interferometer so that the 

10 
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Figure 2—2. Position vectors used in deriving the interferometer response to a source. The source is 
represented by the contours of radio brightness 1(B) on the sky. 

incoming wavefronts can be considered to be plane. With the longest spacings and shortest 
wavelengths commonly in use, this condition may not be met by some objects within the 
solar system. Second, the assumption that the responses from different points in the source 
can be added independently is implicit in the integration over angle in Equation 2-5. This 
requires that the source be spatially incoherent—i.e., that signal components emanating 
from different points on the source be uncorrelated. 

When taking observations to make an interferometric image of a radio source, it is 
usual to specify a nominal source position on which the synthesized field of view is to be 
centered. We represent this position by the vector So, as shown in Figure 2-2, and write 
s = so + o*. From Equation 2-5 we then obtain 

(2-6) 

(2ici/h-So\  f           f          2xi/b-g 
r =Ai/cos I  J /  A{a)I[cr) cos du 

.   f2xvh-Bo\  f                  .   2xi/b■ a 
—Ai/sin I  1  /  A{a)I{a) am dll. 

The complex visibility of the source is defined as 

V = iVle^ = / A(a)I(a)e-2xivl>^edQ, (2-7) 
Js 

where A(cr) = A(a)/Ao is the normalized antenna reception pattern, AQ being the response 
at the beam center. We are considering the case in which the antennas track the source, 
and the system therefore responds to the modified brightness distribution A (a) I (a). By 
separating the real and imaginary parts of V in Equation 2-7 we obtain 

jlo|V|cos^r = f A(a)I{<r) cos ^2*l/b,<M dQ 9 ^-8) 

and 
Ao|V| sin ^v = - f A{a)I{a) sin f2*"*'* j dQ. (2-9) 

11 
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Amplifier 
Response £„ 

v      Frequency 

Figure 2—S. Idealised rectangular response of the receiving system. 

Substitution of Equations 2-8 and 2-9 into Equation 2-6 gives 

r = AoAv\V\ cos f2*"*'*0 _ ^ . (2-10) 

In the interpretation of interferometer measurements the usual procedure is to measure the 
amplitude and phase of the fringe pattern as represented by the cosine term in Equation 
2-10, and then derive the amplitude and phase of V by appropriate calibration. The 
brightness distribution of the source is obtained from the visibility data by inversion of the 
transformation in Equation 2-7. 

2.   EFFECT OF BANDWIDTH IN A TWO-ELEMENT INTERFEROMETER 

Since the frequency of the cosine fringe term in Equation 2-10 is proportional to the 
observing frequency 1/, observing with a finite bandwidth At/ results, in effect, in the combi¬ 
nation of fringe patterns with a corresponding range of fringe frequencies. For the response 
with an infinitesimal bandwidth dv we can write, from Equations 2-1 and 2-10, 

dr = Ao|V| cos (2*i/rf - ^r) dv. (2-11) 

= *»|v| / 
Jvn—A 

Then for a rectangular frequency passband, as shown in Figure 2-3, the interferometer 
response is 

coa(2'KVTg — 4v)dv 
'VQ—A1//J 

= ^|V|Ay™^^ cos (2w, - <h) , (2-12) 

where I/Q is the center frequency of the observing passband. Thus in the system that we 
are considering the fringes are modulated by a sine-function envelope, sometimes referred 
to as the bandwidth pattern. The full fringe amplitude is only observed when the source is 
in a direction normal to the baseline so that ra = 0. The range of r, for which the fringe 
amplitude is within, say, 1% of the maximum value can be obtained by writing 

sinxAvT, (XAVT,)*     ^^ 
 * £- 1 - *——^- > 0.99, 

which yields |Ai/r9| < 0.078, where the approximation in Equation 2-13 is valid for 
|xAi/rJ <C 1. The angular range of Tg within this limit depends upon the length and 
orientation of the baseline: for example, with Av = 50 MHz and |b| = 1 km, the response 
falls by 1% when the angle 0 in Figure 2-1 is 2 arcmin. In order to observe a source over a 
wide range of hour-angle, it is necessary to include within the system a computer-controlled 
delay to compensate for Tg. 

12 
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Frequency After Mixer 
Upper Sideband (^RF-^Lo) 
Lower Sideband (^LO"^RF' 

Mixer 
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1/1 IF 
Correlator 
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Figure 2—4. Simplified schematic diagram of an interferometer system incorporating frequency conversion 
and an instrumental time delay to compensate for r9. 

3. DELAY TRACKING AND FREQUENCY CONVERSION 

A block diagram of an interferometer system that includes an instrumental compensat¬ 
ing delay is shown in Figure 2-4. Frequency conversion of the incoming signals at frequency 
J/RF with a local oscillator at frequency i^o is also included. Practical receiving systems 
incorporate frequency conversion because it is technically more convenient to perform such 
functions as amplification, filtering, delaying, and cross-correlating of the signals at an inter¬ 
mediate frequency that is lower than I/RF and remains fixed when the observing frequency 
is changed. The signals at the frequencies J/RF and VLO are combined in a mixer which 
contains a non-linear element (often a diode) in which combinations of the two frequencies 
are formed. The intermediate frequency Pip is related to the mixer input frequencies by 

I'R.F = VLO ± ^p • (2-14) 

Thus the mixer input is in two frequency bands, as shown in Figure 2-5: these are referred 
to as the upper and lower sidebands and correspond to the + and — signs in Equation 2-14 
respectively. For observations at frequencies up to a few tens of gigahertz the signal from 
each antenna is usually first applied to a low-noise amplifier to obtain high sensitivity, and 
then passed through a filter that transmits only one of the two sidebands to the mixer. 
The response of such a single-sideband system can be obtained by considering the phase 
changes 4>i and fa imposed upon the signals received by antennas 1 and 2 before reaching 
the correlator inputs. For the upper sideband case we have 

^i = 2wvRFTg = 2jr(*/Lo + VlF)Tg , 

fa = 2*i/iFri + fao > 
(2-15) 
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Figure 2-6. Relationship of RF, IF, and LO frequencies. 

where fao is the difference in the phase of the local oscillator signal at the two mixers, 
and u is the instrumental delay that compensates for r9. The upper-sideband response of 
the interferometer is obtained by replacing the argument of the cosine function in liquation 
2-10 by fa - fa - far: 

rtt = AQAI'IVI cos[2x(i/t,o»V + flpAr) - <f>v - ^LO] • (2-16) 

Here Ar = Tg — r, is the tracking error of the compensating delay r». Note that the output 
fringe oscillations, which result from the time variation of Tg, in this case depend upon the 
local oscillator frequency PLO rather than the observing frequency at the antenna as in 
Equation 2-10. For the case in which the lower sideband is the one that is accepted by the 
receiving system we have: 

fa = -2*(I/LO - ^FK , ,2_17. 
fa = 2wVlfTi ~ fa,o , 

whence 
ri = AoAi/|V| cos[2x(i/Lofy - i^pAr) - 0y - ^LO] • (2-18) 

Here the differences in the signs of the various terms compared with those in Equations 
2-15 occur because in lower sideband conversion a change in phase of the RF signed causes 
a phase change of opposite sign in the IF signal. The phase of the local oscillator also enters 
with a different sign in the two cases. 

At frequencies approaching 100 GHz and higher, it is difficult to make low-noise am¬ 
plifiers to place ahead of the mixers, and the greatest sensitivity is obtained by connecting 
the antenna directly to the mixer input without a filter to select only one sideband. The 
result is a double-sideband system, and the response is obtained from the sum of Equations 
2-16 and 2-18: 

rd = fu + n = 2AI/J4O|V'| cos(2jri/Lorf - fas — fao) cos(2*i/iFAr) . (2-19) 

Note that the delay-tracking error Ar here appears in a separate cosine term that modu¬ 
lates the amplitude rather than the phase of the cosine fringe term. As a result, the double- 
sideband system requires more critical adjustment of the instrumental delay to maintain 
the visibility amplitude than does the single-sideband system. Other disadvantages of the 
double-sideband system include greater vulnerability to interference, and complication of 
spectral line observations since the spectra of the two sidebands are superimposed. Sep¬ 
aration of the sideband responses after correlation of the signals by a technique involving 
periodic insertion of x/2 phase shifts in the local oscillator is used in some instruments: for 
a more detailed discussion see Thompson, Moran and Swenson (1986). 
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1 
Quadrature 
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(Sine) 
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Im[v] 
Figure 2—6. Complex correlator system. The quadrature network introduces a jr/2 phase shift: a signal 
of the form cos 2xvt at its input becomes cos(2icvt — ir/2) at the output. 

4. FRINGE ROTATION AND COMPLEX CORRELATORS 

The output from the correlator represented by Equation 2-16, 2-18 or 2-19 is fed to 
a computer which performs some form of optimal analysis to determine the amplitude and 
phase of the fringe oscillations. The fringe visibility V can then be obtained by calibration 
of the instrumental parameters. This calibration usually involves observation of one or 
more sources with known positions, flux densities, and angular dimensions. For an array 
such as the VLA, the frequencies of the fringe oscillations can exceed 150 Hz for the longest 
antenna spacings, and in VLBI the fringe frequency can exceed 100 kHz. To preserve 
the fringe information it is necessary to sample the correlator output at least twice per 
fringe period. Thus the data rate to the computer can be very much higher than that 
necessary to follow the changes in the visibility V, for which values at intervals of order 
one second are likely to be adequate. However, by inserting progressively varying phase 
shifts in the local oscillator signals it is possible to slow down the fringe oscillations, and 
reduce the computation required. Thus in Equations 2-16, 2-18 and 2-19, if we vary <£LO SO 

that (2xi/Lor0 ~ <£LO) remains constant, the correlator output will vary only as a result of 
changes in V and slow drifts in the instrumental parameters. This procedure, in which fao 
is usually controlled by the same computer that regulates the delay tracking, is variously 
referred to as fringe rotation or fringe stopping. 

After fringe stopping, the output of the correlator in Figure 2-4 is a slowly varying 
voltage (a constant voltage for the case of a point source at the phase reference position). 
This voltage does not provide a measure of the amplitude and phase of the fringes. To 
measure the complex fringe amplitude in this case, a scheme using two correlators, as 
shown in Figure 2-6 can be used. For each antenna pair a second correlator with a ic/2 
phase shift in one input is added. The response of the second correlator can be obtained by 
replacing fa in Equations 2-15 and 2-17 by fa — x/2. Then in Equations 2-16, 2-18 and 
2-19 the cosine term containing Tg becomes a sine, with no change in the argument. The 
two outputs in Figure 2-6 can thus be regarded as measuring the real and imaginary parts 
of the complex fringe amplitude, or complex visibility. Such a scheme is usually referred to 
as a complex correlator. In addition to allowing the visibility to be measured with zero fringe 
frequency, the complex correlator provides an improvement of \/2 in signal-to-noise ratio 
over a single correlator, since the noise fluctuations at the two outputs are uncorrelated. 
See Lecture 6 for an analysis of signal-to-noise ratios. 
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1/A/C 

Figure 2—7.  The (u,», w) and (l,m,n) coordinate systems used to express the interferometer baselines 
and the source brightness distribution, respectively. 

5. PHASE SWITCHING 

Phase switching is a technique that is included in many interferometer systems to 
eliminate errors in the form of constant or slowly varying offsets in the correlator outputs. 
Such errors can result from misadjustment of the correlator circuitry, cross coupling between 
the signals at the correlator inputs, and various other effects. They can be very effectively 
reduced by periodically reversing the sign of the multiplier output in the correlator before 
the data are averaged. To prevent the loss of the wanted output from the radio source, 
the phase of the signal at one antenna of the interferometer pair is synchronously reversed 
by switching an extra half-wavelength of transmission line into the signal path, or, more 
commonly, reversing the phase of a local oscillator signal. Reversing the phase of the signal 
at one antenna has the effect of reversing the sign of the wanted correlator output, and this 
reversal cancels the reversal applied at the correlator output. In practice, the frequency of 
the switching is of the order of 10 or 100 Hz. This technique, known as phase switching, 
was first introduced by Ryle (1952) as a means of implementing the multiplicative action 
of a correlator using a power-linear diode detector. For a description of a more recent 
application of phase switching see Granlund, Thompson and Clark (1978). 
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48=90' 

QE 

Figure 2—8. As the earth rotates, the baseline vector b, which represents the spacing of the two antennas, 
traces out a circular locus in a plane normal to the direction of declination (6) equal to 90°. If the antennas 
are in an east-west line on the earth, then the vector b is normal to the rotation axis. 

6.   COORDINATE SYSTEMS FOR IMAGING 

The practical application of Equation 2-7 requires the introduction of a coordinate 
system, and the one that is usually chosen is shown in Figure 2-7. The baseline vector has 
components (u, v, w) where w points in the direction of interest, i.e., towards a position 
So that becomes the center of the synthesized map. Note that u and v are measured in 
wavelengths at the center frequency I/Q, and in directions towards the east and north respec¬ 
tively. Positions on the sky are defined in / and m, which are direction cosines measured 
with respect to the u and v axes. A map in the l-m plane represents a projection of the ce¬ 
lestial sphere onto a tangent plane at the l-m origin. Distances in / and m are proportional 
to the sines of the angles measured from the origin, which is a convenient practical system. 
In these coordinates the parameters used in the derivation of the interferometer response 
in terms of visibility (Eqs. 2-6 and 2-7) become 

vb-a 
= ul + vm + tim, 

i/b«So 
= w. 

and    dn = 
dldm dldm 

n y/1 - P - m3 

Thus in the coordinates of Figure 2-7, Equation 2-7 becomes 

V(u,v,w)= r  n A{l,m)I{l,m)e-2*i[ia+vrn+w&1-l2-ma-1)] 
J—00 J—00 

(2-20) 

dldm 

y/l-l2- m* 
(2-21) 

where the integrand is taken to be zero for I2 + m2 > 1. Note that we express the complex 
visibility as a function of (u, v, ti/), since these are the coordinates that represent the positions 
of the antennas with respect to the nominal direction of the source, SQ. The visibility is 
also a function of the brightness distribution AI. 

To simplify the inversion of Equation 2-21, by means of which /(/, m) is obtained from 
the visibility, it is desirable to reduce this equation to the form of a two-dimensional Fourier 
transform. This form occurs when w = 0, and the conditions required can be understood 
by considering the way in which the earth's rotation carries the antennas through space. It 
should be evident from Figure 2-8 that the rotation causes the tip of the baseline vector to 
trace out a circle concentric with the earth's rotation axis. The rising and setting of a point 
on the sky usually limit the range over which V can be measured to an arc of the circle. 
In general, for a two-dimensional array of antennas on the surface of the earth, the circular 
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Pole 

M,> 

Equatorial Plane 

Figure 2—9. Celestial hemisphere showing the projection of a source at (ao» SQ) onto the tangent plane at 
the pole. The spacing-vector loci are for an array with east-west baselines, and lie in a plane parallel to 
the earth's equator. The direction of the tw-axis is here chosen to be that of the pole (6 = 90°). 

loci resulting from the different baselines have different diameters and lie in different planes. 
However, for the particular case of an array of antennas in an east-west line on the earth's 
surface the components of the baseline vector parallel to the earth's axis are zero, and the 
baseline-vector loci are coplanar. Then, if we choose the tu-axis to lie in the direction of the 
celestial pole, so that w = 0, Equation 2-21 becomes 

Vfu,v) = f" r A(l,m)I(l,m)e-»»M+-»)      «*"       . (2-22) 
J-ooJ-oo y/l—l2 — m2 

This equation is a two-dimensional Fourier transform, the inverse of which is 

A{l,m)I{l,m) =  f~   rv{)e2^i^)dndv 

y/l-l2- m2      J-ooJ-co 
(2-23) 

Equation 2-23 can be applied to all parts of the hemisphere shown in Figure 2-9. Usually 
we want to map a small area of the sky defined by the antenna beams. If this is centered on 
right ascension OEQ and declination SQ, we can choose the direction of the v-axis as in Figure 
2-9 so that / is small within the region of interest and is closely equal to angular distance 
on the sky. However, m remains the sine of the angular distance measured from the pole, 
i.e., m = cos 6, and the scale of the map is compressed in the m direction by a factor sin S. 
The coordinate transformation 

m' = (m — cos SQ)/ sin £o > 
(2-24) 

results in a map in (/', m') in which the origin is at (CKQ, SQ), and the scale factor in the m' 
direction is correct at that point. However, there is still a progressive change in scale in the 
m' direction across a map. This can be ignored in small field maps, and in large field maps 
the data, which are usually computed for points at uniform increments in / and m, can be 
interpolated into a more desirable coordinate system (Rots 1974). 
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Figure 2—10. Comparison of the tv-component and the antenna spacing when the direction of the source 
is close to that of the baseline. 

It is clear from Figure 2-9 that for an east-west array the projected spacings of the 
antenna pairs become seriously foreshortened in the v direction for the observations at 
low declinations. In that part of the sky it is necessary to use baselines with a significant 
component parallel to the earth's axis, i.e., non- east-west baselines. Thus for a two- 
dimensional array of antennas the baseline vectors do not remain coplanar in (u,v,u;) 
space. A system of three coordinates is required to accommodate the spacing vectors, 
and we return to Equation 2-21. The usual way in which Equation 2-21 is used for non- 
east-west baselines depends upon |/| and |m| being small enough that we can write 

(\/l - I2 - m2 - l) w ^ - \(l2 + m2)u; =* 0. (2-25) 

Then Equation 2-21 becomes 

V(u, v) = r 1°° A(l, m)/(/, m)e-»",C««i-H»») dl dm. (2-26) 
J —CO J — oo 

For |/| and |m| small, i.e., small field imaging, the dependence of the visibility upon w is 
very small and can be omitted. From Equation 2-26 we can write 

A{l,m)I(l,m)= P   (    V^v^W+^dudv. (2-27) 
J—oo J—oo 

For arrays in which the baselines do not remain coplanar as the earth rotates, the 
approximation in Equation 2-25 results in a phase error of x(l2 + m2)w for radiation from 
the point (/,m). Note that the condition for the approximation in Equation 2-25 to be 
valid is |x(/2 + m2)ii/| <C 1, not just I2 + m2 <C 1. Unless special procedures are used, this 
condition places a limit on the size of the source that can be mapped without distortion. 
The limit can be roughly estimated as follows: For any pair of antennas the maximum 
value of w occurs when the source under observation is at a low angle of elevation and an 
azimuth close to that of the baseline, as shown in Figure 2-10. Under such circumstances 
w is approximately equal to b/X, the baseline length measured in wavelengths. Thus for 
an array of antennas for which the half-power width of the synthesized beam is 0HPBW> we 
can write 

1_ « hfL a „,„„, (2-28) 
0HPBW A 

where 6max is the longest baseline. If 0F is the width of the synthesized field, the maximum 
phase error is about 

(2-29) *9} 
40HPBW 

19 



A. Richard Thompson 

h = -6",8=0 

Figure 2—11. Coordinate system for specification of baseline parameters. X is the direction of the meridian 
at the celestial equator, Y is toward the east, and Z toward the north celestial pole. 

Since this is the moxtmum phase error, we can possibly allow it to be as high as 0.1 radian 
without introducing serious errors in the image, from which we obtain 

9, <r/s HPBW > (2-30) 

where the two angles are measured in radians. Then, for example, if 0HPBw = 1", Op <2'.5. 
For fields of greater width than allowed by Equation 2-30 there are ways of avoiding or 
ameliorating the distortion introduced by the phase errors—see Lecture 8. 

7.   ANTENNA SPACINGS AND (u,v,w) COMPONENTS 

In two-element interferometers it is sometimes convenient to specify the baseline vector 
in terms of its length and the hour-angle and declination of the baseline direction on the 
northern celestial hemisphere; see, for example, Rowson (1963). When a greater number 
of antennas are involved it is more convenient to specify the antenna positions relative to 
some reference point measured in a Cartesian coordinate system. For example, a system 
with axes pointing towards hour-angle h and decimation 6 equal to (h = 0,6 = 0) for X, 
(h = -6h,6 = 0) for Y, and (6 = 90°) for Z may be used as in Figure 2-11. Then if Lx, 
Ly, and Lz are the corresponding coordinate differences for two antennas, the baseline 
components (u, v, w) are given by 

sin Ho 
— sin SQ cos HQ 

cos SQ cos HQ 

cos HQ 0     } f Lx 
sin SQ sin HQ cos So LY (2-31) 

where HQ and SQ are the hour-angle and declination of the phase reference position, and 
A is the wavelength corresponding to the center frequency of the receiving system. By 
eliminating HQ from the expressions for u and v we obtain the equation of an ellipse in the 
u-v plane: 

- (Ls/Ajcosfr/ 
sin6o 

Thus as the interferometer observes a point on the celestial sphere, the rotation of the earth 
causes the u and v components of the baseline to trace out an elliptical locus. This ellipse 

•»+ t )— ^X* Ly 
A2       ' 

(2-32) 
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Lz COS S0 

Figure 2—12. Elliptical loci representing the projection of the baseline vector onto the u-v plane as a 
source is tracked across the sky. The lower curve corresponds to a reversal of the direction of the baseline 
vector, and represents the points for which the visibility is the complex conjugate of that measured on the 
upper curve. The axial ratio of the ellipses is equal to sin SQ. For an east-west baseline Lz — 0, and a single 
ellipse is centered on the u-v origin. 

is simply the projection onto the u-v plane of the circular locus traced out by the tip of the 
baseline vector, as shown earlier in Figure 2-8. Since /(/, m) is real, V(—u, —v) = V*(tt, v), 
and at any instant the correlator output provides a measure of the visibility at two points 
in the u-v plane, as in Figure 2-12. For an array of antennas the ensemble of elliptical 
loci is known as the transfer function, W(u, v), which is a function of the declination of the 
observation as well as of the antenna spacings. The transfer function indicates the values 
of u and v at which the visibility function is sampled. Since the visibility function for a 
point source at the l-m origin is a constant in u and v, the Fourier transform of the transfer 
function indicates the response to a point source, i.e., the synthesized beam. In designing 
arrays the principal aim is to obtain transfer functions that cover the u-v plane as widely 
and as uniformly as possible. The term transfer function was introduced from an analogy 
with electrical filter theory. An interferometer responds to structure on the sky with spatial 
frequency u cycles per radian in the / direction and v cycles per radian in the m direction. 
The transfer function of an array therefore indicates its response as a spatial frequency 
filter. 

8.   ASTRONOMICAL DATA FROM INTERFEROMETER OBSERVATIONS 

In synthesis mapping an interferometer or array is used to provide values of the com¬ 
plex visibility as a function of u and v, from which a brightness distribution can be derived. 
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For this purpose the visibility measurements should be fairly uniformly distributed over the 
u-v plane, from the origin to some outer boundary that determines the angular resolution. 
The design of synthesis arrays, which we discuss below, is based largely upon these consid¬ 
erations. If, however, we wish to measure the positions of a series of unresolved sources, the 
principal consideration is the ability to interpolate the measured visibility phase between 
one baseline and another, and uniformity of coverage is less important. This consideration 
also applies to measurements used to monitor universal time, polar motion and geodynamic 
variation in antenna positions. 

In addition to the measurement of complex visibility, two other characteristics of the 
interferometer output can be used to determine astronomical data. These are principally 
of importance in VLBI, in which it is usually not possible to calibrate the interferometer 
fringe phase. The first is the bandwidth pattern in Equation 2-12, which can be used to 
measure Tg. This is accomplished by finding the value of the instrumental delay rv that 
maximizes the fringe amplitude. A wide receiver bandwidth, or a series of narrow bands at 
different frequencies, is used to minimize the width of the response as a function of u and 
thereby increase the accuracy. For a source at position (Ho,So), Tg is equal to XV/VQ where 
w is given by Equation 2-31. The second characteristic that can be measured is the fringe 
frequency. Since the relative phase of the signal at the two antennas changes by 2T when w 
changes by one (wavelength), the fringe frequency is equal to dw/dt, which can be obtained 
from Equation 2-31 by differentiation. A useful expression for the fringe frequency vp is 

dw _ et% ^^x 
Vp = — = —WeUCOSO , (2-33) 

dt 

where oje = dHo/dt is the angular rotation velocity of the earth. Thus vp goes through zero 
on the v-axis of the u-v plane. Note that a single observation of w and dw/dt is sufficient 
to determine the position of a source if the interferometer baseline is known. 

9.  DESIGN OF SYNTHESIS ARRAYS 

In an array of na antennas, a total of ^na(na — 1) pair combinations can be formed. 
The signal from each antenna is then divided in na — 1 ways and fed to a system of corre¬ 
lators. The rate at which visibility measurements can be made, relative to that for a single 
interferometer, is approximately proportional to n2. Note that since the signals are ampli¬ 
fied before splitting there is no loss in sensitivity, as may occur in instruments for infrared 
or shorter wavelengths. The primary concern in designing the configuration of antennas is 
to obtain coverage of the u-v plane (i.e., sampling of the visibility function) as uniformly 
and efficiently as possible over a range determined by the required angular resolution. 

A commonly used configuration of antennas for synthesis mapping is an east-west 
linear array. If the various pair combinations of the antennas encompass a series of spacings 
which increase by a constant increment, the transfer function consists of a series of ellipses 
centered on the u-v origin with a constant increment in the major axes. The axial ratios of 
the ellipses are equal to sin So, as in Figure 2-12, which largely determines the axial ratio of 
the synthesized beam. Thus, for angular distances greater than about 30° from the celestial 
equator, east-west linear arrays are satisfactory for two-dimensional imaging. Some basic 
considerations of linear configurations of antennas are illustrated in Figure 2-13. In a simple, 
uniformly-spaced array as in (a) the longest spacing is na — 1 times the unit spacing. The 
shorter spacings occur more than once and are highly redundant. Figure 2-13(b) shows a 
non-redundant arrangement of four antennas designed by Arsac (1955). For more than four 
antennas there is always some redundancy, as in the example by Bracewell (1966; see also 
Bracewell et al. 1973) in Figure 2-13 (c). Other examples of minimum-redundancy arrays 
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(a) 

+ + (b) 
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Figure 2—IS. Examples of several types of linear arrays of antennas, (a) Uniform-spacing array, (b) non- 
redundant array (Arsac 1955), (c) minimum-redundancy array (Bracewell 1966), (d) minimum-redundancy 
array (Moffet 1968), and (e) array with movable element represented by the open circle. 

are described by Moffet (1968), and an example with eight antennas for which the longest 
spacing is 23 times the unit spacing is shown in Figure 2-13(d). Only a few such arrays 
have been constructed for radio astronomy, and configurations with a number of movable 
antennas, which offer greater flexibility, are generally preferred. 

Figure 2-13 (d) shows an arrangement of four fixed antennas and one movable one. 
By repeating an observation for each position of the movable antenna, as indicated by 
the crosses, it is possible to include all baselines up to the overall length of the array, 
with intervals equal to the increments in the position of the movable antenna. Although 
several days are required to complete an observation, a large number of baselines can be 
covered using a relatively small number of antennas, and highly detailed images obtained. 
A number of notable instruments make use of this principle: these include the One-Mile 
and Five-Kilometer arrays at Cambridge (Ryle 1962, 1972) and the Westerbork Synthesis 
Radio Telescope (Hogbom and Brouw 1974). For observations at low declinations, two- 
dimensional configurations of antennas are generally required to obtain adequate resolution 
in both right ascension and declination. The design of two-dimensional arrays is more of an 
empirical matter than that of one-dimensional arrays, since there are no known solutions 
similar to those based on variability of location of small numbers of antennas or on minimum- 
redundancy. The main concern is to obtain adequate coverage of the u-v plane, whilst using 
a fairly simple geometrical configuration for reasons of economy. These considerations are 
well illustrated by the design of the VLA (Thompson et al. 1980; Napier, Thompson and 
Ekers 1983). The antenna configuration and examples of the transfer function for the VLA 
are shown in Figure 2-14. In the configuration in Figure 2-14a the distance from the 
center of the array of the nth antenna on each arm, counting outwards from the center, is 
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proportional to n1*716. With this power-law design, no two spacings on any arm are equal. 
The array is rotated through 5° from the position of north-south symmetry to avoid exact 
east-west baselines, which would otherwise occur between antennas on the two southern 
arms. At declination 0° the u-v components for all east-west baselines become coincident 
with the u-axis. Thus the power-law spacing and the rotation are features of the VLA 
design that reduce redundancy in the coverage of the u-v plane. 

The same considerations of uniformity of sampling in the u-v plane also apply to 
arrays for imaging by VLBI. The main practical difference is that since the antennas are 
not directly interconnected, except by telephone lines for monitor and control purposes, 
there is no advantage to any particular geometric pattern. Thus, after the u-v coverage, 
the main concern is the choice of sites for freedom from interference, low water vapor in the 
atmosphere, convenience for service, etc. The proposed locations for antennas in the Very 
Long Baseline Array (VLBA), and examples of transfer functions, are shown in Figure 2-15. 
The effect of the addition of an antenna in low earth orbit to an array like the VLBA is 
shown in Figure 2-16. The orbital motion fills out and extends the coverage very effectively. 
For even longer spacings, it would be possible to use two or more antennas in higher orbits, 
with periods differing by about 10%, to give a wide distribution of spacings (Preston et al. 
1983). 

10.   THE EFFECT OF BANDWIDTH IN RADIO IMAGES 

We have seen in Section 2 that the effect of a finite receiving bandwidth Av is to 
modulate the fringes with an envelope function of width inversely proportional to Av, and 
that as a result we must insert an instrumental delay r; to compensate for the geometrical 
delay Tg. This compensation is exact only for radiation from the center of the synthesized 
field, which is usually chosen as the delay tracking point. Variation of r, over the field 
causes a radial blurring of the image (see, e.g., Thompson and D'Addario 1982), as will now 
be described. 

In observing continuum radiation we are interested in the mean brightness over the 
bandwidth Av, and the visibility data are processed as though they were all observed at 
the center frequency VQ indicated in Figure 2-17a. In particular, the spatial frequency 
coordinates in the u-v plane are calculated for the band center. Let these be (uo,vo) for 
frequency VQ and (u, v) for another frequency v within the receiving band. Since u and v 
represent projected antenna spacings measured in wavelengths, we can write 

(«o.«'o)=(^«,^«'). (2-34) 

Now consider the visibility that corresponds to a small band of frequencies centered on v 
as in Figure 2-17a. This band contributes a component of brightness / to the synthesized 
image which is related to the corresponding visibility by 

V(«,v)^/(/,m), (2-35) 

where the symbol ^ indicates that the two functions constitute a Fourier transform pair, 
and we have here omitted the functions A(l, m) and 1/^1 — I2 — m2 which are usually close 
to unity. Note that the processes of correlation and Fourier transformation are linear, and 
that they allow us to consider the synthesized image as the sum of a series of contributions 
from different parts of the frequency passband. In the derivation of the radio image we 
assign to V values UQ and VQ which are the true values multiplied by VQ/V (Eq. 2-34). The 
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Figure 2—14. (a) The configuration of the 27 antennas of the VLA. (b) The transfer functions for four 
declinations with observing durations of ±4h for 5 = 0° and 45°, ±3h for S = -30°, and ±5m for the 
snapshot. From Napier, Thompson and Ekers (1983). 
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(a) 

(b) 

Figure 2—15.  (a) Locations of the ten antennas of the VLBA, as shown by the closed circles,  (b) The 
corresponding transfer functions for four declinations. From Walker (1984). 

26 



30 

20 

»Q   10 

> 
-10 

-20 

-30 

30 

201 

«     10- o 

> 
-10 

-20 

-30- 

2.  The Interferometer in Practice 

DECLINATION = 0C 

GROUND ARRAY ORBITER/GROUND ARRAY ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ R ■ ■ ■ 4 I ■ ■ ■ ■ 1 ■ 
-30     -20    -10 10      20      30 -30    -20    -10        0 

U(KM.)*103 

DECLINATION = 60° 
GROUND ARRAY ORBITER/GROUND ARRAY T--r --r-n   r   T    1    j     y 

10       20      30 

-4-- 4 — 

1 
1 
1   j 

i 

I 

  

H 
!          ! 

h- 
—t— 

! 

 1 

-30     -20    -10 JO       20      30 -30    -20    -10 
U(KM.)*103 

10      20      30 

Figure 2—16. Examples of the u-v coverage obtained using a VLBI array similar to that of Figure 2-15a 
and one additional antenna in low earth orbit. From Preston et al. (1983). 

effect in the image can be obtained from the similarity theorem of Fourier transforms (e.g., 
Bracewell 1978), using which we can write 

V V V    / V^O/ V^O      "0      / 
(2-36) 

The coordinates of the brightness function are multiplied by the reciprocal of the factor 
by which the visibility coordinates are multiplied, and a factor (V/VQ)2 appears in the 
amplitude to conserve the total integrated brightness. One can envision the effect in the 
synthesis procedure, in which the data over the full receiving bandwidth Av are combined 
together, as the averaging of a series of images of the same sky brightness distribution, each 
with a slightly different scale factor and aligned at the l-m origin. The range of variation of 
the scale factor is equal to the variation of V/VQ over the receiving bandwidth. The result of 
such averaging is clearly to introduce a radial smearing into the brightness distribution, as 
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Interferometer 
Response 

y^ Frequency 

(a) 

m 
(L.mO 

*o 

(b) 

Figure 2—17.    (a) Idealised rectangular response showing center frequency I/Q and a narrow band at 
frequency v. (b) The radial smearing of a point source at (li,mi) in the synthesised image. 

shown in Figure 2-17b. The angular extent of the smearing at a radial distance y/l2 + m2 

from the origin is approximately equal to —y/l2 + m2, and the effect becomes important 
at distances for which the smearing is comparable with the synthesized beamwidth. 

An alternative method of imaging with a wide bandwidth is by using a multi-channel 
receiving system, in which the passband is divided into n frequency channels of width 
Av/n. Separate correlators are used for each frequency channel, so the visibility values 
for each one can be associated with the values of u and v corresponding to the center 
frequency of the channel. Such systems are also used for spectral line observations. In the 
u-v plane, the elliptical track that represents the projected spacing for any pair of antennas 
is replaced by a series of n parallel tracks. In effect, the overall transfer function is the sum 
of n single-channel functions, each scaled in u and v in proportion to the corresponding 
center frequency of the receiving channel. The sum of the corresponding images shows 
no radial smearing (we assume that the smearing corresponding to the channel bandwidth 
Av/n is negligible), but since the angular scale of the synthesized beam (point spread 
function) varies from one channel to the next, the effect of averaging the beam profiles is to 
suppress unwanted sidelobes. Thus the use of a multi-channel system is a desirable technique 
in broadband image synthesis, but in practice is restricted by the increase in computing 
required to accommodate n times as many visibility data as in the corresponding continuum 
observation. 
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(a) J time 

(b) 

Figure 2—18. (a) Consecutive time intervals of duration Ta over which the visibility is averaged, (b) 
Circular loci in the u-v plane which result from the continuous observation of a source close to the celestial 
pole. In a time interval ra, the baseline vectors which generate the loci move through an angle u>€Ta. 

ll. THE EFFECT OF VISIBILITY AVERAGING 

The time averaging of the visibility data at the correlator results in another form of 
smearing of the image. The data from each correlator are separated into consecutive time 
intervals of length ra, as shown in Figure 2-18a, and only the average value for each interval 
is retained. In the subsequent processing the averaged visibility samples are assigned (u, v) 
values corresponding to the mid-points of the averaging intervals, although the observed 
data extend over a range ±r0/2 relative to each such instant. The effect in the synthesized 
image can be most easily explained for an observation of a source at the celestial pole. The 
u-v plane is then normal to the earth's axis, and the transfer function consists of a series 
of circles, concentric about the u-v origin, as in Figure 2-18b. Each circle is generated by 
a spacing vector rotating with angular velocity <jje equal to that of the earth. Thus a time 
offset r in the assignment of (u, v) values results in a rotation of the visibility function about 
the u-v origin through an angle a>cr. In the Fourier transformation, such a rotation results 
in an equal rotation of the image. Thus the effect of the time averaging can be envisioned 
as an averaging of a series of images that are aligned at the l-m origin, but have angular 
offsets distributed over a range ±ojeTa/2. At a point (l,m) the extent of the smearing is 
approximately a;cr0\/7M^m^. The direction of the smearing is orthogonal to that resulting 
from the bandwidth effect, and the two effects are of equal magnitude UAV/VQ = QJ9ra. 

For a source at a lower declination the curves in the transfer function become ellipses, 
and are centered at the u-v origin only for east-west baselines. In this latter case the 
expansion of the v-axis by a factor cosec S restores the circularity, so in an image plane 
in which the m-axis (north-south) is compressed by a factor sin S, the effect is again one 
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of circumferential smearing. In the general case of a non-polar source and non- east-west 
baselines, the effect of time averaging cannot be described in terms of a rotational smearing, 
but the magnitude of the distortion is similar to that in the simpler case described above. 
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3.   Cross Correlators 

LARRY R.  D'ADDARIO 

1.   INTRODUCTION 

This Lecture will describe the operation of the central correlator of a synthesis telescope. 
I shall be more concerned here with details of the hardware than the earlier Lecturers 
have been. In modern telescopes, major portions of the correlators—including delay lines, 
multipliers, and integrators—are implemented digitally; this is done for very good reasons, 
but it leads to results which are significantly different from what one would predict by 
analyzing a continuous-time, analog model. For this reason, I will concentrate on the digital 
implementation of correlators and pay considerable attention to the process of digitizing 
the signals from the antennas. 

In addition, I will describe how a synthesis telescope can be used for spectroscopy; that 
is, how a correlator can provide visibility measurements as a function of frequency over the 
receiver passband. Spectral synthesis differs from continuum synthesis, and it also differs 
significantly from single antenna spectroscopy. Some of the differences will be pointed out 
here; Lecture 12 will consider these special problems in greater depth. 

2.   CORRELATORS IN GENERAL 

The two preceding Lectures dealt mainly with the correlation of quasi-monochromatic 
signals. We would now like to generalize to the case of wide bandwidth signals; this leads 
naturally to an understanding of spectroscopic cross correlation. Sometimes one wishes to 
observe over a signal bandwidth that is not quasi-monochromatic, but the main reason for 
considering wide bandwidth correlators is that the signals normally are converted to a low 
center frequency by the time they reach the correlator inputs. Their fractional bandwidth 
AV/VQ can then be very large. 

The cross correlation function of two real signals v»(t) and vy(t) is 

*«M = <«*(t)"i(*+0>- (3-i) 

This is a real function of delay r, and can be estimated by the simple correlator of Figure 
3-1. In the special case that v,- and Vj are narrow-band signals centered at I/Q with band¬ 
width Av <£ VQ, it is clear that x,-y(r) is nearly sinusoidal in r, with period v^1 (see 
Fig. 3-2). That is, we can write 

Xij{T) = XR COS 2xi/o(r - To) + xj sin 2XVQ(T - TQ) , (3-2) 

for r in the vicinity of reference delay ro. Then £*y(r) is specified for a wide range of r 
by the single complex number Rij = XR + ixj. This defines the complex cross power for 
narrow-band signals, where the signals themselves are real functions of time. (Complex cross 
power becomes complex visibility after astronomical calibration.) It is thus not necessary 
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V:(t)*- 

(g)— jf   (-Idt—X(T) 

Figure 3—1. A simple (real) correlator. 

Figure 3—2. Cross correlation function of quasi-monochromatic signals with rectangular passbands cen¬ 
tered at I/Q. In this plot, At//I/Q = 0.2 for clarity, but often it is much smaller. 

to measure x(r) for all r, but only for two nearby values of r. Convenient choices are ro 
and ro + Ar, where Ar = l/(4vo). This leads to the "complex correlator" of Figure 3-3. 

If the signals are not narrow-band, then £»y(r) will not be sinusoidal, but the concept 
of complex cross power is still useful. We can imagine using a bank of filters to break up 
each wide band into many disjoint narrow bands, and then connecting each pair of outputs 
to a complex correlator, as in Figure 3-4. Here each box "CC" represents that part of 
Figure 3-3 within dashed lines, but each has a delay Ar* = 1/(41/*) appropriate to its own 
frequency. If one is not interested in the variation of correlation with frequency, such as 
in the case of a continuum source, one can add together all of the outputs; this leads to a 
more accurate measure of the average correlation over the full bandwidth. This sum, in the 
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f— XR(T0) 

T-*XI(TO> 

Figure 3—3. Complex correlator, for narrow bandwidth signals. "H" is a quarter-cycle delay, Ar = I/AUQ. 

limit where the number of filters gets very large (so that the sum approaches the integral 
over frequency), we may now define to be the complex cross power ^('"o) in the general 
case of arbitrary bandwidth: 

K 

RiAro) - Jim  52 xRk + «*/* 
K—►oo (3-3) 

fc=l 

Now, it turns out that this same quantity can be measured without the elaborate 
filtering and multiple correlators of Figure 3-4. It is merely necessary to replace the quarter- 
cycle delay in Figure 3-3 (box "H") with a filter that passes all frequencies but shifts the 
phase of each by ir/2. For narrow bandwidths, this is the same thing as a quarter-cycle 
delay; for wide bandwidths, a more complicated filter is needed, but such filters can be built. 
To save time, I will not give the proof that this is the same as summing the outputs of the 
filter bank correlator, but perhaps you can see that it is plausible. Mathematically, the 
?r/2 phase shift operation is equivalent to the Hilbert transform (also called the Kramers- 
Kronig transform by some physicists; see, e.g., Bracewell 1978 for properties of the Hilbert 
transform). 

The preferred method of making a complex correlator for wide-band continuum obser¬ 
vations is therefore that of Figure 3-3, where "H" is a Hilbert transform filter. But the 
filter bank correlator of Figure 3-4 would obviously be useful for spectroscopy, where one 
would record the output of each complex correlator separately, rather than adding them 
together. However, a nearly equivalent way to obtain the spectroscopic measurements is 
illustrated in Figure 3-5. This machine measures the real cross correlation function at a 
large number of closely spaced delays near ro, and computes the discrete Fourier transform 
(DFT) of the result. It takes 2K samples of the correlation function to obtain the complex 
visibility at K frequencies. 

The discussion so far has been rather heuristic, so I will now try to fill in some of the 
associated mathematics. The (real) correlation function of two arbitrary signals is defined 
by Equation 3-1. Now consider its (inverse) Fourier transform1 

J—oo 
(3-4) 

1The Fourier transform definition which is in use here is in accord with the Editors*—rather than the 
author's—preference. It is opposite the convention which is common in the engineering literature, particu¬ 
larly in much of the literature of communications engineering. — Eds. 
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Figure 3-4. A wide-band complex correlator synthesised from narrow-band complex correlators, or a 
spectroscopic correlator. Each box labeled "CC" is as indicated in Figure 3-3. 

which is called the cross power spectrum. (Recall that, similarly, the inverse transform of 
the autocorrelation function of a signal is the signal's power spectrum; but the latter is 
always real and non-negative, whereas cross power is generally complex.)1 The complex 
cross correlation function is defined as 

Ri^r) = 2 /    rhiv)e+2'i^T-T^ dv; 
Jo 

(3-5) 

i.e., it is twice the Fourier transform of Equation 3-4 with negative frequencies deleted. 
Notice that the correlator of Figure 3-5 approximates the right-hand side of Equation 3-4, 
and that adding up the outputs approximates the r.h.s. of Equation 3-5 for r = ro. More 
precisely, the operation of the spectroscopic correlator of Figure 3-5 is described by 

2K-1 

*»=  £    ?/   ^{t-To-lS^v^dt -2irilk/2K (3-6) 

The expression in brackets is the output of each simple correlator. Comparing Equations 
3-4 and 3-6, one sees that 

rijik/ST) » xkSr. (3-7) 

It can be shown that another way to compute the continuous cross correlation function 

tftfM = }<W*) + **(«)]* Mt + T) + i«y(t + r)]> 

= M*)*J(*+r)> + »(«*(*)%(*+*)) > 
(3-8) 

where v represents the Hilbert transform of v. Thus Equation 3-8 describes the operation of 
the complex correlator of Figure 3-3, except that time averages are replaced by expectations. 
Again, I will not give the proof here. I wish only to point out that there is a mathematical 

1In Equation 3-4, I have inserted a time-shift of TQ before transforming. This definition is convenient if x,-j- 
peaks near ro, because then r^ will be nearly constant. 
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1 "2 
Figure 3—5. A spectroscopic correlator with frequency analysis after correlation. 

formalism through which the relationships of various types of complex correlators can be 
explored. 

Two correlators that perform equivalent computations, although different in detail, 
must give the same signal-to-noise ratio in their outputs, since nothing has been said about 
whether the inputs contain interesting information or just noise. 

3.   DIGITAL IMPLEMENTATIONS 

Major portions of modern correlators are implemented digitally, for the following rea¬ 
sons: (1) digital operations are precisely defined and repeatable (analog circuitry is subject 
to environmental conditions such as temperature and humidity); (2) digital circuits can 
be exactly replicated at low cost when many identical elements are needed; (3) for the 
long baselines (> 104m for connected elements and > 106m for VLBI) and wide band- 
widths (10* Hz) now used, the delay lines must have a large ratio of length to resolution 
(» LAv/c > 104), and only digital delay lines can do this with the necessary accuracy and 
stability. 

3.1. Digitization. 
The digital correlator must first convert the signals to digital form. This requires two 

distinct operations: sampling, which converts a continuous-time signal v(t) to a discrete- 
time sequence of its samples {v(tfc), k = 0,1,...}; and quantizing, which converts a contin¬ 
uously variable value to one of a finite set of values. This combination of a sampling device 
and a quantizing device is called a digitizer. For any finite length of time, the digitized signal 
can be represented by a finite number of bits and can be stored and processed with logic 
circuits. The signal can be sampled and then quantized, or quantized and then sampled, 
and the result will in principle be the same (as long as the circuits behave ideally). 

If the signal v(t) is strictly limited to frequencies between zero and Av, then, according 
to the sampling theorem (Shannon, 1949), it is fully described by its samples taken at 
intervals At < 1/(2Av); that is, v(t) can be exactly reconstructed from these samples. 
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Figure 3—6. An example of a quantiser transfer function (solid lines); this quantiser has seven levels. The 
dashed line is the line defined by vf = v, and the difference between it and the transfer function is the 
quantisation noise, 6. 

Strictly speaking, the sampling must go on for all time—but in practice it is only necessary 
to have a very large number of samples, and this condition is easily fulfilled in our case. 
Thus, sampling at the rate 2Av (called the Nyquist rate), or faster, loses no information at 
all. 

Quantization, however, does lose information. Consider Figure 3-6, which shows the 
transfer function of a typical quantizer. Here v is the quantizer's instantaneous input, and 
Vg is the corresponding output; this example shows seven distinct output states. Without 
loss of generality, the scale has been chosen so that vq is the integer nearest the input value; 
then one can write vq = v + S, so that the quantizer may be described as adding a signal 
S to the input, sufficient to round it to the nearest integer. If the signal is random noise, 
then S will also be noise-like, and for a reasonably chosen transfer function, S will have zero 
mean. Thus, the quantizer can be viewed as adding noise to the signal. This is known as 
"quantization noise", and in a radio telescope it is the source of the degradation in signal- 
to-noise ratio associated with the use of digital correlators (the correlator efficiency rfe is 
used in Lecture 6). 

Now imagine that the quantization is done before sampling. If the original signal has 
bandwidth Av, then the quantized signal has a larger bandwidth (including harmonics), 
because the quantization noise S(t) is not bandlimited. If one now samples at the rate 2Av, 
additional information is lost because the larger bandwidth is undersampled. This informa¬ 
tion can be partially recovered by sampling at a higher rate. Thus, it is not straightforward 
to apply the sampling theorem to signals that are also quantized, and the digitizer must be 
analyzed as a unit. 

Nevertheless, if the signal consists of Gaussian noise, then even with Nyquist sampling 
very coarse quantization can be used with remarkably little loss of information. In synthesis 
telescopes, one is interested in the cross correlation function of two signals that are jointly 
Gaussian random processes. It can be shown (Van Vleck and Middleton, 1966; Cooper, 
1970; Hagen and Farley, 1973) that the cross correlation function of digitized signals (for 
most reasonable quantizations) is a monotonic function of that of the original signals. How¬ 
ever, a measurement of the digitized cross correlation in finite averaging time will have 
a larger relative variance than a similar measurement of the original signals, due to the 
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quantization noise. Table 3-1 shows the resulting "loss" of signal-to-noise ratio for various 
cases, computed assuming rectangular power spectra of width Av and with the quantiza¬ 
tion levels optimized for each case (Hagen and Farley, 1973). Even the extreme case of two 
level quantization, where only the sign of the signal is retained, gives 64% of the undigitized 
signal-to-noise ratio. Two level quantization has been extensively used in VLBI, where 
the digitized signal is stored on tape, because it can be shown that this leads to nearly 
the maximum information per length of tape. Finer quantization or faster sampling gives 
higher sensitivity, at the cost of more complexity and more expensive components in the 
correlator. For the VLA, three level quantization was chosen as a reasonable compromise, 
with Nyquist sampling at the widest bandwidth (50 MHz) and up to four times Nyquist at 
some narrow bandwidths. 

Table 3-1. 
Signal-to-Noise Ratio vs. Quantization and Sampling Rate 

Quantization Sarrmlimr Rat* S/N (digital) Sampling Rate .^7JSEZ.> 

«v« 

♦ V 2-level 
(1 bit) 

2Av 

AAv 

.64 

.74 

♦ 3-level 2Av 

AAv 

.81* 

.89 

♦ 4-level 2Av 

AAv 

.88 

.94 

oo-level 2Av 1.00 
(continuous) 

*VLA Case. 
All cases assume rectangular bandpasses of width Av, signal levels adjusted 
to maximize the signal-to-noise ratio, and small correlation coefficients. 
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Besides sampling and quantizing, practical digitizers must do one more job: each quan¬ 
tized sample must be encoded digitally, typically as a binary number. For two level quan¬ 
tization, the obvious choice of one bit per sample is the only reasonable one. But with 
more levels, various encodings are possible, especially considering that the various levels do 
not occur with equal probability. If the signal is to be stored (say, on magnetic tape) or 
transmitted over an expensive channel before correlation, then it is important to choose a 
code that minimizes the number of bits needed. It turns out that, with optimum coding, 
the total number of bits needed to achieve a given sensitivity is minimized for three level 
quantization (D'Addario 1984); in this sense, three level quantization is optimum. 

3.2. Quantization corrections. 
As I mentioned, the cross correlation of digitized signals is a monotonic function of that 

of the original signals. By knowing this function, or rather its inverse, the desired cross 
correlation can be recovered. For example, with two level quantization it has been shown 
(Van Vleck and Middleton, 1966) that 

xij{T) = ai<Tjam1^^-, (3-9) 

where Pij is the correlation coefficient (normalized) of the digitized signals, and where 
cr| = (v?) and <T| = (v*) are the average power levels of the signals. Equation 3-9 is often 
called the "Van Vleck correction", after the author who first used it, although he did so in 
a much different context. Notice that, for two level quantization, the signal powers must be 
separately determined in order to get the cross power, since this information is completely 
lost in the quantization. 

For three (or more) level quantization, the situation is more complicated. The correc¬ 
tion function does not have a closed form expression, and it depends non-linearly on both 
the measured correlation coefficient p^j and the signal powers. As an example, for the three 
level case one can write 

PiAr) = M** M; «••* *;) > (s-io) 

where fs is an integral of the joint probability density function of the two signals. Then 

** W = tfMr); n, ay) . (3-11) 

Once again, the signal powers are needed, but now they can be determined from the digitized 
signals themselves using digital autocorrelators. The form of f^1 can be assumed known, 
and can be calculated to any desired accuracy if an adequate computer is available (for 
numerical methods pertaining to this case, see Schwab, 1979, and D'Addario et al., 1984). 
Similar concepts apply to other quantizations. Some examples are shown in Figure 3-7. 

It is worth noting that relationships like Equations 3-9 and 3-11 do not depend on the 
sampling rate, the bandwidth, or the shape of the spectrum. However, all of these results 
apply only if the signals are zero mean, Gaussian random processes. 

It turns out that if Pij <C 1, then Xij is very nearly proportional to pij for all reasonable 
quantizations (see Fig. 3-7). This is apparent from Equation 3-9 in the two level case. We 
get pij <§; 1 when the antenna temperatures due to the source are much less than the system 
temperatures. Then a detailed computation of the correction can be avoided, provided that 
the signal powers a2 and a? remain constant, because the proportionality factor drops out 
in astronomical calibration. 
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Figure 3—7. Quantisation correction functions for various quantisations. In each case the signal powers 
are set for maximum signal-to-noise ratio. The curves are labeled according to the number of quantisation 
levels; 4a uses a simplified multiplier (see Cooper, 1970). 

3.3. Gain corrections and ALC loops. 
Notice that the cross power x^-(r) and its spectrum rij(v) are referred to the correlator 

inputs. Actually, these quantities are not directly of interest; one would rather know the 
cross power spectrum of the signals received at the antennas. Denoting the latter by ^-(i/), 
one has 

nA") = *(*')**(«')<,■(«' + ^o) , (3-12) 

where gi{v) and gj{v) are the complex voltage gains of the signal paths from the antennas 
to the correlator, and 14,0 is the net local oscillator frequency, accounting for all frequency 
conversions. If the gains are slowly varying, their effects can be largely accounted for 
by astronomical calibration (I will not discuss the details here, since Lecture 4 does so). 
However, in order to make life easier for electronics engineers, it often happens that no 
attempt is made to keep the gains constant (which would be hard); on the contrary, the 
gains are deliberately varied in order to keep the signal powers constant at the correlator 
(which is easier). This is done with automatic level control (ALC) loops. 

For the programmer and the astronomer, ALC loops are a mixed blessing. They usually 
will cause the gains to change between the observation of a calibrator and that of a source 
being measured, either because one source is strong enough to contribute substantially 
to the total noise, or because the sources are in different parts of the sky, so that the 
noise contributions from the atmosphere and from ground radiation are different. The 
correlator has no way of knowing about this, since its input levels are constant; so an 
independent means of monitoring the gains must be provided. This is often done by adding 
a fixed, known signal to each receiver input and detecting it near the correlator input. 
A switched noise signal at each antenna and a synchronous, square law detector at each 
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Figure 3—8. A digital implementation of a simple correlator. 

correlator input are effective in measuring the magnitudes of the gains; it is usually assumed 
that the phase is sufficiently stable. Given such measurements, the measured correlation 
function £»y(r) (after quantization correction) can be scaled in the computer to refer to the 
receiver inputs rather than to the correlator inputs. This is sometimes called the "system 
temperature correction", because, with ALC, the gain is inversely proportional to the system 
temperature. Notice that this scheme measures only the average gain across the passband, 
so the scaling will be strictly correct only if gi(v) is flat; and that the ratio of source to 
calibrator gain will be correct only if the gain changes by the same factor at all frequencies. 

The following advantages of ALC loops often outweigh these difficulties: (a) changes in 
the gains of electronic components with time and temperature are cancelled (if they are the 
same at all frequencies); (b) the correlator input powers can be kept at the value that gives 
the best signal-to-noise ratio; and (c) the quantization correction calculations are simpler 
for constant input powers. 

3.4. Digital circuits. 
Figure 3-8 shows some details of a digital implementation of a simple correlator, in¬ 

cluding delay line, multiplier, and integrator. I include this mainly to give some feeling for 
the quantity of circuitry involved and the speeds at which it must operate. Generally, faster 
logic and memories take up more space, consume more power, and are more expensive than 
slower ones. High effective speeds can be achieved by having many slow circuits operating 
in parallel, and the various trade-offs often favor taking this approach. Thus, the delay line 
can be implemented mostly with slow memory, using small amounts of fast memory (shift 
registers) to buffer the input and output. Similarly, the integrator memory can be broken 
up into two or more stages, with slower devices used to accumulate for longer time periods. 
Multipliers, on the other hand, are generally operated at the full sampling rate; but since 
only two- or three-state signals usually need to be multiplied, the logic of a multiplier is 
quite simple. 

When signals from a large array of antennas must be correlated, it usually turns out 
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that the multipliers and integrators dominate the circuitry, since N(N—1) » N2 of them are 
needed for complex cross correlation of iV signals, whereas only 2iV digitizers and delays 
are needed. They dominate even more in a spectroscopic correlator, where KN(N — 1) 
are needed for K frequencies, compared with only N digitizers and delays. Therefore, a 
design strategy that reduces the required number of multipliers is helpful. It turns out that 
it is sometimes possible to build multipliers and first-stage integrators that can operate 
much faster than the sampling rate; this is especially true when the receiver bandwidth is 
deliberately made small, so that a low sampling rate can be used. Then if a substantial 
number of samples can be stored temporarily in a buffer memory, the same multiplier/ 
integrator can be time-shared among many correlators. The buffer memory is called a 
"recirculator", since the data in it are re-used many times. This technique is used in the 
VLA to implement spectroscopic correlation for up to 256 frequencies with only twice the 
number of multipliers as are needed for continuum. 

4. SPECTROSCOPY 

4.1. Design alternatives. 
Referring back to Figures 3-4 and 3-5, recall that there are two nearly equivalent 

ways to implement a spectroscopic cross correlator. They differ according to whether the 
frequency analysis is done before or after multiplication. I want now to describe further 
details of the implementations, emphasizing digital circuitry. 

First, note that for K frequency channels, each scheme requires 2K cross multipliers: 
two in each complex correlator of Figure 3-4, and one for each of 2K delays in Figure 3-5. 

In Figure 3-4, with frequency analysis before cross multiplication, the filter banks could 
be implemented by analog circuits, using the undigitized signals. In that case, the long 
delay line ro would also need to be analog. Such a design could be practical for a telescope 
requiring a relatively small number of baselines and frequency channels. Alternatively, 
the filters could be implemented digitally, operating on digitized signals, using length-2iif 
shift registers and fast Fourier transforms (FFTs). These would have to be capable of fast 
operation (an FFT every 2K samples), and the outputs would require more bits than the 
inputs by a factor of log] 2K to avoid additional quantization noise. The correlators could 
be relatively slow (a factor of 2K below the sampling rate), but would have to handle 
multibit data words. There would also be losses associated with the fact that input samples 
not in the same 21if-sample interval are never correlated. These tradeoffs are complicated 
and must be evaluated for each particular system's parameters. I will not discuss this 
arrangement any further, but I want to note that it has been chosen for at least one modern 
synthesis telescope, the millimeter wavelength array at Nobeyama Observatory, Japan. 

In the other scheme (Fig. 3-5), with post-correlation frequency analysis, the multipliers 
must operate at the full sampling rate, but on signals having only a few possible values. The 
FFT has multibit input and output, but needs to be done only once per integration time 
(which seems like an eternity compared with a sample time, e.g., 10 sec/(10""6 sec) = 107); 
a floating point FFT is usually justified. This is the scheme used at the VLA, and I will 
concentrate on it from now on. 

I should mention, however, that it is also passible to choose a design between those 
of Figures 3-4 and 3-5, where part of the frequency analysis is done before and part after 
correlation. Such a "hybrid" correlator, with an analog filter bank and digital cross corre¬ 
lators, is useful when the total input bandwidth is too large for processing all at once; this 
happens mainly at millimeter wavelengths. 

Notice that, with digitized signals, the small delays ST must be multiples of the sam¬ 
pling interval.   This would seem to be no problem, because if the original signals have 
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get away without accurate quantization corrections. 

4.3. The Gibbs phenomenon. 
The effects of truncation of the cross correlation function measurement are not so 

avoidable, and they can have a profound effect on calibration that is quite different from 
the case of the autocorrelation spectrometer. To see this, note that the sampling theorem 
allows one to write the cross power spectrum as an infinite sum 

r{v)= f    x{T)e'2iri^T-ToUT (3-13a) 
J—oo 

oo 

=   X)  ^o + kST)e-2'ivkSTST, (3-13b) 
fc=-oo 

where the second equation holds only within the bandwidth 0 < v < Av < 1/{2ST). If the 
sum is truncated beyond |fc| = K, the result may be written 

f(,/)=   Yl  n(tyif)a:(ro + JWr)e-2"I'Wr*r (3-14a) 
fc=—oo 

= /    n(T/KST)in(T/ST)x[T)e-2wi^T-T0UT (3-14b) 
J—oo 

= r(v) * f    n{T/KST) LU(T/ST) e-2™^-**) dr, (3-14c) 
J—oo 

where n(-) is the unit rectangle function and Uj(-) is the unit sampling function (Bracewell, 
1978). The last integral may therefore be regarded as the bandpass function of a single 
channel; for large K, it is approximately KS\ILC(KV8T). 

Now consider the situation illustrated in Figure 3-10, where the actual and computed 
cross power spectra are shown for signals from a unit-flux continuum source in the reference 
direction; thus the interferometer's gain vs. frequency function is shown, and in this case the 
receivers have a fairly flat response. As you might expect, the computed spectrum shows 
ringing near the edges, where the true spectrum changes rapidly. This is the well-known 
"Gibbs phenomenon", which also occurs in autocorrelation spectrometers. The trouble is 
that if the computed spectrum from a continuum source is used as the complex gain for 
calibration purposes, then large errors can be made when a strong line source is observed. To 
see this mathematically, let f{y) be the channel bandpass function given by the integral in 
Equation 3-14c; then the apparent complex gain on the i-j baseline is f(v) * [gi(v)9*{i')}- 
This is what the correlator would measure for a unit-flux continuum source. When an 
unknown source whose true visibility isV(v) is observed, the correlator measures 

Dividing by the apparent gain gives 

.-,, .   /(")«N^MVMI 
w      f{») * [wMtfMl   ' 

Notice that the convolution operations prevent cancelling of the gains, as one might desire. 
There are better ways of estimating V(v) than simply taking the above ratio, such as 
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Figure S—9. A digital cross correlation spectrometer, with self-multipliers and quantisation corrections. 

bandwidth Av, then their cross power spectrum can have bandwidth at most Av also. Ap¬ 
plying the sampling theorem to the cross power spectrum, we find that there is no loss of 
information if the cross correlation function is sampled at an interval ST < l/{2Av), which 
is compatible with Nyquist sampling of the signals. But in fact the scheme of Figure 3-5 
does lose information and lead to errors in the computed spectrum, for two reasons: First, 
as mentioned earlier, the quantized signals are not bandlimited to Av, so neither is the cross 
power spectrum; sampling at only 2Av causes the power outside Av to show up inside, a 
phenomenon called "aliasing". Secondly, the sampling theorem requires measurements at 
delays from — oo to +oo, and the necessary truncation at a finite number of measurements 
usually has a significant effect. 

Except for the quantization noise, which affects both continuum and spectroscopic 
digital correlators, most of the non-ideal behavior of a digital cross correlation spectrometer 
can be explained by the non-zero delay interval ST and the finite range of delays measured. 
I want now to consider these effects in some detail. 

4.2. Quantization corrections. 
The systematic effects of the quantization on the cross power spectrum can be elimi¬ 

nated, in principle, by applying the quantization correction to each cross correlation mea¬ 
surement prior to Fourier transforming. Each measurement is then adjusted to what it 
would have been without quantization, except for the quantization noise. This arrangement 
is shown in Figure 3-9, which also illustrates the use of "self-multipliers" to determine the 
signal powers. If the digital cross correlation function is used without correction, then there 
will generally be a distortion of the spectrum whose form is hard to predict. Nevertheless, if 
the cross correlation function is small at all delays—that is, if the source is weak compared 
with the system noise—then the correction factor will be nearly the same at all delays, 
so the spectrum will be wrong only by a scale factor. For three level quantization, this 
effect becomes important for correlation coefficients above about 0.2. Notice that it is the 
correlation function of the whole bandwidth that matters, not each frequency channel; the 
source can be much stronger than the system noise in a few channels, and one might still 
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Figure S—10. (a) The cross power spectrum resulting from a continuum source of unit flux in the reference 
direction: "true complex gain". Note the nonsero phase, (b) The computed cross power spectrum with 16 
delays. 

deconvolving both the numerator and denominator, but these are not in common use. The 
situation can be somewhat improved by weighting the cross correlation before transforming, 
thereby smoothing the channel bandpass, but this sacrifices some frequency resolution. In 
practice, measurements near the band edges must be discarded for a variety of reasons, of 
which the Gibbs phenomenon is only one. 

Because the cross power is complex, the Gibbs phenomenon behaves somewhat dif¬ 
ferently here than in the autocorrelation spectrometer. Both r(v) and f(v) are Fourier 
transforms of real functions, so they are Hermitian: r(v) — r*(-i/). If the passband ex¬ 
tends to near zero frequency, as it usually does at the input to a digital correlator, then the 
imaginary part of the gain makes a sharp change at v = 0, whereas the real part does not. 
This means that not even observations of a continuum source will be correctly calibrated 
by using the computed cross spectrum, unless the cross powers of the source and calibrator 
have the same phase. 

5. DELAY RESOLUTION AND FRINGE ROTATION EFFECTS 

In the foregoing discussion, I regarded the correlator as being responsible for estimat¬ 
ing the cross correlation function of whatever two signals are presented to it. This tacitly 
assumes that the correlation is not changing too rapidly; it must be reasonably constant 
during the time required to complete a measurement. As was shown Lecture 2, this can 
be achieved by including in one signal path a variable instrumental delay that is continu¬ 
ously adjusted to compensate for the rapid change of geometric path delay caused by earth 
rotation. Indeed, we have now seen that it is convenient to implement this delay after 
digitization, and to consider it part of the correlator. Lecture 2 also pointed out that im¬ 
plementation of the delay after frequency conversion(s) requires that a compensating phase 
shift also be added to the net local oscillator signal, or else the correlation function will be 
phase modulated by PLOV This phase shift is called "fringe rotation". 
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In this Section, I will describe how a correlator can handle signals from receivers that 
do not include fringe rotation in their local oscillators. We must also consider the accuracy 
with which the instrumental delay must be set, and the consequences of setting it rather 
coarsely. I shall take up the latter question first. 

Assume that the required delay can be calculated accurately and to arbitrary precision, 
but can only be set to discrete values spaced by Ar. In general this means that there will 
be a delay error, or difference between the required value and the setting, which can be 
kept between —AT/2 and +Ar/2. During the integrating time of the correlator, variation 
of the geometrical delay may cause the delay setting to change by many steps (and thus 
cause the delay error to pass through its range many times), or it may be slow enough so 
that the delay setting stays constant (and the error changes only slightly). Typical modern 
telescopes experience both extremes in different parts of the sky and on different baselines. 
The effect of this delay error depends on which case occurs, and on the bandwidth of the 
signals. 

To evaluate the effect, one may simply average the cross correlation over the correlator 
integrating time, including the time-varying delay error. Letting r = ro + ST, where ST is 
the delay error, Equation 3-5 gives 

RiATo + 6T) = 2 n TijMe2™6* dv. (3-15) 
Jo 

Now if the signals have rectangular spectra, then r^y(i/) is constant with frequency up to 
the bandwidth Av, so 

%(ro + ST) = RiAro)^ J  " e*™'r dv. (3-16) 

If ST is constant during the integrating time, this shows that the complex cross correlation 
is reduced by a complex factor. If ST varies, then the result must be averaged over the 
variation. For a spectroscopic correlator, replace X(T) in Equation 3-4 with z(r + ST) and 
apply the shift theorem of Fourier transforms, obtaining 

**&) = *&)***"*. (3-17) 

This shows that there is a phase shift proportional to frequency and to delay error. The 
effect is slightly modified for a practical DFT correlator (as in Fig. 3-5) because of the finite 
length of the transform, but Equation 3-17 holds fairly well for practical numbers of points. 

Equations 3-16 and 3-17 are evaluated in Table 3-2 for some situations of practical 
interest. Two sizes of Ar are considered: half the reciprocal bandwidth (one sample time at 
the Nyquist rate), and one-sixteenth as much. In the fast delay case (ro changing by many 
Ar per integration), the loss in amplitude for the continuum and for the highest spectrom¬ 
eter frequency (worst channel) are given. In the slow delay case (ro nearly constant), the 
continuum amplitude loss is also given. In all cases there is also a phase shift. Since these 
effects are all calculable, appropriate corrections can be applied to the data; but the am¬ 
plitude losses represent an irrecoverable drop in sensitivity, since there is no corresponding 
reduction in noise. 
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Figure 3—11. A simple correlator with fringe rotation. 

Table 3 -2. 
Delay Error Loss Factors 

— Delay Resolution"1 — 
Nyquist 16 X Nyquist 

1. Fast Delay 
A. Continuum 0.9664 0.99987 
B. Band Edge 0.9003 0.9996 

2. Slow Delay 

Table 3-2 shows that if the delay resolution is a small fraction of the reciprocal band¬ 
width, then the losses can be kept very small. But if all of the delay is implemented after 
sampling, then no finer delay resolution than one sample time can be achieved; so Nyquist 
sampling might be thought to force acceptance of the larger losses in the Table. One so¬ 
lution is to build samplers whose sampling phase can be adjusted on a fine scale; this has 
been done in the VLA, but in some situations this may not be practical. For example, in 
VLBI the sampling must be done during observing, but the correlation will not be done 
until much later. At observe time, the source position and clock settings may not be known 
to sufficient accuracy to determine the optimum sampling phase. At correlate time, this 
information is available but the delay can now be set only to within one sample time. 

Next, consider the case where the delay is implemented after conversion to a low fre¬ 
quency (e.g., baseband, for digital delays), but no compensating phase shift (fringe rotation) 
is applied to the local oscillator. It can be shown by a straightforward extension of the re¬ 
sults of Lecture 2 that a simple correlator (like Fig. 3-1) produces the output 

x'fa) = x(Tg) cos 2x1^,0 Tg + x(Tg) sin 2TI^O^ , (3-18) 

where x(r) is the correlation function of the signals at the antennas, which is what would be 
measured by the correlator if fringe rotation were included; I/LO is the net local oscillator 
frequency; and the delay is set to ro = Tg. Note that r9 is changing with time, perhaps 
rapidly, due to earth rotation; so this result only applies if the correlator averaging time 
is short enough. To obtain a direct estimate of x{Tg), and to allow use of longer averaging 
times, the technique of Figure 3-11 can be used. Here the correlator is modified by multi¬ 
plying the cross product by an appropriate quasi-sinusoid prior to averaging. This sinusoid 
is called a "fringe function"; now the job of fringe rotation has been moved from the local 
oscillator to the correlator. 
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Figure S—12. A simple correlator with "single-sideband" fringe rotation. 

If the averaging time is an integral number of cycles of the fringe function, then the 
correlator of Figure 3-11 produces an unbiased estimate of x(rg). Nevertheless, this method 
has some disadvantages. One must integrate for at least one "fringe", and sometimes v^oTg 
changes too slowly for this. More importantly, the signal-to-noise ratio obtained is worse 
than that of the Figure 3-1 correlator (with fringe rotation applied to the LO, if any) by 
y/2. This is because the fringe function is near zero much of the time (a detailed derivation 
is left as an exercise). One way to overcome this is to use the more complicated fringe 
rotator of Figure 3-12. Here both cosine and sine fringe rotators are used, and the results 
are combined with a jr/2 phase shift before integrating. This makes use of the second term 
in Equation 3-18, and gives a signal-to-noise ratio equal to that of Figure 3-1. Such an 
arrangement is feasible even if the signals are digitized (since a digital implementation of 
the x/2 phase shift, or Hilbert transform, is possible), but to my knowledge it has not yet 
been used in radio astronomy. 

There is another way to recover the full signal-to-noise ratio that would have been 
obtained with LO fringe rotation, but it applies only to spectroscopic correlators, where the 
correlation function is to be measured for many closely-spaced values of r. In that case, one 
can build a correlator like that of Figure 3-13. Note that the order of the fringe rotation 
and cross correlation multiplications has been interchanged, but that this has no effect since 
multiplication is associative; thus only one fringe rotator is needed for all delays. If one were 
to use a sine fringe function rather than the cosine, it would have two effects on the results: 
after the DFT, the expected value of the (complex) result at each frequency would change 
phase by ir/2 (i.e., real and imaginary parts would be interchanged); and the noise would 
be different. In fact, one can show that the noises in the two cases would be independent. 
Therefore, if the spectrum is obtained both ways (sine and cosine fringe rotation) and the 
results are averaged (after correcting for the phase difference), the signal-to-noise ratio is 
improved by y/2. (Again, the proof is left as an exercise. You will probably find it easier to 
do after studying Lecture 6.) This method is quite expensive, since it doubles the required 
size of the correlator; the correlation at all delays must be measured simultaneously for 
both sine and cosine fringe functions. 

In VLBI, most receivers have been implemented without fringe rotation in the LO, 
and the double-size spectroscopic correlator method has been extensively used to obtain 
the best signal-to-noise ratio. This has made sense because most correlators have been 
small, handling typically 3 to 5 antennas at once, and with a relatively small bandwidth. 
In such a situation, slow and inexpensive digital electronics can be used, and not much of 
it is needed; the cost is dominated by other components, such as tape recorders. Also, it 
is inconvenient to install LO fringe rotation at many VLBI stations that were originally 
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Figure S—IS. A spectroscopic correlator with fringe rotation. 

designed for single-dish work. But with new, modern systems now being designed, the 
bandwidths and numbers of antennas are larger, vastly increasing the amount of cross 
correlation electronics. Nevertheless, as of this writing, the new VLBA is being designed in 
the "traditional" way, without LO fringe rotation. 
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INTRODUCTION 

In Lecture 1 it was shown that—after a few reasonable assumptions are made—the 
intensity distribution on the sky is the 2-D Fourier transform of the spatial coherence 
function of the radiation field (Equation 1-8). An interferometric array measures this 
spatial coherence function at many discrete locations specified by the projected baseline 
components, (u,v). In Lecture 2 it was described how the signals from each antenna are 
transported to a central location where, as outlined in Lecture 3, these signals are correlated 
and the correlations are averaged. The data from each antenna pair are then recorded; the 
ensemble of numbers is commonly called the observed visibilities. 

But, before these data are recorded the radio signals must pass through the inter- 
galactic, interstellar, and interplanetary media, and through the Earth's atmosphere. After 
collection by the radio antennas, the signals pass through, and are modified by, the re¬ 
ceivers, the signal transmission system, data digitizers, and the correlator. Each medium 
through which the information passes modifies the data, with the result that the observed 
visibility often shows little resemblance to the desired quantity, the spatial coherence. Cal¬ 
ibration is the process of determining and applying the corrections needed to produce the 
spatial coherence function, so that the imaging procedures, discussed in Lecture 5, can give 
a usable representation of the sky brightness. In this Lecture we discuss the origins and 
effects of various mechanisms important to interferometric data, the techniques of their 
determination, and the methods of correction. 

i. LEVELS OF CALIBRATION 

Calibration is the art of determining and removing the effects of corruption from the 
data. One can discern three levels in the calibration of interferometric instruments. These 
levels are distinguished by origin and timescale. 

The first level calibrates effects which are unchanging, or nearly so, over long timescales. 
This includes antenna locations and pointing, delay constants, time reference, and receiver 
characteristics. Typically, the observations required for these calibrations are performed 
after changes in array geometry or hardware. Generally, the quantities determined are 
applied to the data on-line, so no further action need be taken by the observer unless the 
applied corrections are themselves in error. In most situations, the data may be corrected 
later. 

The next level of calibration involves changes induced by the array electronics, such 
as transmission system length changes, or receiver sensitivity changes. In many cases, 
these can be reduced to an acceptable level by good design. Where this is not possible 
they can usually be monitored and corrected by on-line monitoring systems. As this level 
of calibration is so intimately connected with design, we pay little attention to it in this 
Lecture, except when the effects can be corrected by off-line calibration. 

The final level of calibration, and the one of most interest to the observer, involves 
corrections for changes in the visibility induced by the atmosphere and the electronics, and 
for which acceptable on-line correction is not possible. These changes (which affect phase 
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much more than amplitude) can range from small values on timescales of hours or more to 
many radians in timescales of less than a minute. Even in these extreme cases, it is often 
(even usually) possible to remove completely the time-variable effects and thus to recover 
the spatial coherence function. 

2. SOURCES USED FOR CALIBRATION 

Conceptually, the process of calibration is one of determining system constants by 
observing known sources of emission, and it is clearly advantageous that these known sources 
be as simple as possible. Thus, the ideal calibrator is an unresolved radio source with a high 
flux density and a well-determined position. If such a source is observed at the phase center, 
then the amplitude of the measured visibility must be equal to the source flux density, and 
the phase of the visibility must be equal to zero, independent of the baseline length. Thus, 
the visibility measurements obtained from observations of a calibration source yield direct 
estimates of the corrections which are needed to calibrate the array around the time of 
those observations for the direction of the calibrator. In principle, no knowledge of the 
mechanisms which produce the observational errors is required. 

How strong, and how small, should a calibration source be? Ideally, the flux density, 
and hence the amplitude of the visibility, should be many times the system noise on short 
timescales. The flux density should also be many times the sum of the flux densities of 
background sources which also contribute to the visibility—since no source is truly isolated. 
This condition is especially important at lower frequencies, where the antenna primary 
beam will include large numbers of background sources. The calibrator should also be 
small enough that the longest baselines do not perceive a loss of visibility amplitude greater 
than the noise. 

In practice, it is difficult, and in some cases impossible, to find sources which meet these 
conditions, especially with high-resolution arrays. However, it is often quite acceptable to 
utilize 'less-than-perfect' sources for calibration, using techniques akin to self-calibration. 
These techniques will be outlined in a later Section, but involve solutions for antenna gains 
rather than baseline gains. Since nearly all modern synthesis radio telescopes contain many 
more baselines than antennas, not all the available data need be used for this solution—so 
longer spacings, which may partially resolve a calibrator, or smaller spacings, which may 
be confused by background sources, can often be discarded from the solution. Indeed, as 
discussed in Section 5, if a reasonable initial guess of the source structure can be made, 
and a good idea of the total flux is at hand, independent calibration can often be dispensed 
with altogether. 

The number of available calibrators varies widely with frequency, with resolution, and 
with sensitivity. Assuming sensitivities typical of modern antennas (say, with baseline noises 
of less than 50 mJy), there are over 500 radio sources which can be used as calibrators at 
frequencies between 1 and 20 GHz and on angular scales as small as approximately 0.01 arc- 
seconds. Above this frequency range, the number of usable calibrators is reduced as receiver 
sensitivities are less. Below this range, the increasing primary beam size, combined with 
a rapidly increasing galactic background temperature, allows us to use only the strongest 
sources as simple calibrators. Calibration of large interferometer arrays at low frequencies 
will probably involve forms of self-calibration (Lecture 9). At milliarcsecond resolutions 
(i.e. with VLBI techniques), there may remain no sources which are sufficiently unresolved 
to allow straightforward calibration. See Lecture 13 for discussion of the special problems 
in calibration at these resolutions. 
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3. THE CALIBRATION FORMALISM 

The calibration formula, in a reasonably general form, is 

v:A^) = 9iAt^)ViAt^)i (4-1) 

where t is the time of the observation, v is the frequency, subscripts t and j refer to the 
measurement associated with antenna pair (t ,j), V is the true visibility function, V is the 
measured visibility function, and ff the baseline-based gain. Each of these quantities is 
complex-valued. This formulation assumes that the corrections are linear for each baseline 
and that there is no crosstalk amongst them. These assumptions are generally well-satisfied 
with modern systems. 

Virtually all the corruption of data takes place before correlation, so that the effects 
can be identified with individual antennas, rather than baselines. This observation allows 
the correlator gain to be factored to a product of antenna gains, so that the calibration 
formula can be written: 

Vlj(t,v) = GiG*GijVi3, (4-2) 

where the €?,- are the (complex) antenna gains, and G,-y is a residual, correlator-based gain. 
If the assumption above is perfect, then G»j = 1. All quantities are functions of time and 
frequency. 

In order to determine the G,'s for the N antennas from the ffij's, the set of equations 

Sii = GiG*i,        foii=l,...,N,    j = i+l,...,N, (4-3) 

must be solved. Because this set of equations is invariant with respect to an arbitrary 
phase shift in all of the Gi, the phase part of one antenna-based gain can be set to zero. 
The number of complex equations is equal to N(N —1)/2, and the number of (real-valued) 
unknowns is 2N — 1; the least-squares technique is generally used to determine the Gi. 
The validity of the assumption that the gain corruptions are antenna-based rather than 
correlator-based can be checked by examining the residuals of the solutions. 

In the calculation of the correction coefficients, Gi, it is convenient and also physically 
meaningful to deal with the amplitude and phase rather than with the real and imaginary 
parts. This is so because the primary effects of propagation are to rotate the phase and 
decrease the amplitude. Better physical insight into the effects involved is gained by exam¬ 
ining the amplitude and phase solutions, rather than the real and imaginary parts. Hence 
it is convenient to separate the complex Equation 4-3 into its modulus and argument. 

Continuum interferometers return no information about the shape of the spectrum 
within the passband supplied to the correlator. We thus can drop the explicit frequency 
dependence shown in Equation 4-2, so that we can write the calibration equation as 

where 

j4k(t)e*kW = ^(tjAyWe^W-^^MilyWe*^lt)Gi3(t) , (4-4) 

Ajy(t) is the measured visibility amplitude, 1.13truein 
^•(t) is the measured visibility phase, 
Aij(t) is the true visibility amplitude, 
<l>ij(t) is the true visibility phase, 
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i,j are subscripts denoting two antennas, the tth and jth, 
t is the time, 
v is the frequency, 
Ai{t) is the gain correction for antenna t, 
4>i(i) is the phase correction for antenna t, and 
Gij is the residual, baseline-based gain. 

We discuss the phase corrections in Section 4 and amplitude calibration in Section 
5. Bandpass and polarization calibration techniques are discussed in Sections 6 and 7, 
respectively. 

4. PHASE CALIBRATION (OR FOCUSING THE ARRAY) 

Signals collected by the array elements have traversed long distances through media 
with different refractive indices. These variations mean that the propagation times differ 
from those that would have occurred, had the path been tn vacuo. Most importantly, the 
signals collected by different elements have undergone different delays. Further differential 
delays occur due to the electronics required for conduction of the signals to the correlator. 
The net result of these variations is that the phase of the visibility is not that which would 
have been obtained by an ideal system. An analogy can be drawn with a paraboloidal 
surface which reflects radiation to a focal point. The geometry guarantees that signals 
arriving from the direction perpendicular to the plane of the antenna arrive in phase at 
the focus. The object of phase calibration of an array is to cause radiation from the phase 
tracking center to arrive at the correlator in phase. Thus, the process of phase calibration 
could be considered focusing the array. Because the data from each baseline are individually 
collected, it is not necessary to apply this calibration in real-time. Nevertheless, many of 
the phase-changing effects can be calculated, or monitored, in real-time, and the subsequent 
phase changes applied in real-time. In this Section, we discuss the major origins of phase 
perturbations. 

4.1. Delay calibration. 
As discussed in Lecture 2, signals from a celestial source must arrive at the correlator 

at the same time for correlation over a nonzero bandwidth. The accuracy required for 
coherence depends on the bandwidth. Consider two monochromatic signals, of frequency 
vo, arriving at the correlator in phase, but with delays differing by ST. Signals traversing 
the same path at frequency v will arrive at the correlator differing in phase by an amount 

ty = 23r(i/-i/o)$r, (4-5) 

where ST is the difference in the propagation time of the signals between the wavefront and 
the correlator. Thus, the delay difference must satisfy the inequality ST ^C X/SV in order 
for the the signals across a bandwidth Sv to add up in phase. 

There are two major components of the delay. The first is the geometric delay Tg 
(Equation 2-3) which can easily be calculated from the array geometry and the location of 
the radio source. Several techniques are available for insertion of a variable delay in order to 
compensate for the geometric delay (Lecture 2, Sec. 3). Note that the geometric delay can 
be compensated for one direction in the sky only, so that a degree of incoherence must exist 
for all other directions. This is the origin of bandwidth smearing, discussed in Lectures 2 
and 8. It can be held to acceptable levels only by using sufficiently narrow bandwidths. 

The second component of the delay is caused by propagation time for the signals 
imposed by the hardware associated with each antenna.  Interferometers are constructed 
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to make this delay equal for each signal path, and as time-invariant as possible. Through 
good design, the differences between antenna delays can be held constant (through internal 
monitoring) to better than than 0.1 nanoseconds (or 3 cm), sufficient to maintain good 
coherence for up to 500 MHz bandwidth. Various schemes for monitoring the internal delay 
are implemented on different interferometers. The time-invariant (or slowly time-variant) 
part of the delay for each antenna-IF is usually determined from calibrator observations. 
For a square bandpass of frequency width Sv, the measured amplitude of the visibility 
function as a function of delay error ST is given by 

.f/_ x     ainxSvST tA _. 

The relative delay between the antennas is stepped in units of X/Sv until a maximum of 
A' is found. The geometric delay must be compensated for during this measurement. This 
technique of delay fitting is used in VLBI (Lecture 13) to determine both the positions of 
radio sources and the antenna locations. 

4.2. Calibration of baselines. 
If the true baseline differs from the presumed baseline by an amount Ab, a phase error 

ty = 2*-Ab-B, (4-7) 

results, which has a characteristic sinusoidal dependence on source declination and hour 
angle. Explicitly, if the antenna locations are expressed in a coordinate system with the 
x-axis pointing toward S = 0°, h — 0h, the y-axis toward S = 0°, h = —6h, and the pr¬ 
axis toward S = 90°, and if A6X, A6y, and AbM are the components of the baseline errors 
expressed in this reference frame, then 

S4> = 2jr((A&a. cos h — Aby sin h) cos S + A6, sin S). (4-8) 

The above equation holds for identical antennas. For non-identical antennas, the true 
baseline will be a function of antenna pointing position, and extra terms describing this 
will be necessary. Calibration of the baselines is straightforward in principle. Observations 
of many calibrators of well-determined positions are taken, preferably under conditions of 
good atmospheric stability. The coefficients of Equation 4-8 can then be determined. 

The array lies on a moving object, the Earth. Since we must determine the antenna 
locations with respect to a fixed reference frame, precise knowledge of the motion of the 
Earth is required. The important contributions are: 

(1) the Earth's rotation (i.e., the time), 
(2) the precession and nutation of the Earth's axis of rotation, 
(3) the wandering of the pole of the Earth, and 
(4) the effects of Earth tides. 

The non-uniformity of the Earth's rotation can be predicted to an accuracy of a few millisec¬ 
onds of time. If higher accuracy is required, post-observing corrections can be made (see 
Sec. 4.3). Precession of the Earth's pole is approximately 20" per year. The largest contri¬ 
bution to nutation has a 19-year period and 9" amplitude. There are other, smaller terms 
of shorter period. Correction for these effects is required if data from different observations 
are to be combined. Besides precession and nutation, the Earth's pole undergoes an erratic 
wandering amounting to approximately O'.'Ol.   Predictions of this motion can be made. 
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Earth tides, caused by the Sun and Moon, cause a crustal displacement of approximately 
30 cm, or O'.'Ol in apparent position of an astronomical source. 

Two other effects, not related to baselines, need to be mentioned, since their effects 
must be corrected for in order to use interferometric data. Aberration occurs due to the 
Earth's revolution about the Sun, and to its rotation about its axis. The maximum angular 
shifts are 20" and 0^26 respectively. Bending of rays due to the gravitational field of the 
Sun causes an angular displacement away from the Sun of 1 "75 at the solar limb, decreasing 
nearly linearly to 0!'004 at 90° from the Sun. 

All other effects are believed to contribute less than 0''002 error in the measurement 
of position of radio sources. Note that calibration of data through observation of nearby 
sources will reduce the errors of most of these effects. However, observations intended for 
astrometry must include all these corrections, if milliarcsecond accuracy is desired. 

4.3. Correction of time errors. 
Occasionally errors occur in the clock used as the time-reference for the array. This 

introduces a phase error given by: 

$$ = — 2iru>St(bx sin h + by cos h) cos S. (4-9) 

where ut is the angular rotational velocity of the Earth, 7.29 X 10~5 rads-1. There is a 
fundamental limit to correcting the phase errors so introduced, because it is practical to 
set the clock only to an accuracy of a few milliseconds, the limit of time-keeping systems. 
The seriousness of time-keeping errors is much reduced however, by calibration through 
observations of nearby sources, since the phase error will be nearly the same for both 
calibrator and source. 

4.4. Atmospheric phase errors. 
The wavefront from a distant radio source is distorted in its journey from the source 

to the array, so that the phase measured by the correlator differs from that characterizing 
the coherence function. At centimeter wavelengths, the most important distortion occurs 
in the neutral atmosphere, where both the dry and wet components of the troposphere slow 
the propagation of the signals, while at meter wavelengths the dominant effect is due to 
the ionosphere. Recent reviews on the astronomical importance of these effects is given in 
Meeks (1976), and in Chapter 13 of Thompson, Moran, and Swenson (1986). The latter 
reference is especially recommended. 

The extra path introduced by propagation through the atmosphere is characterized 
by the excess path length, SL = cSt, where St = J /(n — l)dx is the extra propagation 
time introduced by the atmosphere, and n is the index of refraction. What is noted by 
the interferometer is not the introduced delay per se, but the difference in delay between 
the two antennas comprising the interferometer. Thus, the phase error introduced by the 
atmosphere is 

^ = 23r($Z,1 - $La)/A, (4-10) 

where the subscripts refer to the two antennas. Two origins for the excess path length can 
generally be distinguished—the first due to the large-scale, global structure, and the other 
to small-scale turbulence. The large-scale structure can often be estimated and corrected 
for, using estimates or measures of atmospheric structure. The effects of turbulence are in 
general not calibratable, except through use of self-calibration. 

The depth of the troposphere is about 6 km, and the decrease in the speed of 
propagation—usually called refraction—is about 1 part in 3000, producing an additional 
path length, at the zenith, of about 2.3 m. At zenith angles z less than about 80°, the effect 
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of Earth curvature can be neglected, and a reasonable approximation to the excess path (in 
cm) can be written L = LQ sec z, where LQ = 0.228Po + Co- Here, PQ and CQ are the total 
pressure and water vapor partial pressure in millibars. Note that there is no dependence 
on frequency. 

A plane-parallel atmosphere has no effect on interferometer phase (since both rays take 
the same time traversing it), so that the only correction needed is a small adjustment for 
refractive bending (typically an arcminute). However, due to Earth curvature, widely sepa¬ 
rated antennas require a phase correction, since they view the source at different elevations. 
A good approximation to the differential excess path is 

SL = sec z [ SLQ H sec z J , (4-11) 

where SLQ is the difference in vertical extra path, due to the difference in heights of the 
antenna, r is the geometric delay, and ro is the Earth's radius. For baselines of tens of 
kilometers, the typical correction amounts to a few centimeters. 

The troposphere is characterized by micro-turbulence at size scales from meters to kilo¬ 
meters which has little effect on ground-based weather measurements. It is believed that 
the irregularities in the distribution of water vapor dominate the observed phase irregular¬ 
ities, which occur with characteristic timescales varying between seconds and hours. These 
phase fluctuations can be described by a random process with an r.m.s. that is a power law 
of antenna separation |b|, 

*=*o|b|0 (4-12) 

where the baseline is in kilometers, and fo is the r.m.s. phase on a 1 km baseline. Numerous 
test measurements at the VLA yield values of the coefficients of the root Allan variance1 at 
1 km baseline for an 8 minute timescale; median values, expressed in millimeters of excess 
path length, are given in Table 4-1. 

Table 4-1. 
Median Coefficients for Root Allan Variance 

00 
Day Night 

April-September 2.2 1.0 

The index a of the power law is predicted by the Kolmogorov theory of turbulence to 
be 0.83. The observed index varies from zero to about 0.9 for antenna separations ranging 
from a few tens of meters to a few kilometers. The observed low values for the index indicate 
that the interferometer is sensitive to a regime of the power spectrum of fluctuations near 
the outer scale of turbulence at about one kilometer baseline and 8 minute timescales. The 
median index is about 0.3. 

At higher frequencies on long baselines, these tropospheric effects severely limit the 
ability to construct coherent images. Work on monitoring the variations in the wet compo¬ 
nent (believed to be the more important part) through monitoring of atmospheric emission 
near the water vapor resonance line at 22.2 GHz has been done. It appears that corrections 

1The Allan variance, for phase flnctations of characteristic timescale r, is given by <72(T) = ^V ((<£(* — f) — 
2^(t) + ^(t+r))3), where 4>{t) denotes the phase as a function of time, and where the angle brackets denote 
the expectation value (averaging over time). 
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to the excess path can be made, accurate to better than 1 cm. However, at millimeter 
wavelengths, considerably better accuracy is needed before this technique can be used. It 
should also be remembered that due to the short correlation scale of water vapor irregular¬ 
ities (< 1 km), each antenna of an array must be outfitted with a radiometer—resulting in 
a very significant cost for multi-element arrays. 

These fluctuations generally limit the accuracy to which positions of astronomical 
sources can be measured (and, obviously, limit the determination of baseline parameters as 
well).1 

Limited success may be obtained by attempting to calibrate the effect of turbulence by 
observations of nearby calibrator sources. The more frequent the calibrator observations and 
the closer the calibrators are to the program source, the more likely it is that the calibration 
will adequately compensate the small-scale variations in tropospheric refraction over each 
antenna. It is found that calibrator-source separations less than 10°, and timescales of less 
than 10 minutes, are required to reduce the effects of tropospheric turbulence. 

In Lecture 9 the self-calibration algorithm is discussed. This calibration technique 
uses the radio source itself (provided that it is sufficiently strong) as the test signal for 
determining the antenna-based phase errors, the bulk of which are produced by differential 
refraction above the antennas. This phase calibration technique is far superior to calibration 
by a nearby source, but it cannot be used when the source flux density is comparable to 
the noise (per baseline). Unfortunately, the fraction of astronomical observations for which 
this powerful technique can be applied is a decreasing function of frequency, since the flux 
densities of most sources, the number of background sources in the antenna beam, and the 
antenna sensitivities all typically decrease with increasing frequency. 

4.5. Ionospheric phase errors. 
The ionosphere is a magneto-active plasma mainly confined to a region 60-2000 km 

above the surface of the Earth, with the most important effects on radio astronomical 
observing caused by the region 300-500 km in height. The propagation paths of radio waves 
passing through this medium are affected because the index of refraction is a function of both 
the electron density Ne and the magnetic field strength (the latter dependence is important 
to propagation of polarized radiation). Given a profile of the electron density along the 
radio ray, the excess path can be calculated. A typical value is LQ = —A x 106i/~2 meters, 
where the frequency v is in MHz. Note that the excess path is negative, meaning that the 
phase is advanced relative to vacuum (the physically relevant group delay is positive), and 
that there is a v~2 dependence, so that ionospheric effects are dominant at low frequencies. 
Atmospheric and ionospheric effects are typically about equal near 4 GHz, but effects of the 
ionosphere can occasionally be seen as high as 8 GHz. Temporal changes in the phase of the 
radio signal passing through the ionosphere result from temporal changes in the electron 
density. There is a large diurnal effect, due to solar heating, in which Ne changes by as 
much as a factor of 10. There are also anomalous variations, with timescales of minutes or 

The large-scale, or spherical, component of the ionosphere can be estimated and re¬ 
moved using models based on either (a) past history, or (b) the total electron content of the 
ionosphere, as measured by an ionosonde or by satellite transmissions. Given the vertical 
excess path LQ, the differential path at zenith angle z can be written 

6L= !*EL  (4-13) 
ro cos* z + 2h 

1For short observations at the VLA in the A configuration at 6 cm, source positions are accurate to about 
O'/l, while observations over many hours may be accurate to a few times O'/Ol. 
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where r is the geometric delay, h the height of the ionosphere, and ro is the Earth's radius. 
As is the case for the neutral atmosphere, the ionosphere contains an important turbulent 
structure. It might be possible to predict the effects of the larger size-scale, slowly vary¬ 
ing phenomena if total electron content measurements could be made at the time of the 
astronomical observations. However, the smaller-scale and more rapidly varying anomalies 
(which, unfortunately, are as important as the large-scale effects) would require reasonably 
continuous total electron content measurements over each of the antennas, in the direction 
of the source of interest. It does not appear that this kind of information will generally 
be available. A better prospect is self-calibration, since the flux density per antenna beam 
(or, more strictly, per isoplanatic patch3), due to background sources alone, appears to 
considerably exceed the baseline-based noise at frequencies below 500 MHz; so that if a 
suitable model is provided and if the array contains a sufficient number of antennas, then 
self-calibration can be expected to succeed. 

4.6. Final phase monitoring. 
Observations of calibration sources frequently interspersed with the program sources 

are used to correct the fast temporal changes of the phase that are due mostly to the 
atmosphere, and to correct for those residual phase errors which are not removed by other 
means. Calibrator observations are not needed, or are needed only infrequently, for compact 
arrays, especially at lower frequencies, where the effects of atmospheric turbulence are 
minor, and for objects where self-calibration can be expected to succeed. 

Generally the closest suitable calibrator should be used, to improve the chances of 
removing the effects of atmospheric turbulence. Once the observations are complete, the 
observed calibrator phase can be used to predict the phase corrections which need to be 
applied to the program sources, using a suitable interpolation function. The type of interpo¬ 
lation function and the convolution interval which should be used depend, to some extent, 
on the phase behavior and on signal-to-noise considerations. For nearby strong calibrators 
simple two-point interpolation (straight-line interpolation) is reasonable, whereas for much 
larger separations or weak calibrators a boxcar or Gaussian average of some suitable length 
(say 2 hours) may be desirable. If the calibrator phase changes are very large, then care 
must be taken in the type of interpolation used, to ensure that there is no degradation of 
the interpolated values. For large changes, self-calibration (if applicable) may be the only 
recourse. 

Note that antenna-based calibration cannot remove baseline-based gain errors. In 
modern, well-designed synthesis arrays, these errors are generally less than 1° in phase, and 
2% in amplitude, so that their effects on images is at a very low level (see Lecture 11 for 
a more complete discussion). These errors are due to a host of effects, most importantly, 
delay errors and errors in the phase-shifting networks used to obtain the real and imaginary 
parts of the observed visibility function. High-dynamic range imaging will be limited by 
these residual errors, and it now appears possible to remove their effects through calibration. 
This is further discussed in Lecture 11. 

5.   AMPLITUDE CALIBRATION 

Lecture 6 discusses the sensitivity of radio interferometers. For calibration, the char¬ 
acteristic of most interest is the timescale for changes in antenna sensitivity—that is, for 
system gain changes. These can be caused by many effects, including: 

2 The isoplanatic patch is the angular distance from some direction over which the atmospheric phase 
perturbation changes by more than some amount 

57 



R. Carl Bignell and Richard A. Perley 

5.1. Receivers. 
Most modern receivers are stable over time periods of at least a few hours. Through 

on-line monitoring of injected calibration signals, gain fluctuations can be reduced to much 
less than 1%. 

5.2. Antennas. 
The antenna gain may be a function of the direction in which the antenna is pointing, 

because of gravitational deformations of the antenna structure and the surface. For azimuth- 
elevation antennas, this effect should depend only on elevation. Correction depends upon 
determining the gain, curve, usually measured through observations of strong, unresolved 
sources. 

The temporal behavior of the gain of the antenna is also affected by the sidelobe 
structure, since this moves with the antenna, and the antenna therefore collects changing 
amounts of radiation from the ground and sky. The effects are usually more important at 
lower frequencies, since it is more difficult to design efficient feeds at these frequencies. It 
is obviously important to minimize these effects through good design. Correction for these 
changing effects involves monitoring the total system power. 

The sensitivity of an antenna is a function of position with respect to the antenna 
pointing axis. This function (normalized) is called the primary beam pattern ^(s) (see 
Lectures 1 and 2). This pattern reduces the apparent intensity distribution at all points off 
the pointing axis, so that the measured visibility function is the inverse Fourier transform 
of the product A(8)I(a). Calibration is generally accomplished by dividing the final image 
by the beamshape. Inaccuracies in this procedure will occur if the beamshape varies over 
the observation period because of 

(1) motion of the primary beam pattern away from the tracking position, 
(2) rotation of a non- axisymmetric primary beam on the sky, or 
(3) different primary beam shapes among the antennas. 

Errors of the first type are generally known as pointing errors, and can be understood 
and corrected for, given a model of the behavior of the antenna as a function of azimuth and 
elevation. Generally, a functional dependence of the antenna pointing on these quantities is 
assumed, and the coefficients are determined by observations of calibrator sources of known 
position. For example, for azimuth-elevation antennas, a general representation is 

S£=/1cosA+/,sinA+/3 + /(£) + /5Cos£, 

SA = gi sin A tan E + g2 cos A tan E + g^ sec E + g*, 

where fi = gi is the rotation of the antenna azimuth axis along the meridian from the 
vertical, /a = —£? is the rotation of this axis perpendicular to the meridian, /s is the 
elevation offset, or encoder error, f(E) is a function describing the refraction, fs a sag 
coefficient describing the effect of gravity on the feed support system, g^ is the azimuth 
collimation error (the elevation collimation error is absorbed into /$), and g^ is the azimuth 
offset, or encoder error. These equations are sufficient provided that the pointing errors 
and the applied corrections are small. The coefficients can be estimated by measurement of 
the SE and SA offsets for a large number of sources, as functions of azimuth and elevation. 

However, after these systematic effects are understood and corrected for, there in¬ 
evitably are residuals which will be important for some kinds of observations, especially at 
higher frequencies. There is no simple way to correct for these more random errors, and 
the best way to handle them is through good antenna design. That is, the tolerable level 
must be decided upon, and the antennas designed to meet that level. The most important 
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contributor to these residuals is generally solar heating, and though significant improvement 
has been made through insulation of antenna support structures, or thermal control, it is 
certainly preferable to avoid use of these methods—through good design. Active corrections 
(which could be considered calibration or advanced design) involving measurement by sensi¬ 
tive tiltmeters, combined with computer controlled adjustment, have been contemplated for 
many arrays, but to the authors' and the editors' knowledge, not implemented anywhere. 

The harmful effects of pointing errors are greatly worsened if the antenna beam pattern 
varies significantly over the object or field being imaged, since in this case the error is 
both spatially and temporally variable. A common criterion of adequate pointing accuracy 
is that there be < ^ full-width half-power (FWHP) error in the position, or change of 
position, during the observation. Observations at high frequencies are especially susceptible 
to pointing problems, since here the angular pointing errors are often comparable to the 
antenna primary beam. 

The second error is important for azimuth-elevation (az-el) mounted antennas only, 
since, for these, the beam pattern rotates on the sky through the period of observation. 
This effect cannot be easily calibrated, so minimization of this problem requires good beam 
pattern circularity, obtained through good feed design. The effects of this error type are 
important for sources or fields of view with angular size comparable to the antenna beam. 
Observations at low frequencies—where there are many sources in the primary beam— 
require good beam circularity, because of confusion. 

The third type of error is a problem only if: 

(1) the interferometer comprises more than two elements, and 
(2) the radio source, or the field of view being imaged, is comparable to or larger than 

the FWHP of the largest antenna. 

If the array consists of just two elements, the effect can be calibrated by multiplication 
by the reciprocal of the geometric mean of the antenna power patterns. In most modern 
arrays, the differences in primary beam shapes are sufficiently small that they can be ignored 
for all but the very largest sources or fields of view. The effects of non-identical beams are 
obviously worsened if there are also significant pointing errors 

5.3. Atmospheric emission and absorption. 
The constituents of the troposphere emit radio noise and absorb incoming radio signals. 

In the radio wavelength regime, the most important sources of atmospheric attenuation are 
water vapor and molecular oxygen. The latter constituent dominates near the spectral 
line transitions at 60 and 118 GHz. At the center of these transitions, the atmosphere is 
completely opaque. Away from these frequencies, water vapor is the dominant absorber, 
with absorption maxima near 22 and 185 GHz. The former transition is the only important 
absorber for frequencies below approximately 50 GHz. Zenith opacity at the center of the 
line rarely exceeds 1 dB (corresponding to a brightness temperature of approximately 40 
K), and for the commonly used 20 and 6 cm bands water vapor absorption is of order 1%. 
Important transitions due to other molecular species are found at frequencies exceeding 100 
GHz. For a discussion, see Chapter 2.3 in Meeks (1976). The antenna temperature due 
to the source and sky emission can be written (assuming a simple slab model of uniform 
density for the atmosphere), 

r.e-'" ■" * + ratm (1 - e-r"8ec *) , (4-15) 

where TV is the opacity at frequency v. Here, the source signal T9 is attenuated, and we 
see that the atmosphere at temperature T»tm can contribute significantly to the antenna 
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temperature. At 22 GHz it is possible for atmospheric emission to be comparable to the 
receiver temperature T^, for very low-noise systems. 

Below 10 GHz, tropospheric absorption can generally be neglected. Ionospheric ab¬ 
sorption is appreciable only at very low frequencies, and is rarely of importance above 50 
MHz. 

5.4. Correlation noise. 
Lecture 3 considered the loss of sensitivity involved with digital correlation techniques. 

Of especial importance in calibration is the variation of this degradation with degree of 
correlation (known commonly as the 'Van Vleck correction'). The change in correlation can 
be corrected for, on-line (as discussed in Lecture 3), although the loss of sensitivity cannot 
be.1 

5.5. Techniques of calibration. 
Many of these elevation- and time-dependent effects, except for atmospheric absorp¬ 

tion, can be calibrated by measuring the system temperature directly and, preferably, by 
continuously monitoring it. The usual procedure involves injecting the signal from a stable 
noise source into the front end of a receiver and synchronously detecting it later on. The use 
of system temperature corrections can adequately correct for atmospheric absorption only 
when the equivalent source temperature is much greater than the receiver temperature. 

In order to correct for temporal variations which are not removed by system tempera¬ 
ture corrections it is necessary to use calibrator observations which are interspersed among 
the program source observations. The sources used for this purpose are usually the phase 
calibrators. 

The flux densities of most good phase calibrators vary with time and cannot be used for 
absolute flux density calibration. Therefore a small number of "non-variable" calibrators is 
used to calculate the flux densities, first of the phase calibrators and then of the program 
sources.3 

Self-calibration is effective in adjusting the relative gains of the antennas, as discussed 
in Lectures 9 and 11, for observations of strong radio sources. The absolute gains cannot 
be recovered unless the total flux of the source is known a priori. 

6. SPECTRAL LINE CALIBRATION 

Assuming that the calibrations outlined in Sections 4 and 5 have been completed, and 
re-inserting the frequency dependence in the calibration equation, we find 

A^t, *)«****•"'> = ftiM^ytAM-ArdO)^(t> „)«<*/(*.") i (4_i6) 

where bi(v) denotes the bandpass amplitude gain correction for antenna t and /3i(v) the 
bandpass phase correction for antenna t. 

6.1. Bandpass calibration. 
The channel-to-channel gain variations, both in amplitude and phase, are caused by 

filters used to limit the bandpasses and by instrumental effects, such as reflections in the 
waveguide and between subreflectors and receivers. These variations can be calibrated 
through observations of strong sources. 

1At the VLA, these corrections are not yet implemented. 
3At the VLA, the flux density scale is tied to the source 3C 286, whose flux density is assumed to be equal 
to that given by Baars et aL, 1977. 
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The normal procedure for determining these corrections is to observe, over the same 
frequency band as the program source, a strong calibrator that has no spectral line emission 
or absorption within the observing band. This correction is very important when small line- 
to-continuum ratios are to be observed and high channel-to-channel dynamic range is needed 
(e.g., in recombination line observations). The procedure usually requires that the bandpass 
be stable for the duration of the observing run.3 

To correct for amplitude variations it is possible, using the program source itself, to 
obtain an estimate of bi[v) (only) from measurements of the autocorrelation function of 
each IF signal. Such bandpass normalization works well when there are no strong lines 
(strong relative to the system temperature), either in absorption or emission, within the 
passband. This method does not correct for phase variations across the band, and it is 
inadequate when high dynamic range is required. 

7.   POLARIZATION CALIBRATION 

7.1. Polarization mixing. 

Recall from Lecture 1 that the complete state of the radiation field is the superposition 
of two orthogonal vector quantities. Polarimetry measurements require two orthogonally 
polarized feeds. In an ideal antenna, these feeds respond solely to the two orthogonal prop¬ 
agation modes. There are four combinations, or correlations, which can be formed from the 
signals, and these combinations can be described in terms of the four (real) Stokes param¬ 
eters; I, describing the total intensity, V, describing the circularly polarized intensity, and 
Q and U, describing the linearly polarized intensity. These quantities are obtained through 
combinations of these correlations. That is, the measured spatial coherence functions trans¬ 
form to the following combinations of Stokes' parameters: 

(1) For circularly polarized signals, 

fe-i(Xi-Xa) 0 0 c-»(Xi-Xa)   ^ 
0 c-*(xi+X2) ,,

c-»*(xx+X3) o 

0 c«(Xi+X3) _,*c«(xi+Xa) 0 

^ c«'(Xi-Xa) 0 0 _c*(xi-X2)  . 

(4-17) 

where xi &nd Xa denote the parallactic angles of the feeds (xi « Xs for identically mounted 
feeds on closely spaced elements) and where Vj = F-1/, VQ = F-1^, etc. The antenna 
parallactic angle is related to latitude <f>, source hour angle h, and declination S, by tan x = 
cos <£ sin h/(sm<f>cos S — cos <£sm S cos h). 

Assuming equal parallactic angles, Xi = X2 = X> Equation 4-17 simplifies to 

(VRR\ /I 0 o      n (Vj 

VRL 0 e-** te-**     0 VQ 

VLR 0 e"x -te**    0 Vu 
(4-18) 

3At the VLA, this is quite often the case (but not always!) for time periods not exceeding 6-8 hours. 
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(2) For linearly polarized signals, 

Vvv\ 
VVH 

VHV 

VHHJ 

COS(XI - Xa) 
- sin(xi - X2) 
sin(xi - X2) 
cos(xi - X2) 

cos(xi + X2) 
sm(xi + X2) 
sin(xi + X2) 
- cos(xi + X2) 

sin(xi + X2) 
- cos(xi + X2) 
- cos(xi + X2) 
- sin(xi + X2) 

-tsin(xi-X2)\ 
-tcos(xi-X2) 
tcos(xi-X2) 
- «sin(xi - X2) / 

(Vj} 
VQ 
Vu 

yvv) 
• 

Assuming equal parallactic angles, this simplifies to 

fVVv\ 
VVH 

VHV 

\VHHJ 

cos2x 
sin2x 
sin2x 

— cos2x 

sin2x 0 
— cos 2x — i 
— cos 2% « 
-sin2x 0 

(4-20) 

Unfortunately, an antenna and feed do not respond solely to a single propagation 
mode. By diverse means, some signal from one mode contaminates the other, so that the 
polarization matrices become more complicated. The 'crosstalk' is generally described by 
D, describing the fraction of one polarization mode which leaks into another. Consider first 
circularly polarized feeds. If ER and EL are the circularly polarized signals which would be 
measured with an ideal system, the actual signals, VR and v^, are VR — EiJe~%x-\- DRELC** 

and VL = Ei,e%x + DLERC'** (Bignell, 1977). For the linearly polarized case, we have 
VH = #/rcos(x+ $) - jEVsin(x+ *) + #tfCEffsin(x+ 0) + #vcos(x+ 9)), and vy - 
EH sin(x +0) + Ev cos(x + 9) + Dv {EH COS(X +0)-EV sin(x + 0)), where 0 is the position 
angle of the vertical feed. Since Stokes' parameter / is generally very much greater than 
Q, U, or V, and the leakage terms are also small, only products between Q, U, V, and the 
D's with / need be retained. 

The cross-handed responses, with the above approximations, assuming equal parallactic 
angles, and assuming the antenna-based calibration has been performed, become: 

(1) For circularly polarized feeds, 

VRL = e-"x(VQ + iVu) + {DR! + Dj2)V>, 

VLR = e2ix(yQ - iVu) + {DL1 + Z>* 2)V>. 
(4-21) 

(2) For linearly polarized feeds, 

VVH = Vijsin2x - V^cos2x - iVy + (Dvi + D^Vj, 

VHV = VQsm2x - Vtrcos2x + iVy + (DH1 + l?Ja)Vj. 
(4-22) 

For a more explicit derivation, see Bignell (1977,1986). Note that in all the above equa¬ 
tions, observation of an unresolved source at the phase-tracking center allows replacement 
of Vj, Vq, Vu, and Vy with /, Q, U, and V, respectively. 
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7.2. Calibration of the leakage terms. 
The leakage terms can be calibrated by observations of unresolved calibrators. There 

are two approaches: 
The first is to observed a source of known polarization. It is important that the 

polarized flux be high, so that the leakage terms can be accurately determined. This 
requirement, when added to the need for an unresolved source, greatly limits the choice of 
sources. Of these, the preferred sources are 3C 286 and 30138. The measurement of the 
D's is straightforward. 

The second technique applies only to altitude-azimuth mounted antennas. For these, 
the antenna beam rotates on the sky during the course of the observations. This rotation 
causes the phase of the source polarization to vary, while that due to the antenna polar¬ 
izations remain constant. Observations over a suitable range in parallactic angle allow a 
straightforward separation of the two contributions. In this technique, a polarized cali¬ 
brator is not required. However, a high total flux density is desirable—the signal in the 
cross-hand channels is augmented by the total flux multiplied by the crosstalk term, as it 
allows a more accurate determination of these terms. This technique does not calibrate the 
position angle of the polarized flux density (corresponding to the phase difference between 
the orthogonally polarized feeds). To do this requires a short observation of a polarized 
source of known position angle. 

After determination of the D'a, the visibility data may be corrected through by applying 
the above equations. For these techniques to be effective, it is desirable that the change 
of the polarization constants be kept to a minimum.1 This allows degrees of polarization 
of order 0.1% to be determined. A serious limitation for polarimetry of extended sources 
is that the instrumental polarization varies significantly over the primary beam, and, for 
azimuth-elevation antennas, both this pattern and the antenna primary pattern rotate on 
the sky over the observing period. (For equatorially mounted antennas, the effect is spatially 
constant and, if the antennas are all described by the same D'a, can be removed in the image 
plane). 

7.3. Faraday rotation. 
The presence of a magnetic field in a plasma causes the plasma's index of refraction 

to be different for right- and left-circularly polarized radio waves, with the result that a 
linearly polarized wave has its plane of linear polarization rotated as it propagates through 
the ionosphere. The amount of rotation at wavelength A is given by 

EX2 f   Ne{l)H\l(l)dl = R.M.\2, (4-23) 

where Ne(l) denotes the electron density, H\\[l) denotes the component of the magnetic 
field parallel to the line of sight, E is a constant equal to 2.62 x 10~17 in c.g.s. units, 
and L the depth of the ionosphere, measured along the line of sight. The quantity R.M. is 
called the rotation measure. Typically the ionospheric rotation measure is about 1 rad m-2, 
with values reaching as high as 15 to 20 radm-3 during solar maximum. Corrections for 
Faraday effects are usually required for observations at wavelengths longer than 18 cm, but 
can occasionally be important at wavelengths as short as 10 cm. The use of models and 
measurements of the total electron content can correct for moderate-size rotations caused 
by the slowly varying diurnal component, but it cannot correct for anomalies. These may 
be calibratable through observations of a nearby polarized calibrator, or, perhaps, through 
polarization self-calibration, presuming the source has sufficient polarized flux density that 
variations in the apparent position angle can be monitored. 
1At the VLA, it is found that the variations, over an 8-hour period, are less than 0.5%. 
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7.4. Limitations of polarization calibration. 
In most modern radio astronomy antennas the D'a remain constant to within 0.5% 

over an eight-hour period. These variations tend to increase with frequency. 
The D'a are not constant over the beam. The spatial variation in D is less than 

0.5% only over an area of the beam, centered on the primary lobe of the antenna, with 
radius about 10% the FWHP. As long as the extended emission is within this region of the 
antenna beam, the accuracy of the polarization calibration is reasonably good. Polarized 
emission extending beyond this point will be progressively less accurately calibrated, with 
uncertainties possibly as large as a few percent near the half-power point of the beam. 

The other important limitation is that the phase difference between the orthogonal 
modes1 must remain constant in time. Changes in this instrumental quantity will alter 
the observed source position angle of polarized flux density, and lower the polarized flux 
density. This difference can be monitored through observations of strong calibrators. 

8. DATA EDITING 

The final step in data calibration is to identify and delete data which are irreversibly 
corrupted. This process requires human judgement, which can only be gained with experi¬ 
ence. We will summarize some causes, and effects on the data, and give some guidelines for 
identification of affected data. 

8.1. Interference. 
Communications signals and radars associated with satellites, aircraft, and ground- 

based transmitters, as well as signals generated by the local oscillator system, can increase 
the system noise or cause erratic behavior in the measured visibility amplitudes and phases. 
This is especially true at low frequencies (< 2 GHz) and on short baselines. Spectral line 
observations using narrow bandwidths are particularly susceptible to interference, compared 
to observations using wider bandwidths, due to the smaller amount of "dilution" (dilution 
of the interfering signal by uncontaminated signal in the rest of the band). On the other 
hand, observing in spectral line mode will allow efficient removal of interfering signals if 
they occur in a small number of channels (and if the interesting signal does not also occupy 
these channels). Interference will show up in images in various ways, commonly as stripes 
across the image. Efficient techniques of removal are available—see Lectures 10 and 11 for 
details. 

8.2. Shadowing and crosstalk. 
When the antennas are close together one may "look" into the back of another.3 A 

related problem, notable on short baselines in general, but which is especially severe under 
conditions of shadowing, occurs when signals radiated by one antenna (say, by the local 
oscillator) are picked up by another. This causes a false correlation to occur, and is generally 
known as 'crosstalk'. 

Shadowing changes the baselines of the antennas involved, reduces the antenna gain, 
and distorts the primary beam of the antenna that is shadowed. The reduction of the 
antenna gain can be corrected by a factor based on the geometrical blockage. However, 
it must be emphasized that this factor is only correct for the center of the antenna beam 
(and only at high frequencies, where diffraction effects can be neglected). Application of 
this correction only makes sense if the region of interest is small compared to the antenna 
primary power pattern. The other effects (beam distortion, and baseline offset) can not be 

'at the VLA, the so-called "A-C or B-D phase difference" 
2 This is common in the C and D configurations of the VLA. 
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simply corrected, and are most important to imaging of large fields. Given that observations 
affected by shadowing are almost always observations of large objects, the safest procedure 
is to delete all affected data. Crosstalk effects are not correctable, and afflicted data must 
be deleted. 

8.3. Strong sources in the sidelobes of the antennas. 
The presence of very strong sources in the sidelobes of the antenna beam can signif¬ 

icantly affect the observations. This effect is most notable in observations taken near the 
'Big Three', the Sun, Cassiopeia A, and Cygnus A, especially at lower frequencies. The use 
of wide bandwidths is effective in suppressing this type of interference—however, spectral 
line observations taken in daytime at wavelengths longer than 10 cm will nearly always 
show the effect of solar contamination. 

8.4. Identification and deletion of bad data. 
The principal difficulty is in identifying the data which should be deleted. This is best 

accomplished by examining the record-to-record consistency of the visibility amplitudes, 
since jumps on this timescale cannot occur in good data, unless the source is time-variable 
on this scale (e.g., solar and stellar flares). Various schemes have been devised to list data 
for quick perusal; their effectual use is a matter of experience. A useful way to spot problems 
is to examine the r.m.s. statistics of individual correlators for each scan, and from scan to 
scan. A single discrepant value will greatly increase the r.m.s. value. Perusal of matrix 
listings of this quantity helps to quickly identify questionable correlators, whose data can 
then be listed for detailed editing. Another commonly used method is the baseline-time 
display, showing visibility data on a TV monitor. Unusual values can quickly be identified. 

Further details on calibration techniques can be found in Lectures 9 and 11. 
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RICHARD A.  SRAMEK AND FREDERIC R.  SCHWAB 

l. FOURIER TRANSFORM IMAGING 

A fundamental result of Lectures 1 and 2 was the existence of a Fourier transform (FT) 
relationship between the sky brightness /, the primary beam pattern A, and the visibility 
V observed with an interferometer. From Lecture 2 (Eq. 2-27), 

A(l, m)I(l, m) = r  r V(u, l,)e*«(«l+*"0 du dv. (5-1) 
J —oo J —oo 

This simple relation holds if (a) |^b • (s - so)| < 1 and (b) |u;(/2 + m2)| < 1. These 
conditions are met whenever the radiation to which the interferometer pairs respond origi¬ 
nates in a suitably small (and confined) region of sky. Since the correction for the primary 
beam can be made trivially at the final stage of data processing1 (as discussed in Lecture 
1, Sec. 4.4), we shall use /(/,m) to denote the modified sky brightness, A(l,m)I(l,m). 

V is complex-valued and, after the usual calibration steps (see Lecture 4), is reckoned 
in units of flux density (say, Wm~2Hz-1), while / has units of surface brightness (flux 
density per unit of solid angle). A standard unit for / is Jy/beam area; sometimes Jy 
per square arc second is used instead. The units are determined by the normalization of 
Equation 5-1. 

Equation 5-1 is used to obtain an estimate of the modified sky brightness from the 
observed visibilities, recorded at u-v points (ufc,t/fc), k — 1,...,M. In practice, M may 
range from ten to a few hundred with a two element interferometer, to over a million with a 
multi-element array like the VLA. With M small, model fitting is feasible—and sometimes 
useful (see Lecture 14). But for large M the usual method of estimating / is via the 
discrete Fourier transform (the DFT), because extremely efficient algorithms are known for 
numerical evaluation of DFT's. 

The topics of some of the Lectures to follow also fall under the broad category of 
'imaging'. But the discussion here is restricted to 'simple-minded' methods of estimating 
the sky brightness: that is, directly approximating the right-hand side of Equation 5-1, via 
only linear operations. The so-called "dirty image" that results is a discrete approximation 
to ID, where (from Lecture 1, Eq. 1-10) 

ID(l, m)= f      f     S(u, v)V"(u, v)e2*i(ul+vm) du dv. (5-2) 
J —oo J—oo 

Here, S denotes the u-v sampling function and V' the observed visibility; the prime indicates 
that the visibility data are noise-corrupted measurements. (For conciseness, ID has been 
left unprimed, but it too is noise-corrupted whenever V is.) 

1Thi8 is assuming that A has been carefully measured over a large enough region in (/, m). Wide-field 
imaging, in cases in which a source covers, say, a larger region than the central lobe of the primary beam, is 
an especial problem. Antennas with azimuth-elevation mounts (as at the VLA) present a problem because 
the primary beam patterns rotate on the sky, as functions of parallactic angle. See Lecture 4. 
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1.1. The 'direct Fourier transform9 and the FFT. 
Either of two methods is commonly used to numerically approximate the Fourier trans¬ 

form in Equation 5-2. The first, called the 'direct Fourier transform' method,2 approximates 
ID(l,m) by brute-force evaluation of the sum 

1   M 

T7 E ^'K' v*)e2,r,(ttt'+wtm). (5-3) 
Jb=l 

If this direct Fourier transform' is evaluated at every point oian NxN grid, the number of 
real multiplications required is AMN2 (the number is halved, though, assuming Hermitian 
data). In practice M is usually of the same order as N2, so the number of multiplications 
goes roughly as N4. The number of sine and cosine evaluations required is also 0(N4), as 
is the number of additions/subtractions. 

The second method requires interpolating the data onto a rectangular grid, so that 
a fast Fourier transform (FFT) algorithm can be used. The process of interpolation is 
referred to as gridding. (Gridding may require sorting the data into order of decreasing 
|u| or decreasing |v|.) The number of elementary arithmetic operations required by the 
technique most often used for gridding is O(M). The number of such operations required 
by an FFT algorithm (say, the Cooley-Tukey algorithm) is only a few times N2log2 N — 
not 0(i\r4)! This saves much computing time for large databases, and large iV especially, 
if an economical method of interpolation is used. However, for making small images (i.e., 
for N small) from small databases (M small), the 'direct Fourier transform' may be faster 
than the combination of gridding and FFT. 

In the following Sections we first discuss weighting and selection of u-v data and how 
it affects the resulting images. This applies no matter how the Fourier transform is ap¬ 
proximated. Then we touch upon the problems that are introduced by gridding the data 
to permit use of the FFT—the problems of aliasing and correction for gridding. 

2. THE SAMPLING FUNCTION, AND WEIGHTING THE VISIBILITY DATA 

The sampling function S and its Fourier transform, the synthesized beam B, were 
introduced in Lecture 1. In practice, the data are variously weighted, according to their 
reliability and to control the shape of the synthesized beam. 

2.1. The sampling function. 
5 is a 'generalized function', or 'distribution', which may be expressed in terms of the 

two-dimensional Dirac delta function, or '^-distribution', 

M 

S{u> o) = ]£ s(« -«*,«- Vfc) . (5-4) 

2 This choice of terminology is unfortunate. The natural abbreviation for the term—'DFT*—is used al¬ 
most universally (by everyone except radio astronomers) to stand for something else: the 'discrete Fourier 
transform*. For example, the 2-D discrete FT of an M X N matrix (s,j) is the Af x N matrix (ifct) given 
by 

Vkl =
 ^(e2*i(p-ink-i)/My2Xpqe2wi(q-i){i-i)/ir\ 

The major distinction between the two usages is that in one case the data are regularly spaced, and in the 
other they are not. 
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It is useful to introduce a second generalized function, called the sampled visibility function 
or, alternatively, the u-v measurement distribution,1 

M 

Vs(u,v) = J^S(u -uk,v- v*)^'(u*, v*) . (5-5) 
fc=i 

That is, V5 = 5V'. Let F denote the Fourier transform operator. Equation 5-2 can be 
rewritten 

jD _ fVs = p^v"). (5-6) 

By the convolution theorem, which says that the Fourier transform of a product of functions 
is the convolution of their FT's (see, e.g., Bracewell 1978), 

ID = FS*FV', (5-7) 

where * denotes convolution. For a point source of unit strength, centered at position 
{lotrno)i \V'(u, v)\ = 1, and FV is the (shifted) Dirac ^-function: S(l — lo,m — mo). So the 
point source response of the array, i.e., the synthesized beam, is given by B = FS * 8 = FS. 
Equation 5-7 is the familiar result (Lecture 1, Eq. 1-11) that the observed brightness is the 
true brightness convolved with this 'beam'. 

It should be apparent that the so-called 'direct Fourier transform', as defined by Ex¬ 
pression 5-3, is exactly ID. That is to say, that—assuming ^-function sampling—ID(l,m), 
as defined by Equation 5-2, is given exactly by a discrete summation, Expression 5-3, and 
that Equation 5-7 holds for the 'direct Fourier transform' method (an analogous relation is 
given below for the FFT method). Of course, a computed 'direct Fourier transform' image 
is indeed an approximation, but only in the sense that it is inevitably a discretely sampled 
version of ID and that the sums are computed in finite precision arithmetic. 

2.2. Weighting functions for control of the beam shape. 
In analogy to Equation 5-4, a weighted sampling function, or weighted sampling distri¬ 

bution, can be written as 

Af 

H'K «) = X) RkTkDkS(u - uk, v - vk) . (5-8) 
Jb=l 

And, in analogy to Equation 5-5, one can define a weighted, sampled visibility function, or 
weighted and sampled measurement distribution, Vw according to Vw = WV', or, explicitly, 

M 

Vw(u, v) = 53 RkTkDkS(u -uk,v- vk)V'(uk,vk) . (5-9) 
Jb=l 

The coefficients Rk, Tk, and Dk are weights assigned the visibility points. These data 
points may represent time-averages of visibility measurements spaced along the loci of the 
interferometer u-v tracks. Rk is a weight that indicates the reliability of the kth. visibility 

1Note that the visibility measurements are not, in actuality, point samples of the inverse Fourier transform 
of the modified sky brightness AI, but that instead they represent load averages of it. Time- and frequency- 
averaging, which are discussed in Lecture 2, are the dominant averaging effects. One should try to choose 
observing parameters (integration time and bandwidth) that make relatively safe our assumption here about 
^-function sampling. This matter is further discussed in Lectures 8 and 16. 
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Figure 5-1. A Gaussian u-v taper with dispersion <r — 1 km. 

datum. It may depend on the amount of integration time, the system temperature, and the 
bandwidth used for that data point. There is no control of Rk in the image formation, so 
no further mention is made of it here. 

The density weight Dk and the taper T* can be specified in many Fourier trans¬ 
form imaging programs, to 'fine-tune' the beam shape. If S were a smooth, well-behaved 
function—say, a Gaussian—then B would have no sidelobes, just smooth 'wings'. In prac¬ 
tice, S is a linear combination of many ^-functions, often with gaps in the u-v coverage 
corresponding to missing interferometer spacings. There is always a finite limit to the ex¬ 
tent of the u-v coverage, corresponding to the largest (projected) spacing of interferometer 
elements. In addition, for many arrays more data points fall in the inner region of the u-v 
plane than fall further out. This tends to give higher weight to the low spatial frequencies. 
The natural sampling may impair effective deconvolution or mask interesting features of I. 

The Dk and the Tk are used to control, to some extent, the beam shape. The Tk are 
used to weight down the data at the outer edge of the u-v coverage, and thus to suppress 
small scale sidelobes and increase the beamwidth. The Dk are used to offset the high 
concentration of u-v tracks near the center, and to lessen the sidelobes caused by gaps in 
the coverage; i.e., to simulate more uniform u-v coverage. We shall discuss these forms of 
weighting separately. 
2.2.1. The tapering function. The Tk are specified by a smooth function T: Tk = T(uk, vk). 
T is usually separable, so that T(u,v) = Ti(u)T2(v); and often it is a radial function (i.e., 
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Figure 5—2. The effect of a Gaussian taper on the point source response of a VLA snapshot in the A 
configuration at 20 cm wavelength. As a narrower Gaussian taper (i.e., a heavier tapering) is applied, the 
half-power width of the point spread function increases and the inner sidelobes are reduced. 

a function with circular symmetry): Tk — Tfr*) where r* = yjv^. + v\. Although functions 
whose radial profiles follow a power-law or powers of a cosine are occasionally used, the 
most prevalent form is the Gaussian. The dispersion, or the half-width at half amplitude, 
or the half-width at 0.30 amplitude are used in different data reduction programs to specify 
the characteristic width (or widths) of T (see Fig. 5-1). 

For a Gaussian taper, T(r) = exp(—r2/2a2), the half-power beamwidth (i.e., the 
width of the synthesized beam, measured between half-amplitude points) is 0HPBW = 
0.37/a with $ in radians and a in wavelengths. Translated into common units, IHPBW — 
0.77X(cm)/a(km) arc-seconds. This holds only for a densely sampled Gaussian that is not 
truncated by the edge of the u-v coverage. When the taper is negligible at the edge of the 
u-v coverage (assuming dense coverage), one can use a filled circular aperture approxima- 
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tion, for which 0HPBW = 2.0A(cm)/a(km) arc-seconds, where a is the radius of the aperture. 
Real-life observational geometries and u-v coverages often produce larger 0HPBW and) fre¬ 
quently, elongated beams. Examples of the VLA point source response with different u-v 
tapers are shown in Figure 5-2. 

Instead of de-emphasizing data near the outer boundary of the u-v coverage, it is 
sometimes desirable to downweight the data near u = v = 0. An undersampled large scale 
emission region may introduce large undulations in image intensity that are hard to remove. 
These can present a problem for detecting a weak point source embedded within a region 
containing extended emission. Minimum u-v limits and other forms of downweighting are 
often used to diminish the effect of these low spatial frequency data points. 

2.2.2. The density weighting function. The density weighting function can be used to 
compensate for the clumping of data in the u-v plane by weighting by the reciprocal of the 
local data density. Two choices for this weighting are commonly provided: 

Dk = 1,        called natural weighting, 
1 

N0{k) ' 
and    Dk =       . , ,        called uniform weighting. 

where Ne(k) is the number of data points within a symmetric region of the u-v plane, of 
characteristic width s, centered on the fcth data point, (s might be the radius of a circle or 
the width of a square.) In many Fourier transform imaging programs s is a free parameter 
selected by the user. 

Natural weighting, with all points treated alike, gives the best signal-to-noise ratio for 
detecting weak sources. However, since the u-v tracks tend to spend more time per unit 
area near the u-v origin, natural weighting emphasizes the data from the short spacings, and 
tends to produce a beam with a broad, low-level plateau. This latter feature is especially 
undesirable when imaging sources with both large scale and small scale structure. 

With uniform weighting, a common choice for N, is to count all the points that lie 
within a rectangular block of grid cells in the neighborhood of the kth. datum (gridding is 
discussed later).1 This produces a beam specified largely by the tapering function T. 

Sometimes, especially in the VLA "snapshot" mode of observing (see Lecture 16), 
uniform weighting may not be 'uniform' enough. Although all cells have equal weight, the 
filled cells are still concentrated toward the center and along the arms of the VLA "Y*. 
At the further expense of signal-to-noise ratio, the size parameter a can be increased. This 
"super uniform weighting" gives lightly sampled, isolated cells weights comparable to those 
given cells in well-sampled parts of the plane. The result is again a beam shape controlled 
more by the tapering function and less by the arrangement of the sampled visibilities. 
Examples of the VLA point source response obtained with various weighting functions are 
shown in Figure 5-3. 

3. GRIDDING THE VISIBILITY DATA 

To take advantage of the extreme efficiency of the FFT algorithm, visibility values 
must be assigned to a regular, rectangular matrix or 'grid', usually with a power-of-two 
number of points along each side. Since the observed data seldom lie on such a grid, some 
procedure (an interpolation procedure comes most readily to mind) must be used to assign 

1ln the AIPS implementation, these blocks are called "uniform weight boxes". 
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Figure 5—S. The effect of different weighting functions on a VLA "snapshot" image of a point source. 

visibility values at the grid points, based on the observed values.2 There are many ways 
to achieve this interpolation (see, e.g., Thompson and Bracewell 1974), but with quasi- 
randomly placed observations a convolutional procedure in the u-v plane leads to an image 
with predictable distortions and to results that are easy to visualize. Convolution is not, 
in fact, a pure interpolation procedure, since it combines smoothing, or averaging, with 
interpolation. This should not be viewed as undesirable—given that there often are many 
noisy, possibly discrepant, data points in the neighborhood of a given grid point. 

3Some special array geometries (e.g., "IT's and Crosses, with elements aligned linearly N-S and E-W) can 
provide regularly spaced data. See, for example, the description of the Clark Lake array by Erickson et ail 
(1982). The assumption (mentioned below) of a sufficiently large number of data points in the neighborhood 
of each filled 'cell' is not required. However aliasing problems persist, because of the regular sampling. 
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3.1. Gridding by convolution. 
The idea is to convolve the weighted, sampled measurement distribution Vw with some 

suitably chosen function C, and to sample this convolution at the center of each 'cell' of 
the grid. For economy's sake—and because it seems reasonable for the value assigned at a 
given grid point to equal some local average of the measurements—C, in practice, is always 
taken to be identically zero outside some small, bounded region Ac. Since Vw is a linear 
combination of M ^-functions, this convolution C *Vw, evaluated at the grid point (ue, vc), 
is given by 

Af 

C(uc -uk,ve- vk)Vw(ufc,vk) . (5-10) 
*=i 

Note that, since the region Ac is quite small in area, there are generally many fewer than 
Af nonzero terms in this sum. 

Note also that Expression 5-10 does not, in fact, represent a local average of the 
measurements in the neighborhood of (ue, ve). For that, some sort of normalization would 
be required—say, multiplication by the area of Ac, followed by division by the number of 
data points whose shifted coordinates (uc — uk, ve — vk) lie within the region Ac (and one 
would want C to integrate to unity). When this particular form of normalization is used, the 
normalized sum (ignoring weighting) approaches the non-discrete, integral convolution C*V 
evaluated at (ue, ve) as the number of measurements increases without bound, provided that 
the measurements in the neighborhood of (uc, vc) are uniformly distributed, and provided 
that the noise in V is well-behaved. In practice, this straightforward form of normalization 
is not always incorporated in imaging—so the matter of normalization becomes intertwined 
with that of 'density weighting', discussed above. 

The operation of sampling C * Vw at all points of the grid may be represented by the 
equation 

VR = R (C *Vw) = R(C* (WV)) , (5-11) 

where (as usual) multiplication is indicated by juxtaposition and where R, a 'bed of nails' 
resampling function, is given in terms of Bracewell's 'sha' function (denoted LU) by 

oo oo 

#(u,v) = LU(u/Au,v/Av)=   ^    Yl  S(j-u/Au,k-v/Av). (5-12) 
y=—oo Jb=—oo 

Here, Au and Av define the cell size—i.e., the separation between grid points. This oper¬ 
ation is called resampling (hence the A-notation) because, as you recall, the interferometer 
array earlier provided the samples embodied in V5 and Vw. Now, since VR is a linear 
combination of regularly spaced ^-functions, a matrix of samples of its Fourier transform 
FVR can be obtained by a discrete Fourier transform. Thus FVR can be calculated by the 
FFT algorithm. 

FVR—after normalization, and after one simple correction—is what you have been 
seeking: a "dirty" image—a cheap approximation to ID. Denote FVR by ID. 

Applying the convolution theorem to Equation 5-11, ID is given by 

ID = FR* [(FC) (FVW)] = FR* [(FC) (FW * FV')] . (5-13) 

(Please refer now to Fig. 5-4 for a graphical interpretation of Eq. 5-13 and for an illustration 
of the operations that are described in the remainder of this Section.) LU is its own Fourier 
transform; R behaves similarly—by the dilation property of the FT (see Sec. 4.1), 

oo oo 

{FR)(l,m) = AuAvUJ(/Au,mAv) = AuAv  £)     ^  S(j - /Au, k - mAv) .    (5-14) 
y=—oo ib=—oo 
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One effect of the resampling is to make ID a periodic function of / and m, of period 1/Au 
in / and period 1/Av in m. Another effect, called aliasing, is also introduced. It, too, arises 
because of the convolution with the scaled sha function FR (more on this later, in Sec. 3-2). 

The FFT algorithm generates one period of (a discrete version of) ID. To image a 
rectangular region of width NiA$i radians in / and NmA9m in m, one chooses grid spacings 
satisfying i^iAu = l/A$i and i\rmAv = l/A0m wavelengths. An iVm x iVj FFT yields the 
discretely sampled version of ID. Let P denote the region over which ID is computed—i.e., 
P, which is called the primary field of view, is given by |/| < NiA0i/2, |m| < NmA9rnl2. 

The net effect of the gridding convolution is to multiply the sky brightness by a function 
c(/,m), the FT of the convolving function C (i.e., c = FC). The tapering function T, 
introduced earlier for control of the beam shape, has the effect of a convolution in the 
image domain. 

Figure 5—4 (pp. 76-77). A graphical illustration of the steps in the imaging process is shown in this one- 
dimensional example. At the top, in panels (a) and (b), a model source and its visibility are displayed 
side-by-side; the results of successive imaging operations are displayed vertically. The image domain is 
shown on the left, and the visibility domain on the right. Horisontally opposed panels represent Fourier 
transform pairs. The units on the vertical axes were chosen arbitrarily—i.e., we have not bothered with 
normalization. The horizontal axes are in radians for the image domain plots, at left; the baselines are 
expressed in wavelengths for the visibility domain plots, at right. 

The model source, shown in panel (a), is the sum of a Gaussian-shaped extended source and four 
symmetrically placed point sources. The total flux density of the Gaussian is 1.5 times the sum of the 
fluxes in the point sources. This symmetry was chosen to ensure that the visibility function, shown in panel 
(b), is real-valued and even, allowing a simpler display. Panel (d) shows the telescope transfer function, 
or sampling function S, which includes a central "hole*. We have chosen a smooth function for simplicity, 
but one should note that no array would in fact produce a smooth sampling function. In reality, S is 
a sea of closely- and irregularly-spaced ^-functions, as in Equation 5-4. The triangular sampling density 
was chosen to mimic the fall-off in the density of samples with increasing spacing. The telescope beam B 
corresponding to (d) is shown in panel (c). The data available for imaging are shown in panel (f); this 
product of the true visibility function and the sampling function corresponds to Vs, as defined by Equation 
5-5. The image which a direct transformation of (f) would yield is shown in panel (e). This image is equal 
to the convolution of the beam (c) with the true sky brightness (a). This image shows a large amplitude 
oscillation, reaching a negative peak centered on the position of the extended source. This effect, which 
is of much larger amplitude than the oscillation seen in (c), is due to the missing central spacings in the 
u-v sampling and to the fact that the visibility of an extended source is relatively highly concentrated near 
u = v = 0. With sufficient computing resources (mammoth resources would often be required), one might 
use the 'direct Fourier transform' method of Section 1.1; (e) is the image that would result. 

Extra steps are required to make use of the FFT: First, the data are convolved with some suitably 
chosen function, and then they are resampled over a regularly-spaced grid (in practice the convolution 
is evaluated only at the grid points). For illustration, a simple, and crude, convolution function C was 
employed, as shown in (h). The sharp drop-off in C creates large, oscillating wings in its Fourier transform, 
shown in (g) (the reciprocal of the 'grid-correction function'). The data, after convolution, are shown in 
panel (j). If a (continuous) Fourier transform were applied at this stage, the result would appear as in panel 
(i). The important effect to note is that the outermost point sources have been inverted in amplitude. This 
occurs because the convolution function that we have chosen is too wide. The inner point sources have been 
slightly reduced in amplitude, though not inverted in sign. As the FFT requires regularly spaced data, the 
data in (j) must be sampled. The (re-)sampling function R is shown in panel (1), and its transform, the 
replication function, in panel (k). The resampled, convolved visibility is shown in panel (n). These are the 
data that the FFT actually sees. The FT of this is the image shown in panel (m); it has been replicated at 
the various points shown in panel (k). Notice that aliases of the outermost point sources appear just outside 
the positions of the innermost point sources. This aliasing occurs because the resampling function, shown 
in panel (1), undersamples (i.e., takes fewer than 2 samples per cycle) of the transform of the outermost 
point sources. The final operation is correcting for the effect of the convolution. This is done by dividing 
the image by the Fourier transform of the convolution function. The result is shown in panel (o). This is 
the end product, the "dirty image" that is supplied to the deconvolution programs. 
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An image representing the point source response of the array, or the 'dirty beam' BD, 
can be obtained by setting all the measurements V'(uk, vk) to unity and following the steps 
outlined above. Denote the image so obtained by BD. 

Normally, ID and BD are corrected for the effect of the gridding convolution by point- 
wise division by c: The so-called "grid-corrected" image is given by 

/c(/'m)--^o-j (5-15) 

and the "grid-corrected" beam by 

c(/,m) 

The commonly used term "grid corrected" is, in a way, a misnomer, since one is actually 
correcting for the effect of the convolution function C. The grid correction is not an exact 
correction, except in the limit of a large number of well-distributed visibility measurements. 
It also is not exact due to the presence of R in Equation 5-11 and FR in Equation 5-13. It 
could be so only if c(/, m) were identically zero outside of the region being imaged; this is 
impossible because C is confined to a bounded region Ac-1 

Finally, 1^ and Bff both are normalized by a scaling factor selected so that the peak 
of Bg is of unit flux density. One may as well not alter the notation to reflect this, since it 
is a trivial operation. 

If c(/, m) tends sufficiently rapidly to zero outside P, so that the resampling can be 
ignored, and if the u-v samples are well enough distributed for the gridding correction to 
be approximately valid, then I? is a good approximation to ID—that is, Equation 5-13 
becomes 

IJ> = FW*FV,, (5-17) 

—and then the usual convolution relation between ID, B, and / is approximately valid 
with I® and B? substituted for ID and B, respectively. Note, however, that B? is usually 
computed only over a region of the same dimensions as the image If. For this reason, 
the deconvolution algorithms (described in Lecture 7) usually operate just on a region with 
one-quarter the area of the input image. 

3.2. Aliasing. 
Due to the presence of FR in Equation 5-13 and to the fact that c is not identically 

zero outside the primary field of view, parts of the sky brightness that lie outside P are 
aliased, or 'folded back', into P. Undersampling, and the truncation of the sampling at the 
boundaries of the u-v coverage, are the root causes of aliasing. (If the sky brightness I has 
features extending over a region of width Oj in / and width nm in m, then its visibility 
function has been undersampled if the visibility samples are separated by more than 1/Qi'm 
u and l/nm in v.) The amplitude of an aliased response from position (/, m) is determined 
by |c(/, m)|. The simplest way to tell whether a feature is aliased or authentic is to calculate 
images with different cell sizes A0; an aliased feature then appears to move, while a real one 

1The FT of any nontrivial (i.e., nonsero) function which is confined to a bounded region has features 
extending to infinity. By a theorem of Paley and Wiener (see, e.g., Dym and McKean 1972) the FT of such 
a function is extremely well-behaved, in the sense that it can be analytically extended to an entire function 
in the complex domain (i.e., in the case of 2 dimensions, from R3 to C2). In particular, the FT cannot 
vanish over any open set (this is why the synthesized beam has sidelobes that "never go away"). 
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stays the same angular distance from the image center. Additionally, an image covering the 
full main lobe of the primary beam may quickly reveal whether there is an aliasing problem 
in an image of a smaller region. 

Aliasing of sources that lie outside the primary field of view is only part of the problem. 
Although it may be possible to obtain visibility samples that are closely enough spaced to 
avoid undersampling over the sampled region of the u-v plane, the finite physical size of the 
array sets a limit on how far the sampling can extend. For this reason, any authentic feature 
within P has sidelobes extending outside the image. These sidelobes are also aliased into 
P, effectively raising the background variance and resulting in a beam shape that depends 
on position. If, for example, the visibility function is well sampled over a square region 
of the u-v plane but no samples are obtained outside that region, then (assuming uniform 
weighting) the sidelobes in ID are precisely those of Gibbs' phenomenon, discussed in 
Lecture 2. 

3.3. Choice of a gridding convolution function. 
The best ways to avoid aliasing problems are (a) to make the image large enough that 

there are no sources of interest near the edges of the image, (b) to avoid undersampling, and 
(c) to use a gridding convolution function C whose Fourier transform c drops off very rapidly 
beyond the edge of the image. Desideratum (c) favors gridding convolution functions that 
are not highly confined in the u-v plane. But, in practice, computing time restricts one's 
choice of C to functions that vanish outside a small region, typically six or eight u-v grid 
cells across. A compromise must be struck between alias rejection and computing time. 

C is always taken to be real and even. And, since C is usually separable—i.e., C(u, v) = 
Ci(tt)C2(v) —we shall continue the discussion in just one dimension. Typical choices for C 
are: 

(1) a "pillbox" function, 
(2) a truncated exponential, 
(3) a truncated sine function (sine x = s'°^'a:), 
(4) an exponential multiplied by a truncated sine function, and 
(5) a truncated spheroidal function. 

Each is truncated to an interval of width m grid cells, so that C(u) = 0 for |u| > mAu/2; 
thus 0(Mm2) arithmetic operations are required for gridding. These functions are described 
below; for more discussion see Schwab (1978): 

(1) Pillbox. C(u) = j J'       ^h^d^2'    For m = !» convolution with this C is 

equivalent to simply summing the data in each cell. Calculation of these sums is 
fast, but the alias rejection is the worst of the five functions considered here, c is 
a scaled sine function. 

(2) Exponential. C(u) = exp ( - ( -L-L- J   j. Typically m = 6, tu = 1, and a = 2. 

That is, a truncated Gaussian is often used, in which case c can be expressed in 
terms of the error function. 

/o\    *•      ^t \     sin(jru/ti/Au)   _    .   „ 
(3) Sxnc. C\u) = —    .     —-. Typically m = 6, tv = 1. c can be expressed in terms 

of the sine integral. If m is allowed to increase, c approaches a step function that is 
constant over P and zero outside. This is the intuitive justification for considering 
the use of this function, that the FT of a unit step function truncated at ±.\ is 
the sine function. 
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(4) Exponential times sine. C(u) = exp [ - (    'ttJ    )    J sml   /"^   U\ Typically1 

\    \u;iAu/   /     iru/w2Au 
m = 6, u/i = 2.52, W2 = 1.55, a = 2; i.e., a truncated, Gaussian-tapered sine 
function is often used, c can easily be computed by numerical quadrature, but it 
lacks a closed-form expression. 

(5) Spheroidal functions. C(u) = |1 - *72(«0|aV'ao(*''n/2,i7(u)), with ^ao a O-order 
spheroidal function (Stratton 1935), r?(u) = 2u/mAu, and a > —1. For a = 0 
this is the O-order 'prolate spheroidal wave function1, which is the optimal C 
(among all square-integrable functions of width m grid cells) in that the en¬ 

ergy concentration ratio fp \c{l)\2dl //^ |c({)|2ctt is maximized. The other V'oo 
are optimal in the sense of maximizing a weighted concentration ratio: for given 

«> JP wWMOl1*/J.!L ^WKOI1* "■ maximized, where w(l) = |1 - 2lAu\a. 
Choosing a > 0 gives higher alias rejection near the center of the image, at the 
expense of alias rejection near the edges. V'oo is its own FT, in the sense that if 
you truncate it as done here, and then take the FT, what you get back is V'oo- 
Similarly, the other tpao are finite Fourier self-transforms, in the sense that if you 
so truncate one, weight it, and transform it, what you get back is ^ao* V'aO is used 
at the VLA, with m = 6 and a = 1 being typical. See Schwab (1984) for further 
discussion and additional references. 

Figure 5-5 shows the Fourier transforms of two typical gridding convolution functions, 
normalized to unity at / = 0. The abscissa on this plot is in units of image half-widths, 
rj = 2/Au, so that q = ±1 at the image edges. The image response is suppressed at the 
edge for both functions, however the exp x sine function is flatter inside P, and drops much 
faster past the image edge. The aliased response can, of course, be negative, producing an 
apparent "hole" in the image. The plots in Figure 5-6 compare the pillbox function and 
the Gaussian-tapered sine function with several spheroidal functions. The quantity of most 
direct importance is the ratio of the intensity of an aliased response to the intensity the 
feature would have if it actually lay within the primary field of view P, at the position of 
its alias: if rj' denotes the position within P at which the aliased response of a source at 
position rj appears, then this ratio is given by q(rj) = |c(/(r?))/c(/(r7/))|. (And i?' is given by 
rj' — ((q -f l) mod 2) — 1; it is useful to sketch a plot to convince oneself of this.) Schwab 
(1978) and Greisen (1979) show plots of q for these convolving functions and for many 
others. 

The pillbox, exponential, and sine functions do not give as effective alias rejection as 
the exp x sine or the spheroidal. The exp x sine has somewhat smaller corrections and, 
thus smaller errors (due to round-off noise and to violation of the assumptions that make 
the grid correction valid), near the image edges, while the spheroidal has better rejection 
beyond the image edge (Schwab 1984). 

Remember that the convolution functions suppress only aliased responses. Sidelobes 
which legitimately fall within the primary field of view, whether from sources inside or 
outside P, are not suppressed (see Fig. 5-7). With alias suppression of 10* to 10s, at two or 
three image half-widths, it is these sidelobes which may cause the dominant spurious image 
features and impair effective deconvolution. 

1 For a gridding convolution function of this particular parametric form, these values of the characteristic 
widths \D\ and u>2 are an optimal choice, in the sense described below in the discussion of ^oo- 
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Figure 5—5. The response to a source, as a function of distance from the image center, for two typical u-v 
convolving functions. 

4.   ADDITIONAL TOPICS 

4.1. Translating, rotating, and stretching images. 
The Fourier transform possesses three basic symmetry properties that are useful in 

radio interferometric imaging. The first important property is the behavior of the Fourier 
transform with respect to translation—that is, with respect to a shift of origin: namely, if 
you shift a function, i.e., replace /(u) by /(u — Au), and take the FT you get the same 
result as if you had first taken the FT and then multiplied by e2xiK'Au (here x denotes 
the variable in the transform domain). Similarly, if you want a shift of origin Ax in the 
transform domain, all you need do is multiply, before transforming, by a factor e~2w*n'Ax. 
Thus, in imaging, all that is required to achieve a shift of origin in the image is to multiply 
the visibilities by the appropriate complex exponentials before transforming. 

The second important property is that the Fourier transform commutes with rotations; 
that is, if you take the FT and then rotate the coordinate system in the transform domain, 
you get the same result as if you had first rotated the coordinate system and then taken the 
FT. Thus, to 'turn an image around', all that you need do is rotate the u-v coordinates of 
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Figure 5-6. For some typical gridding convolution functions C, plots of the absolute value of the Fourier 
transform of C. (a) The spheroidal function V»io, for m = 6, compared with the pillbox function (m = 1); 
(b) the "prolate spheroidal wave function" ^oo, m = 6; (c) an optimised Gaussian-tapered sine function, 
m = 6; (d) the spheroidal function ^   i 0, tn = 6. Adapted from Schwab (1984). 

the visibility data. (It is easy to see why the FT has this property: the inner product u*x in 
the exponential kernel of the FT is invariant under rotation.) At the VLA, the visibility u-v 
coordinates are routinely rotated to correct the data for differential precession—i.e., to put 
the data into the coordinate reference frame of a standard epoch, say, J1950 or J2000. Data 
taken at two different epochs, say a year apart, need this correction for differential precession 
before they can be sensibly combined or compared; routine correction to a standard epoch 
automatically rectifies this problem. Additionally, it is sometimes convenient to rotate the 
coordinate system so that features in a source have a particular alignment in an image. For 
an elongated source, this can reduce the data storage requirements (by reducing the number 
of pixels needed to represent the source by a computed, discrete image) and therefore 
aid during deconvolution (see Lecture 7) by reducing the required number of arithmetic 
operations. 

The third basic symmetry property of the FT is that it antt-commutes with dilations. 
That is, if you 'stretch' a function linearly and isotropically, then its FT 'shrinks' propor¬ 
tionately. (That is, the FT of y(u) = /(cm) is given by (Ffl)(x) = orn(F/)(x/a). The 
multiplicative constant a~n depends on the dimensionality n.) Or, if you linearly stretch 
a function in just one coordinate, then its FT 'shrinks' proportionately, but in only one of 
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Figure 5—7. The effects of aliasing: (a) a point source at the field center; (b) the same source near the 
image edge; (c) the source below the lower image edge appears as an aliased image at the upper image 
edge, with pillbox convolution; (d) with exp x sine convolution, the aliased source is greatly attenuated, 
but the sidelobe response remains the same. 

the coordinate directions. This property is the reason that, for a fixed array geometry, the 
spatial resolution increases (i.e., the characteristic width of the synthesized beam beam de¬ 
creases) with observing frequency—the reason that as the u-v coverage expands, the beam 
shrinks proportionately. 

Following Bracewell (1978), the shift property is sometimes called the shift theorem, 
and the dilation property the similarity theorem. 

4.2. Practical details of implementation. 
Most Fourier transform imaging programs do not work quite as described above. Often 

the tapering, introduced in Equation 5-8, and specified by T(u, t>), is applied after gridding. 
This would appear to make only a minute difference. But, in the same sense in which it 
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is incorrect to ignore resampling to justify the grid correction, it is also incorrect to ignore 
the convolution with FT, which, if inserted into Equation 5-13, would now appear outside 
the square brackets. 

For economy, Fourier transform imaging programs often do not attempt to evaluate 
the gridding convolution function very accurately, but instead use a step function (tabular) 
approximation, with steps spaced at increments of, typically, Au/100. This introduces 
another (not very serious) 'replication' effect like that due to FR, but one with a very long 
period, 100/Au. The grid correction given by Equation 5-15 should be based now on the 
FT of the step function approximation to C rather than on the FT of C itself. For analysis, 
see Greisen (1979). (Schwab (1984) gives cheap and accurate rational approximations to 
the spheroidal functions; the step function approximation is unnecessary.) 

4.3. Non-coplanar baselines. 
In Equation 5-1 the visibility samples are expressed as a function of two variables, u 

and v, rather than as a function of (u, v, w). As shown in Section 6 of Lecture 2, Equation 
5-1 is strictly valid whenever the visibility measurements are confined to a plane, as they 
would be if obtained with an interferometer array whose elements are aligned along an east- 
west line; and, again as shown in Lecture 2, this relation is approximately valid when /(/, m) 
is confined to a small region of sky—that is, when our condition (b) holds, |tt;(/2+ms)| "C 1. 
In wide field imaging with non-coplanar baselines, condition (b) is often violated. 

Recall from Lecture 2 (Eq. 2-21) the relation 

J-oo J-oo y/1 — /2 — m2 

This can be rewritten as 

V(u,v,u/)e-2,r,,,' = 

r r r w, m)i(i, m)   _y/l_l2_ m2)e-»,r.(u<-n„»+«,n) ^ dm dn  (5_19) 
J-oo J-co J^oo y/l-l2- m2 

Now, by sampling V, weighting by e~2xtw and by the Fourier kernel, and integrating over 
(u, v, w), one obtains an analog of Equation 5-2, 

I*D{l,m,n)= n f"  n S{u,v,w)V{u,v,w)e-2*iwe2wilul+vm+wnUudvdw, (5-20) 
J —oo J—oo J—oo 

which (c/. Eq. 5-19) is equal to a three-dimensional convolution—the convolution of 

_ A(l,m)I{l,m) 
j.   yt,Tn,nj 

with 

/*(/, m,») ^ J'^Z'J '<" - V^1^7^). (5-21) 

/OO       /•OO       fOO 

/      /     S(u,v,w)e7irilul+vm+wnUudvdw. (5-22) 
-oo J—oo J—oo 

Note that /s is a distribution confined to the celestial sphere and that B3D is mostly 
concentrated near the origin, i.e., near / = m = n = 0. 

Either of the methods described earlier for approximating ID can be extended straight¬ 
forwardly to Equation 5-20. In applying the 'direct Fourier transform' method, one simply 
uses a discrete summation, in analog to Equation 5-3. In the FFT method, tv-terms need 
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to be inserted into Expression 5-10, defining the gridding operation; a 3-D FFT yields 
a three-dimensional discretely sampled image1; and one interpolates this result to obtain 
data over a spherical cap, a portion of the surface (/, m, y/1 — I2 — m2). Because usually 
the importance of the curvature effect is minor and the data cover a small range of w, Nn, 
the number of slices required in the tv- and n-dimensions, is small—typically eight to six¬ 
teen. At the VLA, such a 3-D imaging capability was designed into the "pipeline" imaging 
system, but it has seldom been used. 

One additional approach to this problem, involving a combination of mosaicing and 
deconvolution, is mentioned below. 

5. THE PROBLEM WITH lD—SIDELOBES 

An astronomer is seldom satisfied with the approximation to / defined by ID, or with 
the computed version thereof, If. This is because of the sidelobes which contaminate ID. 
As you have seen, these are due to the finite extent of the u-v coverage and to gaps in the 
coverage. Sidelobes from bright features within an image are likely to obscure any fainter 
features. The process described here is usually just the first step in obtaining a better 
approximation to /. Because the convolution relation If = Bf * I, is approximately valid, 
this first step provides a starting point for the deconvolution (i.e., sidelobe removal) process 
described in Lecture 7. However, in cases of very low signal-to-noise ratio (as might occur in 
an observation to determine the detectability of a putative source) one would often choose 
not to proceed any further. This is the case, too, in spectral line observing, primarily 
because spectral line data reduction is computationally very expensive, and because narrow 
bandwidths lead to low signal-to-noise ratios. 

In wide field imaging, deconvolution is the real problem in trying to cope with non- 
coplanar baselines. Because simple 2-D deconvolution itself is an extremely expensive 
operation, there has been little progress to date in obtaining high quality (deconvolved) 
images taking proper account of sky curvature and non-coplanar baselines, via any sort 
of three-dimensional deconvolution technique (to complement the 3-D imaging techniques 
described in Sec. 4-3). Data storage is another problem. Typically, non-coplanar baseline 
effects are an important concern in the largest images; but computer storage is often barely 
adequate for the number of points, or "pixels", required in just the /- and m-coordinates. 
A crude approach which has yielded some useful results involves mosaicing—constructing 
"patchwork" images, each piece computed with the 'u;(n — 1) '-correction appropriate to the 
center of the patch. This approach, which is used in the AIPS program MX, combining 
linear imaging with deconvolution, is described in Lecture 8. Because sidelobes from a 
source in any one patch fall into each of the other patches of the mosaic, the deconvolution 
operation must work in parallel on the patches. This necessitates repeated re-gridding of 
data. 
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6.   Sensitivity 

PATRICK C. CRANE AND PETER J. NAPIER 

1.   INTRODUCTION 

In this Lecture we analyze the sensitivity of a synthesis array, derive general expressions 
for r.m.s. noise levels and evaluate these expressions for the particular case of the VLA. It 
is important to note that we will consider only the noise effects of the observed radio source 
itself and of additive random noise. By additive noise we mean white, Gaussian noise that 
is added to the astronomical signal received by an antenna before cross correlation with 
the output from another antenna. The sources of the additive noise are the 3 K microwave 
background, the galactic bcickground, thermal noise generated by atmospheric emission, 
thermal noise picked up from the ground, thermal noise due to attenuation in the input 
microwave feed and waveguide structure, noise from the injected calibration signal and 
noise generated in the low-noise receiver itself. Just as the sensitivity of a single-antenna 
radio telescope is often not limited by random noise but is determined, rather, by effects 
such as confusion and gain instability, there are many effects other than random noise 
which limit the sensitivity of a synthesis array. The most important of these effects, which 
are not considered here, include errors in calibrating the complex gain of the instrument, 
atmospheric amplitude and phase instabilities, effects of sidelobes and confusing sources, 
radio frequency interference, DC offsets in the correlators and the distortions caused by a 
non-negligible bandwidth. Some of these effects introduce artifacts (e.g., stripes) into the 
image while others mimic additive random noise by merely raising the noise level in the 
image. 

2.   DEFINITION OF SYSTEM TEMPERATURE 

Figure 6-1 shows a schematic diagram for a two-element, single-multiplier, correlation 
interferometer. All of the electronics from the output of the feed horn up to the input to 
the multiplier are represented by a single receiver with power gain G and bandwidth Au at 
the multiplier input. In a practical interferometer the signal may undergo many frequency 
conversions between the feed and the multiplier input, but G and Ai/ are still well-defined 
quantities. 

For the purpose of analyzing the sensitivity of this simple interferometer, it is useful to 
replace the antenna at the input to the receiver with a matched termination having physical 
temperature T. The power P entering the receiver from this termination is given by1 

P=kBAi/T, (6-1) 

where ks is Boltzmann's constant (1.38 x 10""23 joule K-1). 

1 Remember that this is an approximation. It is equivalent to the Rayleigh-J cans approximation to Planck's 
black-body radiation law, and holds when ht/ <: hgT, where p is the frequency and h is Planck's constant 
(6.63 X 10""34 joule sec). The approximation is valid provided that the frequency is not too high and the 
temperature is not too low. It is in error by 4% in estimating the noise power available from a 22 GHi 
termination at 15 K. For some of the new millimeter-wavelength interferometers it may be necessary to use 
the correct Planck equation when analysing and measuring sensitivities. See, for example, Kraus (1966). 
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Figure 6-1. Simple block diagram of a two-antenna, single-multiplier, correlation interferometer. 

Suppose that the antenna is pointed at a piece of blank sky that contains no astronom¬ 
ical radio sources (other than the 3 K microwave background and the galactic background). 
In this case all of the power at either input to the correlator is due to additive noise re¬ 
sulting from phenomena listed in Section 1. Call this power at the correlator input Pjy. 
Then we define the system temperature, TSyS, to be the physical temperature of a matched 
termination on the input of the receiver (now assumed to be noiseless) which will produce 
Ps at the correlator input. That is 

JbjjT.y.Ai/G = PN. (6-2) 

Suppose that the antenna now points at a radio source. If G remains constant, the power at 
the correlator input will increase to Pjq + P0, where Pa is the additional power collected by 
the antenna from the radio source. We define the antenna temperature due to the source, 
T0, to be the increase in temperature of a termination on the receiver input needed to 
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produce an increase in power of Pa at the correlator. That is 

kBTaAvG = Pa. (6-3) 

Note that we have defined Tsyfl to include only the effects of additive noise. Sometimes 
TBy8 is defined to include the noise due to the radio source under observation, but it will be 
convenient in the following analysis to separate Ta from Tsy9. In most practical situations 
this point is not important because Ta «: T8y8. It is interesting to break T8)r8 up into its 
component parts: 

Tgy. = Tbg + Tgky + T'apiii + T\0„ + Tca| + T^, (6-4) 

where 

■'ays — Total system temperature excluding noise contribution from the observed radio 
source, 
Noise contribution from microwave and galactic backgrounds, 
Noise contributed from atmospheric emission, 
Noise contribution due to ground radiation scattering into the feed from the sub- 
reflector edge, feed legs, dish edge, etc., 
Noise contribution due to losses in the feed and input waveguide, 
Noise contribution due to injected calibration signal. The VLA noise source has a 
50% duty cycle so Tcai is one-half of the actual calibration value, 
Receiver noise temperature measured at the room temperature input flange to the 
receiver, including the contribution from the second and following stages. 

Table 6-1 gives typical values at the zenith for these noise contributions for the six VLA 
receivers. 

^sky = 

Tspill = 

•'loss == 

^cal = 

Table 6 -1. 
Noise Contributions in the VLA Receivers 

Wavelength Tfag               T.ky               TgpJH TloBB T^cal Trx Tsys 
Band (K)       (K)        (K) (K) (K) (K) (K) 

92 cm 3         25           15 7 5 70 125 
20 cm 3           3           14 8 2 30 60 
6 cm 3           3            7 5 2 30 50 

3.6 cm 3           3            3 2 2 32 45 
2 cm 3           8            6 13 6 80 116 

For the VLA, the TSpiii and T]OSS contributions are somewhat higher than is usual for low- 
noise receivers because of the compromises that were made to have all receivers and feeds 
available simultaneously. At 1.3 cm wavelength the TVx contribution should decrease to 
approximately 100 K when the new cooled preamplifiers are installed. 

Several of these terms will vary with the position of the antenna. Obviously, the contri¬ 
bution from the galactic background depends upon the galactic coordinates being observed. 
T8piii will change as the orientation of the antenna with respect to the ground varies. More 
significantly, at high frequencies the contribution Taky from atmospheric emission varies 
with time and antenna position. Assuming a plane-parallel atmosphere with temperature 
7atm> the dependence of Tsky on position is given by 

Tsky — T&tm (1 — « 
—rcBcE 

). 
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where T is the zenith attenuation and E is the elevation. Atmospheric attenuation also 
reduces the observed antenna temperature Ta from the Tao which would be measured outside 
the atmosphere by 

Ti    rp      —rcacE 
a — J-aoe 

In this case the quantity of interest is the effective system temperature Teff corrected for 
the effect of atmospheric attenuation, 

/TI       /p      .r esc E 
-teff — -tsys* 

At the VLA the effects of atmospheric attenuation are most serious at 1.3 cm wavelength 
where typical values of r range between 0.03 and 0.17 (Spangler 1982). 

3. SENSITIVITY OF A TWO-ANTENNA, SINGLE-MULTIPLIER, 

CORRELATION INTERFEROMETER 

The two-antenna, single-multiplier, correlation interferometer is the basic element of a 
synthesis array, and in this section we consider the sensitivity of this basic element. 

Several authors have analyzed the sensitivity of the simple two-antenna interferometer 
or the related correlation receiver, including Christiansen and Hogbom (1969), Crane (1982), 
Rogers (1968,1976), Staelin (1974), and Tiuri (1964,1966). The following derivation follows 
that of Crane (1982). 

Consider the case in which the interferometer shown in Figure 6-1 is observing an 
unpolarized point source of flux density S (Janskys, 1 Jy = 10~26 Wm^Hz*-1). The 
antenna temperature of antenna 1 due to the source is given by 

_ fliAiS _ 
Tai-~2ib7"-*15' (6-5) 

where rji is the aperture efficiency of antenna 1 (including the effect of losses) and Ai is the 
geometrical area of antenna 1. The factor of 2 results from the fact that, since the source 
is unpolarized, a single-channel receiver on the antenna can accept only half of the power 
from the source. The expression for Ta3 is the same as Equation 6-5 with the subscript 
1 replaced by 2. An important characteristic of the antenna is the sensitivity K = Ta/S 
(K Jy-1) which, from Equation 6-5, is given by 

r,A 
K = 

2kB 

This quantity is a measure of the flux-collecting ability of the antenna. Table 6-2 shows 
typical values of K for the 25m-diameter shaped-reflector antennas of the VLA; for compar¬ 
ison the value of K for the 100m telescope of the Max-Planck-Institut fur Radioastronomie 
is 1.5 KJy-1, and for the 1000ft telescope of the Arecibo Observatory, between 6 and 15 
K Jy-1, depending on frequency. 

Table 6-2.                                1 
Flux-Collecting Ability of VLA Antennas 

Wavelength r,                    K = Ta/S 
Band (%)                    (KJy"*) 

92 cm 40                            0.071 
20 cm 51                            0.091 
6 cm 65                            0.116 

3.6 cm 65                           0.116 
2 cm 52                            0.093 
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The voltages as functions of time, V(t), at the inputs to the multiplier are given by 

V1(t) = S1(t) + »!(«) , 

V2(t) = 52(t) + n2(t), 
{     } 

where S(t) is the voltage due to the radio source and n(t) is the voltage due to the system 
noise. The correlator multiplies Vi(t) and V^*) together and averages the product for 
some finite integration time. For this analysis we assume that the source is at the phase 
center of the interferometer, that the fringes have been stopped, and that time delays have 
been introduced so that Si(t) and S^W arrive at the multiplier in time synchronism (see 
Lecture 2). In this case, the correlator will produce a DC output resulting from the product 
Si(t)S2(t), which corresponds to the desired measure of correlated power. An undesired, 
but unavoidable, zero-mean, time-varying output due to the various cross products in the 
multiplier will be superimposed on the DC output. To determine the sensitivity of the 
instrument, we wish to find the ratio of the DC output to the r.m.s. value of the time- 
varying component. Our approach will be to determine the power spectra of the various 
products generated in the correlator by using the Wiener-Khinchine theorem (Middleton 
1960, p. 405). In this application the theorem states that the power spectrum of the product 
produced by the multiplier is equal to the Fourier transform of the autocorrelation function 
of the product. The various power spectra will then be integrated over the bandpass of the 
integrator to determine the power in the various terms. Several simplifying assumptions 
will be made. Assume that both receivers have identical frequency responses and, further, 
that Gi = Crj = G. Since both the signal and noise are Gaussian and white, the former 
assumption implies that the autocorrelation functions of Si(t) and ni(t) will have the same 
forms as the autocorrelations of ^(t) and n^t), respectively. 

The autocorrelation function, ^(r)} of the signal at input 1 to the multiplier is given 
by 

^1(r) = (515{>, (6-7) 

where Si = S\(t), S[ = Si(t + r), and the angle brackets are used to denote an expected 
value. Si(t) and ^(t) differ only by a multiplicative constant 

S.W = /IJsiW • (6-8) 

Note that ^«1(0), the r.m.s. power contained in Si(t), is given by 

^i(0) = GfcBTOlAi/. (6-9) 

The autocorrelation function, ^ni(r)> of the noise is given by 

^n1(r)=(n1n
/

1), (6-10) 

where ni = ni(t) and n^ = ni(t+r). Note that the noise power at input 1 to the multiplier 
is given by 

^(0) = GksT^ Av, (6-11) 

and that the autocorrelation function of n2(t) differs only by a multiplicative constant from 
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Now, the autocorrelation function, ^m(r), of the multiplier output is given by 

MO = a2 (Vi(t)Vi(t)Vi(t + T)V2{t + r)>. (6-13) 

Using Equation 6-6 

Mr) = a2 ((Si + nOfS, + n2)(S{ + n'^Si + nj)), (6-14) 

where a is a constant. 
Equation 6-14 can be expanded using a relationship from statistics which gives the 

expansion of the expectation of the product of four jointly Gaussian random variables 
(Davenport and Root 1958) 

Mr) = ^[((Si + n1){S2 + n2)) • ((5j + <)($£ + ni)) 

+<CSi + nxKSj + ni)> • ((S2 + n2)(Sj + n',)) (6-15) 

+{{Si + niftSl + ni)) • <(52 + n,)^ + <))]. 

The required multiplications in Equation 6-15 can now be carried out simply. Setting 
the averages of the products of all uncorrelated voltages to zero, and using Equations 6-7, 
6-8, 6-10 and 6-12, Equation 6-15 becomes 

Mr) = ^ (g<(o)+*f^W + (§ + fe) KWMr) + 5£<M) • 
(6-16) 

Applying the Wiener-Khinchine theorem to Equation 6-16 and noting that the Fourier 
transform of a product is equal to the convolution of the Fourier transforms, we find that 
the power spectrum ^mM of the multiplier output is given by 

#.M = <•' (f^.W") + 2^ jT *.»*.>-a)da 

+(IF
+w*) r •..(«)•-.(•' -«)*»+^ r *».(«)*».(«' - «>da) > 

\Ai        -tsysj/ J-oo 1*y*i J-oo / 
(6-17) 

where 6{v) is the unit impulse at i/ = 0. 
The power spectral components of the multiplier output are shown in Figure 6-2, 

taken from Crane (1982), for signal and noise with flat spectra passing through filters with 
rectangular passbands of width Au. A physical interpretation of Figure 6-2 is useful. A 
component of &i(t) at a given frequency has multiplied the component of 52(t) at the same 
frequency to form j<S(t)|2> that is S(i) has been rectified and provides the desired DC output 
from the multiplier. Different frequency components of Si(t) and 52(f) beat together to 
form sum and difference frequencies. Since they are uncorrelated, frequency components of 
signal and noise or of noise and noise do not produce a DC signal when multiplied together, 
but do produce the sum and difference frequencies. 

The output of the multiplier is integrated by passing it through a low-pass filter. The 
power in the DC component is 

Pn.u. = «,^(0). 
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Figure •—2. Power spectra for a two-antenna, single-multiplier, correlation interferometer. 
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Thus, from Equations 6-9 and 6-5 the DC voltage is 

(Vb) = aGkBSAv>/KJ&. (6-18) 

To determine the fluctuations about this average value we must multiply ^mt") by the re¬ 
sponse of the output filter, |£r(i/)|s, and integrate. The power in the fluctuating component 
of the filter output is 

(VoJW> = r •^MlffMI**. (6-19) 
J—oo 

where &m(v) = ®m{v) — ^x^^JM^M* We will consider an output filter which is an ideal 
integrator having integration time At. For practical values of At, H(i/) will be negligible 
except near i/ = 0, so &m(v) may be replaced by its value near u = 0, which is shown in 
Figure 6-2. For an ideal integrator the impulse response is 

m={ii £,       0<t<At, 
elsewhere, 

(6-20) 

and the output noise power Pnoise is> from Equation 6-19, 

Pn^. = *'m(0) f0 IffMI*A». (6-21) 
J— OO 

Using ParsevaTs theorem 

J— oo 

*' (0\ 
= ^ (6-22) 

= (aGM'^ (K.K^+^BL (5ft + g) + Hk^) . (^3) 

The r.m.s. variation in the output is just V^noise- ^ terms of flux density at the input, the 
r.m.s. noise AS at the filter output is 

A<,      r.m.8. noise        /^  /aVo ,«„.. 
A5 =  ,.    = V "noise / "aS" • (6-24) 

correlator scaling factor (V Jy    ) /   oo 

Thus from Equations 6-24, 6-23, and 6-18, 

- ^^v    2 v^r+^rj+isisr-       (6*25) A5 

In the case of identical antennas and receivers, Equation 6-25 simplifies to 

A5 =    , 1      t/?* 1 Sr,ys I  *,y- 
y/AtA^V K 

rp2 

VAiA^ V "    '     A^     ' 2A'2 ' 

In the usual weak source case when 5 «C TtYt/K, 

(6-26) 

— ^sys 1 _   V^feB^sys Ag=    y   , =JL=^g5-. (6-27) 
K y/2AtAv     riAy/AtAv v       y 
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The corresponding expression for a total-power radiometer attached to an antenna identical 
to one of the interferometer antennas, is y/2 worse than this (i.e., A5 is y/2 bigger). Thus 
the sensitivity of a single correlation interferometer is y/2 worse than a single dish with the 
same total collecting area. The reason for this is that the interferometer does not make use 
of the information in the autocorrelation of the signals from each dish separately. 

In the case of a strong source, S » TBy8/K, Equation 6-26 becomes 

AS = -y£= =   l
2kBT°     . (6-28) 

y/AtAv      y/AtAv rjA 

Equation 6-28 is the same expression as is obtained for a single antenna with a total- 
power radiometer observing a strong source. Notice that the sensitivity for a strong source 
is independent of antenna collecting area so that no improvement in sensitivity can be 
obtained by increasing the size or number of antennas. Equation 6-28 indicates that a 
noise source of a given noise temperature that is correlated between antennas will produce 
y/2 larger noise fluctuations at the correlator output than will a noise source of the same 
noise temperature that is uncorrelated between antennas. 

Expression 6-26 was derived for the special case of an observation of a point source 
with zero delay and phase, in which all the power received from the source is correlated 
between the two antennas. In the less ideal case the source is resolved with frequency- 
dependent structure and the properties of the system itself are also frequency-dependent. 
The quantity of interest is the correlated flux density 

Sc(v) = A(i/) cos(^(i/) + fail/) - faiv) + (JJAT) , 

where A, <f> are the amplitude and phase of the visibility function, 4>i is the phase of the 
complex voltage gain of antenna t, and Ar is the net delay. The DC voltage becomes 

Vb = akBy/K^Kl f    Gi(v)Gi{v)Se{p)dv, 
Jo 

and the output noise power is given by 

Jnoise - 2Ar 

x/^GJMGJM [sc'M + s*(v) + SM p&p + ?3gM) + r,y,>(^^,a(l/)] *>• 

In terms of correlated flux density at the input, the r.m.s. noise, AS, at the filter output is 

AS=  

^/Jo" GlMGlw [s2{v) + g»M + s(v) (%M + %^1) + f~» ™rM]Z 
V2AtJ-G1(v)G2{v)dv ' 

This shows that the fluctuations in the correlated signal are independent of those in the 
total signal and must be added quadratically to the other noise terms. Also, in principle, 
the noise will differ between the real and imaginary parts of the visibility function and as 
the overall amplitude of the visibility function itself varies. 
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For a strong, fully resolved source (A = 0), once again making the usual simplifying 
assumptions, the r.m.s. noise is 

AS=       *       . 
y/2AvAt 

This means that for those few experiments where an observer wishes to detect a weak spec¬ 
tral line or point source in the presence of a strong, extended continuum source whose flux 
density dominates the system temperature, the interferometer can offer a y/2 improvement 
in sensitivity over a single antenna. Note that this improvement is in addition to any im¬ 
provement in dynamic range which the interferometer is able to achieve by resolving the 
strong, extended source. 

Expression 6-27 shows the dependence of the sensitivity of a correlation interferometer 
on the most important factors: system temperature, integration time, bandwidth and ef¬ 
fective collecting area. Several other factors will affect the sensitivity by the order of a few 
percent to a few tens of percent. The most important of these effects we will call correlator 
efficiency, 

»?c = 
sensitivity of the correlator 

sensitivity of a perfect analog correlator having the same At * 
(6-30) 

tic is needed because of the current tendency to use digital correlators. The correlator 
efficiency for a one-bit digital correlator of the type used in VLBI is 64%, and for a three- 
level correlator, of the type used at the VLA, r)c is 81% (Cooper 1970). 

A second effect, present in interferometers which have time-shared communication 
systems or digital correlators (especially those with recirculators), is a loss of integration 
time. For example, the VLA in normal continuum observing mode spends only 96.2% of 
observing time carrying out useful integration, and in the narrow-band spectral-line modes 
only 90.6% of observing time is useful (Escoffier 1979). Thus for the VLA in continuum 
mode f)c is 0.79 and in narrow-band spectral-line mode, 0.77. 

Thus, the r.m.s. noise out of a two-antenna, single-multiplier, correlation interferometer 
observing weak sources is given by 

AS = 
yftkB^ sys 

y/AtAvAriaric ' 
(6-31) 

where rja is the antenna aperture efficiency. 
Table 6-3 shows AS for the six observing bands of the VLA with rie appropriate for 

continuum observing, At of 10 sec, Av of 46 MHz, using a single multiplier and one IF. 

Table 6-3. 
VLA Single-Multiplier 

Interferometer Sensitivity 
Wavelength A5 

Band (mJy) 
92 cm 
20 cm 
6 cm 

3.6 cm 
2 cm 

1.3 cm 

73 
28 
18 
16 
52 

180* 
* Approximately 80 mJy after re¬ 
ceiver upgrade   
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6.  Sensitivity 

4. SENSITIVITY OF A TWO-ANTENNA, COMPLEX, 
CORRELATION INTERFEROMETER 

The derivation of Equation 6-31 assumed that the point source was at the phase 
center of the interferometer. In general this will not be the case and a so-called "complex 
correlator" is used which has two multipliers, one of which has the signal from one antenna 
phase-shifted by 90°. The fringe patterns for the two correlators are phase-shifted by one 
quarter of a fringe on the sky, and the flux density and phase of a point source of arbitrary 
position can be determined by combining the two measurements. The two outputs from 
the correlator are called the cosine and sine or real and imaginary outputs. We will use the 
latter terminology and call the outputs of the correlator, calibrated in units of flux density, 
SR and Sj for real and imaginary outputs, respectively. The measured amplitude, 5m, and 
the measured phase, <f>m, are determined by 

Sm=y/sl + S}, (6-32) 

<f>m = tan"1 j- . (6-33) 

Both SR and Sj are contaminated by noise with r.m.s. value A5 given by Equation 6-31, 
and we wish to determine noise estimates for Sm and 4>m. Notice that, in general, noise 
estimates for Sm and <£m are not needed because synthesis images are computed directly 
from 5j2 and Sj. However, for completeness, we include the appropriate analysis here. This 
problem has been examined by several authors (Rogers 1968,1976; Vinokur 1965; Hjellming 
and Basart 1982; Berge 1965; Moran 1973,1976). 

The probability distribution of 5m, P(Sm), is given by (Hjellming and Basart 1982) 

*«•> = JP * (S)exp ^^^' w 
where IQ is the modified Bessel function of the first kind, order zero, and S is the true 
amplitude. Plots of P(5m), adapted from Hjellming and Basart (1982), are shown in Figure 
6-3 for various values of S/AS. For small values of S/AS, P(5m) is close to a Rayleigh 
distribution and 5m is a biased estimator of S (Moran 1976). 

and 

<'5. = ^fAs(l+i|ij). (6-36) 

For large values of S/AS, 

r (sf»s\ AS SmS 

and 
D/O   \ ^    1      / ^m ~\Sin~S) 
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m 
AS 

Figure •—S. The probability distribution of the measured amplitude is plotted as a function of the apparent 
signal-to-noise ratio for a number of values of the true signal-to-noise ratio. 

Since we need only consider 5m ~ S, 

P{Sm) s exp 
-{Sm-sy 

(6-37) 
V^FA5 "^      2AS* 

which is a Gaussian distribution with standard deviation A5. 
The probability distribution of the phase error <j> — <£m, where <f> is the true phase is 

given by Hjellming and Basart (1982), 

P(4> -M=^ <«p (2^) C1 + Gy/JeG\l + erf G)) , (6-38) 

where erf is the error function and G($) = ^j?f» Plots of P(^ — $m), reproduced from 
Hjellming and Basart (1982), are shown in Figure 6-4 for several values of S/AS. For small 
S/AS the r.m.s. phase error is given by (Moran 1976) 

'*-^ ^ " V 2!^ j ' 
(6-39) 

while for large values of S/AS, P(4>-<t>m) approaches a Gaussian distribution with standard 
deviation 

A5 
<V- = (6-40) 

Figure 6—4 demonstrates clearly why an observer, who is trying to establish if correlated 
signal is present on a given interferometer pair by looking at a time sequence of the amplitude 
and phase, should look at the phase rather than the amplitude. The difference between the 
phase distributions for S/AS of 0 and 1 is much more obvious than the difference between 
the associated amplitude distributions. 
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E 

I 

Figure 0—4. The probability distribution of the measured phase is plotted as a function of ^ — ^m for a 
number of values of the true signal-to-noise ratio. 

5.   SENSITIVITY OF A SYNTHESIS ARRAY TO A POINT SOURCE 

The brightness distribution /(/, m) of a source is determined from the complex visibility 
function V(u, v) using (from Lecture 1, Eq. 1-9) 

*('»m) = // v("> t/)e2'rt(ul+,'m> du dv, (6-41) 

where / and m are direction cosines and u and v are baseline coordinates. V is related to 
the real and imaginary outputs of a complex correlator, described in the previous section, 
by 

V = SR + iSJ, (6-42) 

where t3 = —1. We wish to determine the r.m.s. noise in I(i,m) given that both SR and 
Sj contain r.m.s. noise AS*. In practice, Expression 6-41 is approximated by, including the 
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tapering and weighting functions discussed in Lecture 5, 

2L 

/m(/, m) = K ^ TtfrtVie******"^ , (6-43) 
£=0 

where Jm is the measured brightness distribution, K is a constant, L is the number of 
measurements of V plus a zero-spacing flux density (/ = 0), and the factor 2 in the limit 2L 
is included because V is Hermitian so that, if V(u, v) is measured, V(—u, —v) is also known. 
ui and vi are the u and v coordinates of the /feh measurement of V. By the appropriate 
choice of K, the units of /m(/, m) can be expressed as flux density per synthesized beam. 
Equation 6-43 can be rewritten using Equation 6-42 

L 

im(/,m) = 2K^TtfVi(SRlcaa2x{utl+ vem) - SIlsin2jr(ui/ + v*m)) , (6-44) 
i=i 

where it has been assumed, to simplify the expression, that no zero-spacing flux density is 
available. The easiest way to determine the noise in /m(/, m) is to consider the noise at the 
center of the image where the expressions become very simple. Equation 6-44 is a 'direct 
Fourier transform9 and the noise will be the same at all points on the image. At the image 
center 

L 

im(0,0) = 2K^2TlWlSRl. (6-45) 

Now, for a point source of flux density S located at / = m = 0, 

5* = 5 + 11*, (6-46) 

where nRl is the noise in the real part of the correlator output and has the properties 
nRl = 0 and nj^ = AS2, where A5 is given by Equation 6-31. The expected value at the 
image center is 

L 

/m(0,0) = 2KS ^TflTt. (6-47) 

To express Im(l, m) as flux density per beam area, A* is set equal to 

so that 
/m(0,0) = S, (6-48) 

and the r.m.s. noise in the image, A/m, is 

A/m = 2KAS< 

For a naturally weighted, untapered image, this simplifies to 

AJm=^|. (6-50) 
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For an array with C complex correlators, correlator integration time At and total observa¬ 
tion time T, the number of measurements is 

£=g. (Ml) 

Combining Equations 6-31, 6-50 and 6-51 gives the desired expression for the noise in the 
image 

AI   —     v^^'y8 (6-52) 
m      Ariaficy/CTA^' K        ' 

Notice that at the image center only the noise from the real correlators affects the image. 
Elsewhere in the image the noise from both the real and imaginary parts will contaminate 
the image, but the noise estimate is still the same as given by Equation 6-51 because the 
real noise is weighted by cos 2jr(u/+vm), the imaginary noise is weighted by sin2*-(u/+vm), 
and the real and imaginary noise terms are uncorrelated. 

For a synthesis array of N antennas using two IF's, if all possible baselines are corre¬ 
lated, C = N(N — 1). As N becomes large, C approaches N2, and A/m becomes 

which, with r)c equal to 1, is the same noise as would be expected from a single antenna 
of collecting area iVA with two IF's connected to total-power radiometers. That the large 
synthesis array has the same sensitivity as a single antenna of the same total area is not 
surprising because, as N becomes large, the fraction of the information lost by the synthesis 
array because it does not carry out the autocorrelations becomes negligible. The synthesis 
array has the advantage, however, that all points in the field of view are observed with 
sensitivity A/m, while the single antenna must observe each point separately for time T. 

Most modern synthesis arrays have the capability of operating as a phased-array in 
which the IF signals from each antenna are added together after the delay lines, to create 
an IF received by the synthesized beam at the array phase center. Such a phased-array 
output is useful for VLBI and for spectroscopic observations. In principle this output has 
all the information present in a single antenna of the same collecting area and resolution, 
so that even the autocorrelation information can be recovered. In practice, several effects 
may reduce the sensitivity of this output by a few tens of percent below the expected 
sensitivity. If the output is formed by adding together digitized outputs from a small 
number of antennas (less than 15, say), the sensitivity will be slightly less than expected 
and will vary depending on whether odd or even numbers of antennas are added together 
(Van Ardenne 1979, 1980). If the output is again digitized to allow VLBI recording or 
digital spectral analysis, the loss of sensitivity fje occurs again. An effect present in the 
VLA phased-array output is that the phased-array IF is reconstructed using pulses of finite 
width rather than delta functions. This reduces the effective bandwidth of the output and 
lowers its sensitivity by a few percent. 

Table 6-4 shows the theoretical A/m for the six observing bands of the VLA for a 
twelve-hour synthesis with rjc appropriate for continuum observing, Av of 46 MHz, using 
two IF's. In practice, atmospheric attenuation, variations in aperture efficiency, the presence 
of radio-frequency interference, and many other factors will prevent one from reaching the 
theoretical A/m. 
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Table 6-4. 
Theoretical VLA Sensitivity 
for a Twelve-Hour Synthesis 

Wavelength A/m 

Band (/xJy/beam) 
92 cm 
20 cm 
6 cm 

3.6 cm 
2 cm 

42 
16 
10 
9 

30 
1.3 cm 100* 

*Approximately 44 /jJy/beam af¬ 
ter receiver upgrade 

In natural weighting, every correlator measurement is given the same weight. This 
gives the highest sensitivity for detecting point sources. As described in Lecture 5 tapering 
and weighting functions can be applied to each measurement to control, to some extent, the 
beam shape.  Applying such functions degrades the point-source sensitivity (makes A/m 

larger) by   
' L 

uY.nwi / Y.TWf 
£=1 

For an east-west synthesis array such as the Westerbork Synthesis Radio Telescope, 
the weighting function for uniform weighting is known analytically (W oc q) and the point- 
source sensitivity can be determined analytically. Because the sampling function for the 
Very Large Array varies greatly with declination, integration time, observing strategy, and 
total observing time, for example, the weighting function for uniform weighting is not 
known analytically. Instead, as described in Lecture 5, the weight for each measurement is 
determined from the inverse of the local density of measurements, which usually is measured 
over one cell in the u-v plane, but the user can select a larger area. 

Consequently, when only a few measurements are spread over many cells in the u-v 
plane, the local density of measurements for most u-v cells will be either zero or one and 
the sensitivity will be close to that for natural weighting. At the other extreme of many 
measurements spread over a few cells, the density of measurements near the center of the 
u-v plane will be very high (several hundred), the weights low, and the sensitivity will be 
considerably degraded (by a factor of order 1.2 to 3). 

Application of a Gaussian taper tends to cancel the effect of the weighting function 
for uniform weighting on the point-source sensitivity. The sensitivity will be best for an 
optimum value of the taper dispersion a at which the tapering function best matches natural 
weighting, and will degrade monotonically in either direction for other values of a. 

The examples in Figure 6-5 illustrate the dependence of the point-source sensitivity 
upon the number of cells in the u-v plane and upon a. The calculations were done for 
a twelve-hour synthesis at a declination of 90°, with an integration time of 100 seconds. 
In addition to the curve labelled "Natural" which shows the effect of combining natural 
weighting and a Gaussian tapering function, the other four curves show the effects of com¬ 
bining a Gaussian tapering function and uniform weighting, with the u-v plane spanned by 
the number of cells indicated. (The number in parentheses indicates the maximum number 
of measurements per u-v cell in each example.) 
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Figure •—S. The effects of applying a Gaussian tapering function on the point-source sensitivity of the 
VLA, shown for natural weighting and for uniform weighting with four different numbers of cells spanning 
the u-v plane. The calculations are for a source at the North Celestial Pole, observed for twelve hours with 
an integration time of 100 seconds, and have been normalised to the result for untapered natural weighting. 

6.   SENSITIVITY OF A SYNTHESIS ARRAY TO AN EXTENDED SOURCE 

A very important aspect of the sensitivity properties of a synthesis array is the difference 
between the sensitivity to point sources and to extended sources. The units of the brightness 
image can be expressed as Janskys per synthesized beam area, and the r.m.s. noise in the 
image is A/m Janskys per synthesized beam. Suppose that the size of the synthesized 
beam is varied by scaling the size of an array. A point source of flux density S has a 
constant apparent brightness of S Janskys per synthesized beam, independent of the size 
of the synthesized beam. Therefore the signal-to-noise ratio of a point source, S/AIm, is 
independent of the beam size. For an extended source that is larger than the synthesized 
beam, having constant brightness I Janskys per steradian, the flux density per synthesized 
beam is /ft,, where ft, is the area of the synthesized beam in steradians. Therefore, the 
signal-to-noise ratio for this source is 

in. 
AJm

, 

which improves as the synthesized beam is made larger, so long as the beam is smaller 
than the smallest detectable source structure. Fomalont and Wright (1973) give further 
discussion of this point. In general, the resolution of an array increases linearly with the 
size of the array, but the sensitivity to extended structure decreases as the square of the 
size. Thus, the VLA observers who propose to observe an extended source in the A array 
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Taper Dispersion cr/q max 
Figure 6-6. The effects of applying a Gaussian tapering function on the peak response of the VLA to 
a circular Gaussian source with 9 of 2.08A/9max, shown for natural weighting and for uniform weighting 
with four different numbers of cells spanning the u-v plane. The calculations are for a source at the North 
Celestial Pole, observed for twelve hours with an integration time of 100 seconds, and have been normalised 
to the response to a point source. 

configuration after observing it in the B configuration and needing 3 times more resolution, 
must remember that they will have an order of magnitude less sensitivity to the extended 
structure (see also Lecture 16). 

The sensitivity to extended structure, as well as being improved by scaling the array 
to match the size of the source, can usually be improved by applying a tapering function as 
described in Lecture 5. The primary improvement in sensitivity arises because the area of 
the synthesized beam ft, increases approximately as a~2 but also because, as indicated by 
Figure 6-5, A/m remains constant or even decreases for a wide range of <T. SO for a » 0.3- 
0Aqmax, the improvement in sensitivity to an extended source may be a factor of 4-10 over 
uniform weighting. 

For a more detailed, although still qualitative, understanding of the sensitivity of the 
VLA to extended structure, consider the response to a circular Gaussian source with full 
width at half maximum $. The average surface brightness /, for such a source with a total 
flux density 5 is given by 

As with the point-source sensitivity, the peak response of the VLA to a circular Gaussian 
source depends upon many variables; Figure 6-6 shows the peak responses to a circular 
Gaussian source with a $ of 2.0SX/qmmx for the same examples used in Figure 6-5. The 
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Surface-Brightness Sensitivity AIs 

0.6 0.8 1.0 

Taper Dispersion o7qmax 

Figure 6—7. The effects of tapering and source sise on the surface-brightness sensitivity of the VLA, 
shown for uniform weighting over 512 cells, and assuming a Gaussian tapering function of dispersion <r. 
The calculations are for a source at the North Celestial Pole, observed for twelve hours with an integration 
time of 100 seconds. The contour levels are 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, and 10.0 in arbitrary units which 
scale as 3.2852^1""n) where n is 1, 2, 3, or 4 for the A, B, C, or D configurations, respectively. (Note that 
the calculations do not extend to sero sise or taper.) Points A and B indicate the tapers which provide 
the optimum sensitivities for observing the same source (0 = 5.6A/gmaX|x = l<7A/9max,s) in the A and B 
configurations, respectively; for further discussion see the text. 

surface-brightness sensitivity A/,(0,cr) for a source with angular size 0 and imaged with a 
Gaussian tapering function of dispersion a is then given by 

As illustrated in Figures 6-5 and 6-6, this function will depend upon the details of the 
observing strategy used, the parameters chosen for the image, and many other variables. 
Figure 6-7 shows AI0 for the case of 512 u-v cells already shown in Figures 6-5 and 6-6. 
Figure 6-7 can be used, for example, to compare the surface-brightness sensitivities of the 
A and B configurations. Point A shows that the optimum sensitivity for a source with a 0 of 
5.6A/gmaX|A (1.7A/gmax,B)> observed in the A configuration, is 0.1 for a » 0.1qmaXtji. Point 
B shows that the optimum sensitivity for the same source observed in the B configuration 
is 0.5(3.285)~2, or 0.046, for a « 0.2gmaX(B. As expected, the B configuration is more 
sensitive to extended structure than the A configuration, although, in this example, not 
by the factor often suggested by the simple arguments used above. One reason is that the 
tapering function can be adjusted to obtain the optimum sensitivity in each configuration. 
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Variance of Noise in Map 
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Variance of Noise in Map 

Figure 6—8. The effects of convolution and gridding in the u-v plane on the noise in an image: (a) 
'Direct Fourier transform', no convolution or gridding. (b) 'Direct Fourier transform' after convolution, 
(c) Fast Fourier transform after convolution and gridding. (d) Fast Fourier transform after convolution 
and gridding, followed by division by the Fourier transform of the convolving function. 

The lesson to be learned from this discussion is that the optimum taper for a particular 
observation can only be determined by trial and error. 

7. THE EFFECTS OF CONVOLUTION AND GRIDDING ON SENSITIVITY 

The sensitivity analyses in Section 5 are appropriate when images are made using a 
'direct Fourier transform' without convolution in the u-v plane, in which case the noise is 
uniform over the image. In most practical cases, images are made using the Fast Fourier 
transform which requires that the u-v plane data be convolved and gridded before being 
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transformed. Analysis of the effect of these operations on the signal-to-noise ratio in the 
image is complicated and is discussed extensively in three reports (Greisen 1976, 1979; 
Clark 1976). The reader is referred to these reports for details; here we will attempt only 
to give the reader a physical understanding for the effect which can significantly degrade 
the signal-to-noise at the edge of the image. The effect is caused by a combination of 
two processes; the aliasing of noise back into the image and the division of the image by 
the Fourier transform of the u-v plane convolving function to remove the effects of this 
convolution. 

Consider only the noise in the u-v plane. If we compute the distribution of the noise 
in the image plane using a 'direct Fourier transform1, the noise will have the same vari¬ 
ance everywhere, as shown in Figure 6-8a (provided the smoothing effect of the correlator 
integration time is negligible). Now let us convolve the u-v plane data with a convolving 
function and again compute the image using a 'direct Fourier transform'. Now the distri¬ 
bution of the variance of the noise is shown in Figure 6-8b, where the variance in the image 
is multiplied by the Fourier transform of the autocorrelation function of the convolving 
function (which is equal to the square of the Fourier transform of the convolving function). 
Now, if the convolved u-v plane data are again sampled at points with normalized spacing 
|, and transformed using a Fast Fourier transform, the variance of the noise in the image 
is significantly changed by aliasing, as shown in Figure 6-8c. Finally, after the image has 
been divided by the Fourier transform of the u-v plane convolving function, the variance of 
the noise is as shown in Figure 6~8d. Clearly this final division process has enhanced the 
noise at the edge of the image, resulting in a degraded signal-to-noise ratio. 

Greisen (1979) computes the size of this effect for many different convolving functions. 
The commonly used pillbox function with width equal to the grid spacing, for example, sig¬ 
nificantly degrades the sensitivity over most of the image, with the worst degradation being 
a factor of 0.4 decrease in signal-to-noise at the image corners. Other types of convolving 
functions can be found which only effect the outer one quarter of the image, with a worst 
case degradation of a factor of 0.5. 

8. EFFECT OF PRIMARY BEAM ON SENSITIVITY 

Ignoring for the moment all image distortions except additive noise and the effect of the 
primary beam of the individual antennas comprising the synthesis array, we may express 
the measured brightness image Im(l, m) as 

/m(/, m) = /(/, m)F(/, m) + N(l, m) , (6-54) 

where /(/>m) is the true brightness distribution, P(l,m) is the response of the antenna 
primary beam and N(l,m) is additive noise with r.m.s. value A/m. If the variation of 
P(l, m) across /(/, m) is not negligible its effect may be removed by dividing the image by 
P(/} m), in which case 

Jm(/, m)/P{l, m) = 1(1, m) + N(l, m)/P(l, m) . (6-55) 

In this case Equation 6-55 shows that the noise is enhanced at the edge of the image, 
reducing the sensitivity in this region. 
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TIM CORNWELL 

1.   DECONVOLUTION 

This Lecture describes how the visibility samples collected by an interferometer array 
can be used to produce a high quality image of the sky. As noted in Lecture 1, the image 
formed by simple Fourier transformation of the observed, sampled visibilities by the methods 
described in Lecture 5 will have defects due to the limited sampling of the u-v plane. Non¬ 
linear deconvolution is required to correct these defects. 

As described in Lectures 1 and 2, an interferometer array provides samples of the 
complex visibility function of the source at various points in the u-v plane. Under various 
approximations, which are valid for a sufficiently small source in an otherwise blank region 
of sky (see Lecture 1, Section 4.2 and Lecture 2, Section 6), the visibility function V(u, v) 
is related to the source intensity distribution /(/, m) (multiplied by the primary beam of 
the array elements) by a two-dimensional Fourier transform: 

V(*> <>) = // I(l> m)e-2'ritul+vm) dl dm, (7-1) 

where S denotes taking the integral over the whole sky, as in Equation 2-5. 
Since only a finite number of noisy samples of the visibility function are measured in 

practice, /(/, m) itself cannot be recovered directly. Either a model with a finite number 
of parameters, or some stable non-parametric approach, must be used to estimate /({,m). 
A convenient general purpose model / of the source intensity that is capable of represent¬ 
ing all the visibility data consists of a two-dimensional grid of ^-functions with strengths 
I(pA/, qAm) where Al and Am are the separations of the grid elements in the two orthog¬ 
onal sky coordinates. The visibility V predicted by this model is given by: 

AT,   Nm 

V(u>v) = 53 Z) ^A/» *Am)e-2,r,<'>uA'+«ttAm>. (7-2) 
P=I«=i 

For simplicity I will henceforth denote the discrete form I(pAl, qAm) by the notation IPtq. 
Assuming reasonably uniform sampling of a region of the u-v plane, one can expect to 
estimate source features with widths ranging from 0(l/max(u,v)) up to 0(l/min(u,v)). 
The grid spacings, Al and Am, and the number of pixels on each axis, Ni and Nm, must 
allow representation of all these scales. In terms of the range of u-v points sampled, the 
requirements are: 

Al < -J—,    Am < -i—,    fyAl > -i-,    NmAm >    1 

2Uinax 2vmax Umin vmin 

This model has NiNm free parameters, namely the cell flux densities IPtq. The measure¬ 
ments constrain the model such that at the sampled u-v points: 

V(ur, vr) = V(ur, Vr) + e(ur, vr) , (7-3) 
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where c(ur, vr) is a complex, normally distributed random error due to receiver noise, and r 
indexes the samples. At points in the u-v plane where no sample was taken, the transform 
of the model is free to take on any value. One can think of Equation 7-3 as a multiplicative 
relation: 

f (u, v) = ^(u, v)(VXu, v) + e(u, v)) , (7-4) 

where W(u, v) is a weighted sampling function (see Lecture 5, Equation 5-8) which is non¬ 
zero only for sampled points of the u-v plane: 

W(U, V) = ^2 WrS(u -Ur,V-Vr). (7-5) 
r 

By the convolution theorem, this translates into a convolution relation in the image plane: 

^9 = zJ Bp-p'.i-i'Ip'*' + EP,<I » C7-6) 

where: 
J* = Y, W(u" ""J116 H"" vr)e

2*^«'A<+^A-)) , (7-7) 
r 

BPtq = YW(ur, VrjReJe2**^'AI+«t"A^) . (7-8) 
r 

EPtq in Equation 7-6 is the noise image obtained by replacing V in Equation 7-7 by e(ur, vr). 
Note that the BPiq given by Equation 7-8 is the point spread function (beam) that is 
synthesized after all weighting has been applied (and after gridding and grid correction 
if an FFT was used—to keep the notation concise, I will not signify this gridding and 
grid correction explicitly). The Hermitian nature of the visibility has been used in this 
rearrangement. 

Equation 7-4 represents the constraint that the model IPiq) when convolved with the 
point spread function BPtq (also known as the dirty beam) corresponding to the sampled 
and weighted u-v coverage, should yield Ipq (known as the dirty image). 

The weighting function W(u, v) can be chosen to favor certain aspects of the data. For 
example, setting FF(ur, vr) to the reciprocal of the variance of the error in V(ur, vr) will 
optimize the signal-to-noise ratio in the final image, whereas setting it to the reciprocal of 
some approximation of the local density of samples will minimize the sidelobe level (see 
Lecture 5). 

I now examine the possible solutions of the convolution equation. 

1.1. The "principal solution" and "invisible distributions". 
Let us now consider whether the convolution equation has a unique solution. Clearly 

if some of the spatial frequencies allowed in the model are not present in the data then 
changing the amplitudes of the corresponding sinusoids in / will have no effect on the fit to 
the data. In effect, the dirty beam filters out these spatial frequencies. Let Z be an intensity 
distribution containing only these unmeasured spatial frequencies. Then B * Z = 0. Hence, 
if / is a solution of the convolution equation, so is I + aZ where a is any number. Thus, 
as usual, the existence of homogeneous solutions implies the general non-uniqueness of any 
solution in the absence of boundary conditions. An important point to note is that Equation 
7-6 cannot be solved by linear methods, such as /' = A * D where A is some matrix, since 
the homogeneous solutions Z will also be absent from I'. Thus, conventional deconvolution 
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procedures such as inverse filtering, Wiener filtering, etc. (e.g., Andrews and Hunt 1977) 
will not work: a non-linear procedure is required. 

Interferometrists call the homogeneous solutions "invisible distributions" (Bracewell 
and Roberts 1954) or "ghosts". The solution having zero amplitude in all the unsampled 
spatial frequencies is usually called the "principal" solution. Invisible distributions arise 
from two causes: firstly, the u-v coverage only extends up to finite spatial frequencies so 
that the invisible distributions correspond to finer detail than can be resolved; secondly, 
holes may exist in the u-v coverage. 

The problem of image construction thus can be reduced to that of choosing plausible 
invisible distributions to be merged with the principal solution. The shortcomings of the 
principal solution must be considered before tackling this problem. 

1.2. Problems with the principal solution. 
If the data are obtained on a regular grid then the principal solution can be computed 

very easily: one must simply choose the weighting function in Equation 7-7 so that the bias 
in weight due to the vagaries of sampling are corrected. For each grid point the visibility 
samples are summed with appropriate weights, and the total weight normalized to unity. 
In such circumstances, known as uniform weighting, the principal solution is thus equal to 
the dirty image and is given by the convolution of the true brightness distribution with the 
dirty beam. For most synthesis arrays currently in use, the dirty beam has sidelobes in the 
range 1 to 10%. Sidelobes represent an unavoidable confusion over the true distribution 
of any emission in the dirty image, which can be resolved only either by making further 
observations or by introducing a priori information such as the limits in extent of the source. 
For example, consider uniformly weighted observations of a point source: the dirty image 
is just the dirty beam centered on the point source position. Without a priori information 
we cannot tell whether the source is a point or is shaped like the dirty beam. Of course 
we know that Stokes parameter I must be positive and that usually radio sources do not 
resemble dirty beams (in particular they do not have sidelobe patterns extending to infinity) 
and so we could use this information as an extra clue. One further unsatisfactory aspect of 
the principal solution, besides its implausibility, is that it changes (sometimes drastically) 
as more visibility data are added. A better estimator would possess greater stability. 

A priori information is thus the key; in the rest of this Lecture I consider two algo¬ 
rithms which use different constraints on the invisible distributions to derive solutions to 
the convolution equation. These algorithms, 'CLEAN' and the Maximum Entropy. Method 
(MEM), are now the predominant ones used for deconvolution of radio synthesis images. 

2.   THE 'CLEAN' ALGORITHM 

The 'CLEAN' algorithm, which was devised by J. Hogbom (1974), provides one solution 
to the convolution equation by representing a radio source by number of point sources in an 
otherwise empty field of view. A simple iterative approach is employed to find the positions 
and strengths of these point sources. The final deconvolved image, usually known as the 
'CLEAN' image, is the sum of these point components convolved with a 'CLEAN', usually 
Gaussian, beam to de-emphasize the higher spatial frequencies which are usually spuriously 
extrapolated. 

I now discuss some of the currently available 'CLEAN' algorithms, including two vari¬ 
ants of the Hogbom algorithm which are better suited to large images. 

2.1. The Hogbom algorithm. 
The algorithm proceeds as follows: 
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(1) Find the strength and position of the peak (i.e. of the point brightest in absolute 
intensity) in the dirty image I^q. If desired one may search for peaks only in 
specified areas of the image, called 'CLEAN* windows. 

(2) Subtract from the dirty image, at the position of the peak, the dirty beam B 
multiplied by the peak strength and a damping factor 7 (< 1, usually termed the 
loop gain). 

(3) Go to (1) unless any remaining peak is below some user-specified level. 
A 

(4) Convolve the accumulated point source model IPiq with an idealized 'CLEAN' 
beam (usually an elliptical Gaussian fitted to the central lobe of the dirty beam). 

(5) Add the residuals of the dirty image to the 'CLEAN' image. 

The fifth stage is not always performed but can often provide useful diagnostic infor¬ 
mation, for example about the noise on the map, residual sidelobes, "bowls" near the center 
of the image (Section 3.3 below), etc. 

2.2. The Clark algorithm. 
Clark (1980) has developed an FFT-based 'CLEAN' algorithm. A large part of the work 

in 'CLEAN' is involved in shifting and scaling the dirty beam; since this is essentially a con¬ 
volution it may, in some circumstances, be more efficiently performed via two-dimensional 
FFTs. Clark's algorithm does this, finding approximate positions and strengths of the 
components via 'CLEAN' using only a small patch of the dirty beam. 

In detail, the Clark algorithm has two cycles, the major and minor cycles. The minor 
cycle proceeds as follows: 

(1) A beam patch (a segment of the discrete representation of the beam) is selected 
to include the highest exterior sidelobe. 

(2) Points are selected from the dirty image if they have an intensity, as a fraction of 
the image peak, greater than the highest exterior sidelobe of the beam. 

(3) A Hogbom 'CLEAN' is performed using the beam patch and the selected points 
of the dirty image. The stopping criterion for the 'CLEAN' is roughly such that 
any remaining points would not be selected in step (2). 

The algorithm then proceeds to a major cycle in which the point source model found 
in the minor cycle is transformed via an FFT, multiplied by the weighted sampling function 
that is the inverse transform of the beam, transformed back and subtracted from the dirty 
image. Any errors introduced in a minor cycle because of the beam patch approximation 
are, to some extent, corrected in subsequent minor cycles. 

2.3. The Cotton-Schwab algorithm. 
Cotton and Schwab (Schwab 1984, top right corner of p. 1078) have developed a variant 

of the Clark algorithm in which the major cycle subtraction of 'CLEAN' components is 
performed on the ungridded visibility data. Aliasing noise and gridding errors can thus 
be removed provided that the inverse Fourier transform of the 'CLEAN' components to 
each u-v sample has sufficient accuracy. Two routes are used for the inverse transform: 
for small numbers of 'CLEAN' components, a 'direct Fourier transform' is performed and 
so the accuracy is limited by the precision of the arithmetic. In the other extreme of a 
large number of 'CLEAN' components, an FFT is more efficient but inevitably some errors 
are introduced in interpolating from the grid to each u-v sample. Currently, high order 
Lagrangian interpolation is used. 

The other considerable advantage of the Cotton-Schwab algorithm, besides gridding 
correction, is its ability to image and 'CLEAN' many separate but proximate fields simulta¬ 
neously. In the minor cycle each field is 'CLEAN'ed independently, but in the major cycles, 
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'CLEAN' components from all fields are removed. In calculating the residual image for 
each field, the full phase equation, including the u/-term, can be used. Thus, the algorithm 
can correct what is commonly called the "non-coplanar baselines" distortion of images (see 
Lectures 2 and 8). 

The Cotton-Schwab algorithm is often faster than the Clark 'CLEAN', the major 
exception occurring for data sets with a large number of visibility samples where gridding 
over and over again becomes prohibitively expensive. The Cotton-Schwab algorithm also 
allows 'CLEAN'ing with smaller guard bands around the region of interest, hence with 
smaller image sizes. 

This algorithm is implemented in NRAO's Astronomical Image Processing System 
(AIPS) as the program 'MX'. 

2.4. Other related algorithms. 
Several algorithms have been invented with the aim of correcting some deficiencies of 

'CLEAN'. 
Steer, Dewdney and Ito (1984) developed a variant of the Clark algorithm in which 

the minor cycle is replaced by a step of simply taking all points above a sidelobe-dependent 
threshold, scaling them and then subtracting normally in the major cycle. The saving in 
time seems to be considerable compared to 'CLEAN', but the radio astronomy community 
has little experience with this variant of the algorithm so its ability to handle different 
practical situations is not yet well-known. 

Segalovitz and Frieden (1978) proposed an ad hoc modification of the dirty beam to 
enhance the smoothness of the resulting 'CLEAN' image. Cornwell (1983) justified a similar 
prescription as forcing the minimization of the image power (i.e. the sum of the squares of the 
pixel values) and thus pushing down the extrapolated visibility function. Both approaches 
seem to ameliorate partially the striping instability to which 'CLEAN' is susceptible (see 
Section 3.7 below). 

3. PRACTICAL DETAILS AND PROBLEMS OF 'CLEAN' USAGE 

Theoretical understanding of 'CLEAN' is relatively poor even though the original al¬ 
gorithm is about 15 years old. Schwarz (1978, 1979) has analyzed the Hogbom 'CLEAN' 
algorithm in some detail. He notes that in the noise-free case the least squares minimization 
of the difference between observed and model visibility, which 'CLEAN' performs, produces 
a unique answer if the number of cells in the model is not greater than the number of inde¬ 
pendent visibility measurements contributing to the dirty image and beam (cf. Equations 
7-7 and 7-8), counting real and imaginary parts separately. This rule is unaffected by the 
distribution of u-v sample points so that, in principle, super-resolution is possible if enough 
data points are available. In practice, however, the introduction of noise and the use of 
the FFT algorithm to calculate the dirty image and beam corrupts our knowledge of the 
derivatives of the visibility function upon which super-resolution is based. Clearly, even if 
the FFT is not used, the presence of noise means that independence of the data must be 
re-defined. Schwarz has in fact produced a noise analysis of the least squares approach but 
it involves the inversion of a matrix of side NiNm and so is totally impractical for typical 
image sizes; furthermore, we are really interested in 'CLEAN', not the more limited least 
squares method since 'CLEAN' will still produce a unique answer in circumstances where 
the least squares method is guaranteed to fail. To date no one has succeeded in producing 
a noise analysis of 'CLEAN' itself. The existence of instabilities in 'CLEAN', which will be 
discussed later, makes such an analysis highly desirable. 

Schwarz also proves three conditions for the convergence of 'CLEAN': 
(1)    The beam must be symmetric. 
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(2) The beam must be positive definite or positive semi-definite. Thus the eigenvalues 
must be non-negative. 

(3) The dirty image must be in the ran^c of the dirty beam. Roughly speaking, there 
must be no spatial frequencies present in the dirty image which are not also present 
in the dirty beam. 

All three of these conditions are obeyed in principle for the dirty image and beam 
calculated by Equations 7-7 and 7-8 if the weighting function is nowhere negative. In 
practice, however, numerical errors, and the gridding and grid-correction process may cause 
violation of these conditions. The 'CLEAN' algorithm will therefore diverge eventually. 
'CLEAN'ing close to the edge of a dirty image computed by an FFT is particularly risky. 

Most of our understanding of 'CLEAN' comes from a combination of guessing how 
to apply intuition and Schwarz's analysis to real cases, and much practical experience on 
real and test data. In the rest of this Section I will attempt to summarize the current lore 
concerning how the algorithm should be used, and how it can fail. 

3.1. The use of boxes. 
The region of the image which is searched for the peak can be limited to those areas 

(known as the 'CLEAN' windows or boxes) within which emission is known or guessed to be 
present. These boxes effectively restrict the number of degrees of freedom available in the 
fitting of the data. Schwarz's work (and common sense) tells us that the number of such 
degrees of freedom should be minimized but that the 'CLEAN' window should include all 
real emission in the image. For a simple source in an otherwise uncluttered field of view, 
one 'CLEAN' window will do, but multiple boxes may be needed when 'CLEAN'ing more 
complicated sources, or for a field containing many sources. In the latter case, the presence 
of weak sources may be revealed only after the sidelobes of the stronger sources have been 
removed; more boxes may therefore be required as the 'CLEAN' progresses. Note that 
such a posteriori definition of 'CLEAN' boxes considerably complicates any possible noise 
analysis. 

The practical implications of Schwarz's observation that the number of degrees of 
freedom should not exceed the number of independent constraints are difficult to gauge. In 
the presence of noise u-v points should be judged independent if the differences in visibility 
due to the size of structure expected are much greater than the noise level. Counting 
visibility points in such a way, the aggregate area of the 'CLEAN' boxes in pixels should be 
less than twice the number of independent visibility points. If the FFT is used (see Lecture 
5) then the number of independent visibility samples cannot be greater than 0(NiNm), and 
so the use of 'CLEAN' boxes is certainly advisable. 

Given the uncertainty in determining the number of independent data points, and 
hence the number of constraints, caution dictates that boxes should always be placed tightly 
around the region to be 'CLEAN'ed. 

3.2. Number of iterations and the loop gain. 
The number of 'CLEAN' subtractions NCL and the loop gain 7 determine how deep 

the 'CLEAN' goes. In particular for a point source the residual left on the dirty image is 
(1 — i)NoL. Hence, to minimize the number of 'CLEAN' subtractions (and so to minimize 
the CPU time) 7 should be unity; one then finds however that extended structure is not well 
represented in the corresponding 'CLEAN' image. In typical VLA applications a reasonable 
compromise lies in the range 0.1 < 7 < 0.25. (Incidentally, this dependence of the 'CLEAN' 
image upon the loop gain is a nice demonstration of the multiplicity of solutions to the 
convolution equation.) Lower loop gains may be required in cases where the u-v coverage 
is poor, but experience suggests that the improvements in deconvolution for 7 <C 0.01 are 
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generally minimal. If one is in any doubt then it is wise to experiment (e.g. by decreasing 
7 and increasing NCL)- One exception to the use of low loop gain is in the removal of 
confusing sources; it is preferable to remove them with high loop gain, as their structure is 
usually not of interest. 

The choice of the number of iterations depends upon the amount of real emission in 
the dirty image. One should aim at transferring all brightness greater than the noise level 
to 'CLEAN' components (some implementations of 'CLEAN' allow one to specify a lower 
intensity limit to the components instead of NCL)- 'CLEAN'ing deep into the noise is 
usually a waste of time unless you specifically wish to analyze the extended low surface 
brightness emission (but see Section 3.4 below). 

Examination of the list of 'CLEAN' components, and, in particular, of the behavior 
of the accumulated intensity in the model, is useful in detecting divergence; sometimes the 
accumulated intensity diverges. As discussed above, divergence of the Hogbom 'CLEAN' is 
always due to a computational problem. Possible culprits are the gridding process, aliasing, 
and finite precision arithmetic. In the case of the Clark or the Cotton-Schwab algorithms, 
the truncated dirty beam patch that is used in the minor cycles of these algorithms must 
violate Schwarz's conditions. Therefore both may be subject to instability or divergence if 
the minor cycle is prolonged unduly. 

3.3. The problem of short spacings. 
Implicit in deconvolution is the interpolation of values for unsampled u-v spacings. In 

most cases 'CLEAN' does this interpolation reasonably well. However, in the case of short 
spacings the poor interpolation is sometimes rather more noticeable since very extended 
objects have much more power at the short spacings. The error is nearly always an un¬ 
derestimation and is manifested as a "bowl" of negative surface brightness in which the 
source rests. In such a case, introducing an estimate of the zero spacing flux density into 
the visibility data before forming the dirty image will sometimes help considerably. The 
appropriate value of this flux density would be that measured by a single element of the ar¬ 
ray. In practice, however, single array elements rarely have sufficient sensitivity or stability 
to provide this estimate accurately. Values estimated from surveys made with larger, more 
sensitive, and more directive elements are therefore frequently substituted. Choosing the 
weight for the zero spacing flux density is difficult; the best estimate seems to be simply the 
number of unfilled cells around the origin of the gridded u-v plane. However, the results 
obtained are fairly insensitive to the value used provided that the 'CLEAN' deconvolution 
goes deep enough. 

The 'CLEAN' windows or boxes may also be viewed as providing crude estimates of 
the shape of the visibility function near the zero spacing u = v = 0. For this reason, careful 
choice of 'CLEAN' windows may also minimize problems associated with the short spacings. 

After 'CLEAN'ing, the emission should be, but is not guaranteed to be, distributed 
sensibly over the 'CLEAN' image. Failure of the interpolation is indicated by the presence 
of a "pedestal" of surface brightness within the 'CLEAN' box upon which the source rests. 
Such a pedestal all over the 'CLEAN' image can be caused by insufficient 'CLEAN'ing of 
the dirty image; one can experiment by simply increasing NCL- Ultimately, it may actually 
be necessary to measure the appropriate data! 

3.4. The 'CLEAN' beam. 
The 'CLEAN' beam is used to suppress the higher spatial frequencies which are poorly 

estimated by the 'CLEAN' algorithm. There are two competing opinions on this in the 
radio astronomy community: some object that it is purely ad hoc and is undesirable—in 
the sense that the equivalent predicted visibilities do not then agree with those observed. 
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Others defend it as a way of recognizing the inherent limit to resolution. In practice, it 
does appear to be necessary in order to produce astrophysically reasonable images. The 
most common method of choosing the 'CLEAN' beam is to fit an elliptical Gaussian to the 
central region of the dirty beam. One should remember that this choice is merely the result 
of a compromise between resolution and apparent image quality and that larger or smaller 
beams may be appropriate in particular cases. If one is prepared to tolerate a decrease in 
the apparent quality of the 'CLEAN' image, and if both the signal-to-noise ratio and the 
u-v coverage are good, then often a smaller 'CLEAN' beam can be used. 

Various attempts have been made to improve the selection of the 'CLEAN' beam. The 
dirty beam, truncated outside the first zero-crossing, is appropriate in some applications 
since it lacks the extended wings of a Gaussian, but I emphasize that, after convolution with 
such a beam, the 'CLEAN' image does not agree satisfactorily with the original visibilities. 
An ideal 'CLEAN' beam might be defined as a function obeying three constraints: 

(1) Its transform should be unity inside the sampled region of the u-v plane. 
(2) Its transform should tend to zero outside the sampled region as rapidly as possible. 
(3) Any negative sidelobes should produce effects comparable with the noise level in 

the 'CLEAN' image. 

Constraint (1) is usually the first to be relaxed, and then only positivity of the transform 
is necessary. It may be that in typical applications 'CLEAN' performs so poorly that these 
constraints do not allow an astrophysically plausible 'CLEAN' image, however such a topic 
is probably worth further consideration. 

One very important consequence of a poor choice for the 'CLEAN' beam is that the 
units of the convolved 'CLEAN' components may not agree with the units of the residuals. 
The units of a dirty image are not very well defined but can be called " Jy per dirty beam 
area". The only real meaning of these units is that an isolated point source of flux density 
S Jy will show up in the dirty image as a dirty beam shape with amplitude S Jy per dirty 
beam area. An extended source of total flux density S Jy will be seen in the dirty image 
convolved with the dirty beam, but the integral will not, in general, be S Jy. However, 
convolved 'CLEAN' components do have sensible units of Jy per 'CLEAN' beam, which 
can be converted to Jy per unit area since the equivalent area of the 'CLEAN' beam is 
known. Provided that 'CLEAN' is run to convergence, the integral of the 'CLEAN' image 
will often provide an accurate estimate of the flux density of an extended object, usually 
failing when the u-v coverage is incomplete on the spacings required. If convergence is not 
attuned then both flux density and noise estimates taken from the 'CLEAN' image can be 
in error. 

3.5. Use of a priori models. 
A priori models of sources can be used to good effect in 'CLEAN'. Perhaps the best 

example is in the 'CLEAN'ing of images of planets; in this case the visibility function of a 
circular disk can be subtracted from the observed visibilities before making the dirty image. 
'CLEAN' then needs only to find the small perturbations from the disk model and so both 
the image quality and speed of convergence should be improved. 

3.6. Non-uniqueness. 
Perhaps the biggest drawback to the use of 'CLEAN' is the way in which the answers 

depend upon the various control parameters: the 'CLEAN' boxes, the loop gain and the 
number of 'CLEAN' subtractions. By changing these one can, even for a relatively well- 
sampled u-v plane, produce somewhat different final 'CLEAN' images. In the absence of an 
error analysis of 'CLEAN' itself one can do nothing at all about this problem. Awareness 
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of the possible effects discussed in this Section should however keep you from becoming 
over-confident in the final 'CLEAN' image, as will experience of applying 'CLEAN' to a 
wide range of different images. 

In any one application, Monte Carlo tests of 'CLEAN' can sometimes be illuminating, 
and, indeed, provide the only means of estimating the effects of various data errors and 
'CLEAN'ing strategies upon the final image. 

3.7. Instabilities. 
One particular instability of 'CLEAN' is well known: in 'CLEAN' images of extended 

sources one sometimes finds modulations at spatial frequencies corresponding to unsampled 
parts of the u-v plane (see e.g. Cornwell 1983 for an example). Convolution with a larger 
than usual 'CLEAN' beam will sometimes mask this problem, especially when the unsam¬ 
pled region is in the outer parts of the u-v plane. Reducing the loop gain 7 to very low 
values generally has little effect, but there is reason to believe that the instability is trig¬ 
gered by noise and hence that temporarily setting the loop gain equal to the noise-to-signal 
ratio when the instability begins may help (U. J. Schwarz, private communication). 

Cornwell (1983) has developed a simple modification to the 'CLEAN' algorithm which 
is sometimes successful in countering the instability. A small delta function is added to 
the peak of the beam before 'CLEAN'ing. The effect of the spike is to perform negative 
feedback of the 'CLEAN' structure into the dirty image, and thus to act against any features 
not required by the data. Spike heights of a few percent, and lower loop gains than usual 
are usually required. If view of the limited success of this modification, a better solution is 
to use another deconvolution algorithm, such as MEM. 

The occurrence of the stripes is a natural consequence of the incorrect information 
about radio sources embodied in the 'CLEAN' algorithm. Astronomers very rarely find 
convincing evidence for the existence of such stripes in radio sources and so they are skep¬ 
tical about such stripes when found in 'CLEAN' images. Unfortunately the only a priori 
information built into 'CLEAN', via the use of 'CLEAN' boxes, is that astronomers prefer 
to see mainly blank images; there is no bias against stripes. Such considerations, and some 
others, have led to the development of deconvolution algorithms which either incorporate 
extra constraints on astrophysically plausible brightness distributions or are claimed to pro¬ 
duce, in some way, optimal solutions to the deconvolution equation. In the next Section I 
briefly consider one such algorithm. 

4.   THE MAXIMUM ENTROPY METHOD (MEM) 

The deconvolution problem is one of selecting one answer from the many possible. 
The 'CLEAN' approach is to use a procedure which selects a plausible image from the set 
of feasible images. Some of the problems with 'CLEAN' arise because it is procedural so 
that there is no simple equation describing the 'CLEAN' image. Thus, for example, a 
noise analysis of 'CLEAN' is very difficult. By contrast, the Maximum Entropy Method 
(MEM) is not procedural: the image selected is that which fits the data, to within the 
noise level, and also has maximum entropy. The use of the term entropy has lead to great 
confusion over the justification for MEM. There is no consensus on this subject evident 
yet in the literature (e.g. Frieden 1972, Wemecke and D'Addario 1976, Gull and Daniell 
1978, Jaynes 1982, Narayan and Nityananda 1984,1986, Cornwell and Evans 1985). I will 
use the "lowest common denominator" justification and define entropy as something, which 
when maximized, produces a positive image with a compressed range in pixel values. Image 
entropy is therefore not to be confused with a "physical entropy" (see Cornwell 1984). 
The compression in pixel values forces the MEM image to be "smooth", and the positivity 
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forces super-resolution on bright, isolated objects. There are many possible forms of this 
extended type of entropy, see e.g. Narayan and Nityananda 1984, but one of the best for 
general purpose use is: 

* = -!>>" Gfe). e-w) 
where Af* is a "default" image incorporated to allow a priori knowledge to be used. For 
example, a low resolution image of the object can be used to good effect as the default. 

A requirement that each visibility point be fitted exactly is nearly always incompatible 
with the positivity of the MEM image. Consequently, data are usually incorporated in 
a constraint that the fit, x2> of the predicted visibility to that observed, be close to the 
expected value: 

x2 = V- in"r,tv)-frK,Vr)|
2 i7_n) 

Simply maximizing H subject to the constraint that x2 be equal to its expected value 
leads to an image which fits the long spacings much too well (better than la), and the 
zero and short spacings very poorly. The cause of this effect is somewhat obscure but is 
related to the fact that the entropy M is insensitive to spatial information. It can be avoided 
by constraining the predicted zero spacing flux density to equal that provided by the user 
(Cornwell and Evans 1985). 

Algorithms for solving this maximization problem have been given by Wemecke and 
D'Addario (1976), by Cornwell and Evans (1985), and by Skilling and Bryan (1984). The 
Cornwell-Evans algorithm is coded in NRAO's Astronomical Image Processing System 
(AIPS) as 'VM'. It is generally faster than 'CLEAN' for larger images; the break-even 
point being for images of about 1 million pixels. 

5.   PRACTICAL DETAILS OF THE USE OF MEM 

The following description relates to the AIPS MEM algorithm, 'VM'. 

5.1. The default image (prior distribution). 
Examination of Equation 7-10 reveals that if no data constraints exist, the MEM 

image is the default image, so the MEM image is always biased towards the default. A 
reasonable "default default" image is flat, with total flux density equal to that specified. A 
low resolution image, if available, can be used as the default to very good effect; this is a 
nice way of combining single dish data with interferometer data. A spike in the default can 
sometimes be used to indicate the presence of an unresolved source, which could otherwise 
cause problems (see Section 5.5 below). 

5.2. Total flux density. 
As described above, if the total flux density in the MEM image is not specified then 

the value found may be seriously biased if the signal-to-noise ratio is low. There is no real 
way around this at the moment, except by guessing a value and then adjusting it to get an 
image that looks "reasonable", for example, possessing a flat baseline. For bright objects, 
only an order-of-magnitude estimate is required to set the flux density scale. Of course, 
then the estimated flux density is not fitted but is used only to set a reasonable default 
image. 

5.3. Varying resolution. 
In the folk lore MEM is criticized for resolution that depends on the signal-to-noise 

ratio. In fact, there are sound theoretical reasons to believe that this effect is common to 
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all non-linear algorithms which know about noise (Andrews and Hunt 1977). If you want 
to "fix" the resolution in MEM, you basically have two choices: 

(1) Convolve the final MEM image with a Gaussian beam of appropriate width to 
smear out the fine scale structure (the convolved image makes a very good default 
image for another deconvolution!). 

(2) Before deconvolution, convolve the dirty image with a Gaussian beam. 
The advantages of (2) over (1) are that the algorithm usually converges faster, and 

that given the non-linear nature of the deconvolution, the answer can be (and usually is) 
better. For example, sidelobes around a point source embedded in extended emission are 
not well removed by MEM, whereas scheme (2) often alleviates this effect. 

Quite often, the super-resolution exhibited by MEM images is reliable and can be 
trusted up to an order of magnitude in solid angle. 

5.4. Bias. 
Another commonly heard complaint about MEM is that the answer is biased, i.e. that 

the ensemble average of the estimated noise is not zero. This is certainly true, and is 
the price paid by any method which does not try to fit exactly to the data as 'CLEAN' 
does. Bias in an estimator is quite common and acceptable since it usually leads to smaller 
variance. Cornwell (1980) has estimated the magnitude of the bias, and has shown that it 
is much less than the noise for pixels having signal-to-noise ratio much greater than one. 
In fact, if the u-v coverage is very good then for bright pixels the effect of noise on an 
MEM image is very similar to that on a dirty image. The effect of bias can be substantially 
reduced by using a reasonable default such as a previous MEM image smoothed with a 
Gaussian; then only the highest spatial frequencies are biased. 

5.5. Point sources in extended emission. 
Nearly all the power of MEM to remove sidelobes comes from the positivity constraint. 

Hence if the source sits on a background level of emission then the sidelobes will not be 
removed fully. The only consistently effective solutions are either (a) to remove the point 
sources using 'CLEAN' or (b) to smooth the dirty image prior to deconvolution. 

6.   COMPARISON OF 'CLEAN' AND MEM 

'CLEAN' has dominated deconvolution in radio astronomy since its invention nearly 
15 years ago, but has not been widely applied in other disciplines. One of the major reasons 
for this is the decomposition into point sources, which is often not permissible in other types 
of images. In contrast, MEM has spread to many different fields, probably because most of 
the justifications are independent of the type of data to which it is applied. 

The philosophy behind MEM is intriguing and may convince some of you about the 
objectivity of MEM (see Jaynes 1982 for an exposition of MEM from its inventor). For 
those of you who do not become acolytes, the practical differences between 'CLEAN' and 
MEM are probably more interesting. 

'CLEAN' is nearly always faster than MEM for sufficiently small and simple images, be¬ 
cause its approach of optimizing a relatively small number of pixels is simply more efficient. 
For typical VLA images, the break even point is at around a million pixels of brightness. 
For very large and complex images, such as those of supernova remnants, which may con¬ 
tain up to 100 million pixels, 'CLEAN' is impossibly slow and an MEM-type algorithm is 
absolutely necessary. 

'CLEAN' images are nearly always rougher than MEM images. This may be traced to 
the basic iterative scheme: since what happens to one pixel is not coupled to what happens 
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to its neighbors, there is no mechanism to introduce smoothness. MEM couples pixels 
together by minimizing the spread in pixels' values, so the resulting images look smooth 
although the entropy term does not explicitly contain spatial information. 

Both MEM and 'CLEAN' fail to work well on certain types of structure. 'CLEAN' 
usually makes extended emission blotchy, and may introduce coherent errors such as stripes, 
while MEM copes very poorly with point sources in extended emission. Both work quite 
well on isolated sources with simple structure, and can produce meaningful enhancement 
of resolution although MEM seems to do slightly better in most cases. 

Since MEM tries to separate signal and noise, it is necessary to know the noise level 
reasonably well. Also, as mentioned above, knowledge of the total flux density in the image 
helps considerably. Apart from this MEM has no other important control parameters, 
although it can be helped enormously by specifying a default image. 'CLEAN' makes no 
attempt to separate out the noise and so specification of the noise level is not required. The 
main control parameters are the loop gain 7, and the number of iterations NCL> both of 
which are important in determining the final deconvolution. 

The default image of MEM is a very powerful mechanism for introducing a priori 
information. I have previously described the use of a simple image as a default; however, 
the default image need not be only a simple fixed set of numbers, but instead can be used 
to introduce functional relationships between pixels. For example, to further encourage 
smoothness, make the default for a pixel equal to the geometric mean of the brightness of 
its neighbors (S. F. Gull, private communication). Only the simple fixed default image can 
be easily mimicked by 'CLEAN': the default image is simply used as the starting point for 
the collection of 'CLEAN' components. Thus the use of a disk model for a planet is an 
example of the use of a default in 'CLEAN'. 

7.   FUTURE DEVELOPMENTS 

Deconvolution in radio astronomy is dominated by two non-linear algorithms, 'CLEAN' 
and MEM. Other non-linear algorithms exist and may turn out to be useful, at least in the 
sense that, as with 'CLEAN' and MEM, their defects are orthogonal to those of other 
algorithms. 

The concept of a default image can be extended to 'CLEAN' and other algorithms, 
and will probably improve their performance and suggest different types of algorithm. 

A relatively unexplored area is that of linear methods with boundary conditions, such as 
singular value decomposition (SVD; e.g., Andrews and Hunt 1977). SVD is a generalization 
of eigenfunction analysis to systems split into two domains, such as the sky and the u-v 
planes. Using SVD, the constraint of confinement could be applied to estimate unsampled 
data and thus remove sidelobes. Unfortunately, it is very expensive to use unless the 
geometry of the imaging system is simple in some way and thus it may only be applicable 
to certain telescopes, such as east-west arrays. 

It is ironic that, formally, more is known about the type of images generated by MEM 
than by 'CLEAN' (see e.g. Narayan and Nityananda 1986), since 'CLEAN' is rather more 
widely used. Indeed many of the criticisms of MEM arise because certain of its properties, 
such as the bias, can be analyzed. Schwarz's analysis of 'CLEAN' is incomplete in that it 
does not address the interesting underdetermined case in which there are fewer data than 
pixels. I hope that someday this problem might be investigated satisfactorily. 

Although deconvolution algorithms are now as important in determining the quality of 
images produced by a radio telescope as the receivers, correlators and other equipment, they 
are far less well understood. A good description is that they are poorly engineered. Only 
further research and development of new and existing algorithms can redress this inbalance. 
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WILLIAM D. COTTON 

In practical applications, one or more of the simplifying assumptions which were used 
in Lectures 1 and 2 to derive the relationships between the interferometer visibility measure¬ 
ments and the image of the sky may be violated. Serious violations of these assumptions 
result in distortions and/or errors in the image. Practical considerations, such as finite 
computer resources, may also occasionally create difficulties. This Lecture addresses sev¬ 
eral potential problems from a relatively practical point of view; the general nature of the 
problems is described, as are the conditions under which they become important. Finally, 
there is a discussion of techniques used to reduce the distortions and/or the error introduced 
into images and to reduce the computing requirements. 

1. WIDE FIELD PROBLEMS 

This Section discusses various common effects that are present to some extent in images 
of regions of any size, but which become important only when a wide field of view is imaged. 

1.1. Bandwidth smearing (chromatic aberration). 
The effect of finite bandwidth on a correlator was discussed in Lecture 2; this effect 

can be shown by expressing u and v as functions of frequency and explicitly averaging over 
frequency. The monochromatic Fourier transform relation between visibility and intensity 
(Lecture 1, Equation 1-9) can be re-expressed in terms of the bandwidth-smeared intensity 
1(1, m), the frequency-dependent u's and v's and the instrumental bandpass g(u) as: 

/(/, m) = ff V(uo, t/o)e2,r,(aoHvom)duo dvo, (8-1) 

where 

and 
t/o = reference frequency, 

u = UQ ( H 1 = UQ— , 
\ "0     ) VQ 

v — vo I H 1 = vo—, 
\ VQ     J I/Q 

and Av — the observing bandwidth. 

In general, the effect is to smear /(/, m) with a radially oriented image of the bandpass. 
This smearing is not a proper convolution since the smearing function is a function of (/, m). 
A specific example is worked out in the Appendix to this Lecture in which the radial extent 
of the image of the bandpass is shown to be proportional to >Jl2 + m2 AV/VQ. 
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Figure 8—1. The grey scale shows the real part of the inverse Fourier transform (visibility function) of a 
model source brightness distribution. The boxes indicate the region over which a given data sample might 
be averaged; the radial extent of the box is determined by the bandwidth, and the asimuthal extent by the 
time averaging. If the visibility function changes significantly over the region being averaged, as in the case 
illustrated here, the resulting image will be distorted. 

The effect of using a finite bandpass is to average over a finite region of the u-v plane. 
Smearing occurs when the visibility changes significantly in the region over which the aver¬ 
aging takes place, as in Figure 8-1. 

Since the averaging due to the bandpass is along a radial line, the smearing in the 
image plane is also in the radial direction. 
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Figure 8—2.  The effect of bandwidth smearing on a source 12 J 9 northeast of the delay tracking center. 
The smearing is along the radial direction. 

A practical example of this effect is shown in Figure 8-2, in which the image of a 
bandwidth-smeared extragalactic double source is shown. This observation was made with 
the VLA at 1.4 GHz with a 50 MHz bandpass, and the source was 12 f 9 from the phase 
tracking center. 

As described above, the width of the smeared image is proportional to the fractional 
bandwidth—multiplied by a function of the separation (/, m) from the phase tracking center. 
For sufficiently small fields of view, the smearing has less effect than the convolution with the 
synthesized beam and is thus relatively unimportant. For a rectangular bandpass function, 
the degradation of the response of an interferometer to a point source is shown in Lecture 
2 and in the Appendix to be: 

sin*^Vu2 + v20 

•'0 

(8-3) 

where 0 is the angular distance from the phase center, measured in radians: 0 = y/l2 + m2. 
A conservative approach is to consider the image to have been substantially distorted if the 
amplitude on the longest baseline is reduced by more than 5%. 

Bandwidth smearing may not be a serious problem if the affected source is not directly 
of interest but must be imaged only to remove its sidelobes from the region that is of interest. 
Bandwidth smearing is a single-valued, symmetric function of u and v, so the observed data 
correspond to some, rather unlikely, brightness distribution on the sky. The response to the 
source can therefore be removed by standard deconvolution procedures. An example of the 
successful deconvolution of the effects of the source shown in Figure 8-2 from another field 
is given in Section 1.3 below. 
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If an undistorted image is desired, there are several possible approaches to reducing 
bandwidth smearing; these include: (a) using a single sufficiently narrow band, (b) narrow 
bandwidth synthesis1, and (c) analytical deconvolution. A related technique, which is not 
directly used to reduce bandwidth smearing but is sufficiently similar to these methods that 
it merits attention here, is (d) wide bandwidth synthesis. 

1.1.1. Observing with a single narrow bandwidth. The effects of bandwidth smearing are 
proportional to the bandwidth, so the simplest remedy for bandwidth smearing is to observe 
with a single bandwidth narrow enough that the problem becomes negligible. The resulting 
sensitivity loss may make this approach unattractive, however. 

1.1.2. Narrow "bandwidth synthesis". If the source can be considered to have the same 
brightness all across the bandpass, then, as in spectral line observing, the observing band 
can be divided up into a number of narrowband channels—sufficiently many of them that, 
in each one, bandwidth smearing is no longer a problem. In practice, the requirement for a 
constant source brightness distribution across the observing band necessitates a relatively 
small (KJ a few percent) total fractional bandpass. 

As was discussed in Lecture 2, Section 10, if each of the narrow band channels is imaged 
individually and then averaged, the bandwidth smearing will be that due to the channel 
bandwidth rather than to the total bandwidth. The individual channels may be combined 
on a common grid either while gridding (if an FFT is being used) or after making the 
Fourier transform. 

The practical effect of this bandwidth synthesis is that the sidelobes are smeared, 
rather than the image of the source. This is because explicit use is made of the bandwidth 
to increase the u-v coverage used for the point source response; each of the channels in effect 
provides its own distinct u-v coverage. In many cases, this reduction of the far sidelobe levels 
will reduce the effects of a distant, strong confusing source better than using the bandwidth 
smearing to reduce its response. 

U.S. Analytical deconvolution. Several analytical techniques have been suggested for 
dealing with bandwidth smearing (e.g., Clark 1982). The principal difficulty with these 
techniques is that if the image is heavily distorted, then much of the desired information 
has been lost, and the restoration is likely to tell more about the bandpass functions g(i/) 
than about the source. 

1.1.4. Wide "bandwidth synthesis9. The use of bandwidth synthesis to increase the u-v 
coverage can be expanded to wider bandpasses. The frequency channels need not be 
contiguous, but may be as widely separated as the electronics will allow; this is a mode 
frequently used for astrometric and geodetic measurements with very-long-baseline inter¬ 
ferometry (VLBI). If the frequency channels are relatively widely spaced (so they span 
bandwidths of tens of percent), then there is a significant improvement of the u-v coverage 
of the observation—which may result in a significant improvement of the quality of the 
derived image. Unfortunately, in this regime the assumption that the intensity distribution 
across the source is constant across the bandpass is likely to break down. For these cases 
the analysis of the data should take into account the variations in the spectral index across 
the source, and perhaps also spectral curvature. For a more detailed discussion of this 
technique see Cornwell (1984). 

1 The term bandwidth synthesis is frequently used to describe the process of improving the u-v coverage by 
independently gridding and combining data obtained in several different frequency channels. — Eds. 
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1.2. Time-average smearing. 
Time-average smearing is similar to bandwidth smearing, since it is the result of av¬ 

eraging the data over time periods during which the source visibility, on at least some 
baselines, is not constant. Earth-rotation synthesis arrays use the rotation of the earth 
to vary the u-v location of the constituent interferometers; thus, the u-v locations being 
sampled are constantly changing. Averaging data over times during which the visibility 
changes significantly causes an amplitude reduction which will result in a distortion of the 
derived image. 

The effects of time-average smearing are much more difficult to analyze than those of 
bandwidth smearing, because they depend on the time derivative of the observing geometry. 
Due to the complex nature of the effect, its symptoms are not as easily recognized as are 
those due to bandwidth smearing. However, since longer baselines tend to move more 
rapidly through the u-v plane and to occupy regions of higher spatial frequencies u and 
v, where the visibility function may be highly variable, time-average smearing tends to be 
stronger on longer baselines. Time-average smearing will mimic resolution, and the image 
of a point source away from the phase center will appear resolved and distorted. Since the 
phase of the response in the u-v plane to a source varies increasingly rapidly with increasing 
separation of the source from the phase center, the extent of the smearing also depends on 
the separation of the source from the phase center of the pre-averaged data. 

If the source is at a celestial pole, then the u-v tracks are circular and the smearing 
is in the azimuthal direction and proportional to the distance in the l-m plane from the 
visibility phase center. In this case, the source image will be convolved with the image of 
the time-averaging function, and the profile of the source will be rectangular. 

Figure 8-3 shows a relatively extreme example of the effects of time-average smearing 
derived from model data. This Figure shows the 'CLEAN' image derived for a given model 
point source, with and without time-average smearing. 

Lecture 2, Section 11, described how to determine whether time-average smearing is a 
problem compared with bandwidth smearing. The principal reasons for longer integration 
times are economic: shorter integration times require more storage medium, more I/O 
time and more CPU time for the data reduction. If considerations such as these are not 
overwhelming, the simplest solution to time-average smearing problems is to use a shorter 
integration time, if one is available from the correlator. 

If available computer resources dictate some averaging of the data, then there are 
several approaches. Three of these are (a) baseline-dependent averaging, (b) optimal time 
series filtering, and (c) multiple fields. 

1.2.1. Baseline-dependent averaging. As shown above, the effects of time averaging are 
most severe on the longest baselines. If a given array has a relatively centrally-condensed 
u-v coverage, then much of the data is obtained from the shorter baselines. Thus, the bulk 
of the data may be significantly reduced in volume if the averaging time is a function of 
the baseline length, with shorter baselines having longer integration times. In this case, an 
upper limit to the integration time should be imposed which corresponds to the timescale 
for instrumental or atmospheric variations, so that self-calibration will be able to remove 
these effects. 
1.2.2. Optimal time series filtering. Averaging of data is usually done by convolving a time 
series of data with a rectangular function and sampling at the center of the function. Recent 
work in this area suggests that other convolving functions may allow a data compression 
factor on the order of four using Finite Impulse Response filtering. A good reference is 
Crochiere and Rabiner (1983). Unfortunately, a convolution on a time sequence (i.e., along 
a baseline track) does not correspond to a convolution in the u-v plane. The effects of other 
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Figure 8—S. (a) shows the 'CLEAN'ed image of a point model « 500 synthesised beamwidths west of 
the phase center without time-averaging, and (b) shows the 'CLEAN'ed response to averaged data for the 
same model, showing the effects of time-average smearing. 

convolving functions, and for that matter the rectangular function currently in use, need 
further study. 

1.2.8. Multiple fields. Since the effects of time-average smearing are a function of the 
separation from the phase center of the pre-averaged data, they can be reduced in a given 
direction on the sky by shifting the phase center before averaging. Data for multiple fields 
may be derived from the pre-averaged data by this technique. Unfortunately, multiple 
copies of the averaged data must be kept. If the data compression due to the averaging 
is sufficiently large, and the number of fields is sufficiently small, then this technique is 
practical. 

1.3. Sparse fields and confusing sources. 
Observers are frequently interested in wide fields of view which contain widely scattered 

sources but which are otherwise mostly empty. This happens either because the sources 
of interest are widely scattered—e.g., as in surveys—or because there are scattered sources 
in the field whose sidelobes contribute significantly to the region of interest. (Such sources 
are usually termed confusing sources in radio astronomy). Such fields of view may contain 
several relatively small, but widely separated regions of interesting emission, with blank sky 
in between. These regions cannot be deconvolved independently because the sidelobes from 
one will appear in each of the others. 

Figure 8-4 shows an example of the effect of widely scattered confusing sources. This 
Figure shows the field around the position of a pulsar observed with the VLA at 1.4 GHz. 
Figure 8-4a clearly shows the sidelobes of distant confusing sources (one of which is shown 
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(a) (b) 

Figure 8—4. (a) The region around a pulsar observed with the VLA at 1.4 GHs, showing the sidelobes of 
distant, confusing sources, (b) The same region as in (a) with the effects of the confusing sources removed 
by 'CLEAN*. 

in Figure 8-2). To remove the effects of these distant sources by deconvolving the entire 
region, a 4096 X 4096 image would be necessary. 

One approach to this problem is to image the entire region and then to restrict the 
deconvolution to the areas of emission. This approach can be very expensive when the 
image size becomes very large, as in the field shown in Figure 8-4. If most of the region to 
be imaged is blank, then it is more economical to process only the subregions that are of 
interest. 

Since the sidelobes of sources in one subregion must be removed from the other sub- 
regions, the subregions must all be deconvolved in parallel. The 'CLEAN' deconvolution 
technique is easily adapted to this purpose since it accumulates the deconvolved image by 
finding and removing a series of delta functions from the image. If the responses to com¬ 
ponents found in any one subregion are removed from all the others, 'CLEAN' will proceed 
as though there is a single image with a number of windows. 

Figure 8-4b shows the result on the image shown in Figure 8-4a of 'CLEAN'ing four 
256 x 256 subregions, centered on the position of interest and three distant confusing sources. 
The r.m.s. fluctuation in Figure 8-4a is 109 /iJy and in Figure 8-4b is 62 /jJy. It is of interest 
to note that the bandwidth-smeared image shown in Figure 8-2 has one of the confusing 
sources removed; 'CLEAN' properly removed the response, although it could not recover 
the correct image of the bandwidth-smeared source. 

In order to subtract the sidelobes in the image plane, the dirty beam must be computed 
for an area twice the size (i.e., four times the area) of the region of interest. Thus, it is 
frequently much more economical to subtract the current 'CLEAN' model from the ungrid- 
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ded u-v data every so often, then re-grid and re-FFT the data. This approach (termed the 
Cotton-Schwab algorithm in Lecture 7, Section 2.3) is a variant of the Clark modification to 
'CLEAN' (Clark 1980) and will be referred to here as the ungridded subtraction technique. 
Other deconvolution methods would similarly benefit by this technique. 

A number of features of this technique make it attractive for processing single as well 
as multiple fields of view. The most obvious of these is that the ungridded subtraction 
allows 'CLEAN'ing (almost) all of an image, rather than only a quarter of its area. An¬ 
other advantage is that the aliased responses—both to sources outside the subregion and to 
sidelobes of sources in the subregion which appear outside it—are greatly reduced. Other 
potential uses of the ungridded subtraction technique will become apparent later. 

There are several possible techniques for subtracting a model from the u-v data. For 
'CLEAN' or other deconvolution techniques which can produce a list of discrete components, 
a 'direct Fourier transform' can be employed (see Lecture 5). In the more general case, the 
(inverse) Fourier transform of the model for each field can be computed, and the values at 
observed u-v locations can be interpolated. These methods are discussed below. 

1.8.1. Direct Fourier transform. The (inverse) 'direct Fourier transform' of a linear combi¬ 
nation of N delta functions (point components), evaluated at a given u, v and w, is given 
by 

N 

V(u, v, w) = ^2 Aie-2*i«iU+,niV+niW), (8-4) 
*=i 

where 
Ai — flux density of component t, 

('«>"**) = position of component t, 

and n» = y 1 — I* — TO* ,    (/o, w»o) = center of the field. 

The role of the tv term in Equation 8-4 is to correct the phase center of the field to the phase 
center of the u-v data, and the sum can be extended over components found in all fields. 
Similar expressions can be derived for other models (models which include other than point 
components). The method is relatively efficient when there is a small number of model 
components or a large number of fields and/or bandwidth synthesis frequency channels, 
but it may become very expensive for large numbers (100,000 or more) of components. 

1.8.2. Gridded interpolation. Another technique, which becomes attractive when the model 
cannot be expressed as a manageable number of discrete components, is to compute the 
(inverse) Fourier transform of the model of a given field and interpolate the model values 
at the observed u-v locations. This process must be done separately for each field, and each 
frequency channel must be interpolated independently. 

1.4. Noncoplanar baseline effects (w term). 
Section 4.2 of Lecture 1 described a small-field approximation to the fundamental 

Equation 1-5 whereby the transformation became a two dimensional Fourier transform. In 
the general case this approximation breaks down, and the effects due to ignoring the tu term 
may become serious. 

In order to estimate the consequences of neglecting the tu term, consider the effect on 
a point source at (/, m) observed with a single interferometer. As was shown in Lecture 2 
the phase error (in radians) incurred by ignoring the tu term is: 

error » KW02 , (8-5) 
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where 0 = y/l2 + m2. 
If tu is a linear function of u and/or v, as in the case of a coplanar array, then the 

linearly increasing phase error across the u-v plane will appear as a position error in the 
image plane. The apparent position shift is a function of the zenith angle and the azimuth of 
the source. Thus the source will appear to move during the observations, and the resultant 
image will show the trace of this apparent motion during the observations. For noncoplanar 
arrays (e.g., in VLBI) the effect is more complex. This problem has been discussed in a 
number of other places (Clark 1973, Hudson 1977, Clark 1981) 

For a coplanar array, tu in the azimuth of the source is » y/u2 + v2 sin z where z 
is the instrumental zenith angle. Using this relation, Equation 8-5, and the relation 
"phase error (in turns, i.e., multiples of 24K)1> — "position error (radians)" x "spatial fre¬ 
quency (wavelengths)", the apparent position shift in arcseconds is approximately given 
by: 

02 

position error « -——-———-=■ sin z. (8-6) 
* 2 x 2.06 x 105 v      ' 

The effects for noncoplanar arrays (e.g., VLBI arrays) will be of the same order of magnitude 
if the sin z term is dropped, although, in this case, the effect will not mimic a simple position 
shift. 

If the error derived from Equation 8-6 is small compared to the synthesized beam 
size, then this correction may be ignored. For astrometric or geodetic applications the 
requirements sure more stringent than if only an image is desired. In general, the fields 
of view imaged with a coplanar array in which tu is not zero will be distorted, although 
the effect can be reduced by restricting the observations as closely as possible to meridian 
transit. 

Examples of the effects of neglecting the tu term in the transform are shown in Figure 
8-5. This Figure shows model source data for a point 47 f 5 from the phase center, for VLA 
u-v coverage obtained at 40° declination. Figure 8-5a shows the image derived for a full 
track of the object, and Figure 8-5b shows the image derived for a single 30 minute subset 
of the data. Figure 8-5a shows a gross distortion of the image as the apparent position of 
the source changes during the day. Figure 8-5b appears relatively undistorted, but note 
the > 30" position error. 

There are several techniques for reducing noncoplanarity problems in addition to ob¬ 
serving only near the zenith; those which will be discussed here are (a) multiple fields of 
view, (b) geometric correction, and (c) 3-D FFTs. 

l.J[.l. Multiple fields of view. As was shown above, the errors resulting from ignoring the tu 
term increase as the square of the distance from the phase center. Thus, the errors due to 
ignoring the tu term can be arbitrarily reduced by breaking the region up into a number of 
fields of view, each of which is imaged using its center as the phase center. The ungridded 
subtraction technique discussed previously is useful for deconvolving the resultant images. 

1.4.2. Geometric correction. If the array is coplanar with nonzero tu, or if it can be 
considered to be so for suitably chosen time intervals, then 

tu = au + bv, (8-7) 

and there will be a simple geometric distortion of the image which can be corrected. This 
technique, which is especially useful for east-west arrays, is in use at Westerbork. If the 
array is only approximately coplanar for intervals of time, then the field can be imaged in 
each interval, corrected, and (finally) all of the images averaged. 
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Figure 8—5. (a) The response of the VLA to a point model source 47 J 5 in RA from the phase center, for 
full coverage in the VLA B configuration at 1.4 GHs. Zeroes on the axes label the correct position of the 
source; the model contained 1 Jy, but the peak in the image is 0.071 Jy. (b) Similar to (a), but made using 
the u-v coverage corresponding to only 30 minutes of observation. The peak in the image is 0.948 Jy. 

A note is in order here about dividing data into several time segments. Since the 
Fourier transform is linear, data can be averaged before or after the transform. However, 
if uniform weighting is being applied to the data, then this correction must be done before 
the data are divided into time intervals. 

I.4.8. S-D FFTs. A more nearly correct, but expensive, method is to do a full three- 
dimensional FFT and then project the result onto the celestial sphere. 

1.5. Nonisoplanatic and antenna polarization effects. 
A common assumption made during calibration is that the complex gains needed for 

calibration do not vary with position on the sky. This assumption is unavoidable during 
the initial calibration phases, since the distribution of signals from the sky is, of course, 
unknown. This assumption may be incorrect for some wide field observations. 

The two principal causes of position-dependent calibration are small-scale variations 
in the atmosphere, especially the ionosphere, and instrumental—primarily polarization— 
variations across the antenna pattern. Ionospheric problems become increasingly severe with 
decreasing frequency, both because the antenna pattern becomes larger and because phase 
fluctuations become increasingly larger. When the field of view becomes larger than the size 
of an isoplanatic region (a region over which the phase and amplitude errors induced by the 
atmosphere can be considered to be constant), position-dependent calibration is required. 
Position-dependent polarization problems arise in wide field observations when the antenna 
patterns in the orthogonal polarizations are not identical and/or are not aligned. 
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By the nature of position-dependent calibration, its application must involve a decon¬ 
volution of the image. Schwab (1984) has suggested a solution to this problem using an 
adaptation of self-calibration in which the gain at a number of grid points on the sky is de¬ 
termined. The gain at intermediate locations is determined by interpolation. Instrumental 
gain variation may be computed or accurately measured independently of the observations, 
but atmospheric effects must be determined from the data. 

The corrections can then be applied using an adaptation of the ungridded subtraction 
technique. The model used to determine the response can incorporate the position and/or 
time variations in the gain. Several iterations of this technique may be needed. 

1.6. Regions larger than the primary beam. 
It is sometimes necessary to image a region that is large compared with the main lobe 

of the primary beam pattern A(l,m) of the array elements. In this case the image must 
consist of a mosaic derived from separate pointings of the array. Since the regions observed 
by the individual pointings of the array will provide a great deal of overlap on the sky, a 
substantial improvement in the deconvolution may be obtained by deconvolving the regions 
in parallel. This technique also allows the determination of, and removal of, the effects of 
relative pointing errors. The analysis must explicitly include the beam pattern A(l, m) of 
the array elements; the images of the different regions must also be projected onto the same 
plane (i.e., have the same tangent point) and must use the same grid of positions on the sky. 
For a more detailed discussion of this technique, also known as tesselation, see Cornwell 
(1985). 

2. TIME-VARIABLE EFFECTS. 

There are a number of time-variable effects which are not removed by normal calibration 
procedures. Two of these, involving variability of the source and of the antenna pattern, are 
discussed below. In these cases it is frequently desirable to divide the data into short time 
intervals, but this may have a serious negative impact on the deconvolution of the image. 
Deconvolution is nonlinear, so combining images after deconvolution is not equivalent to 
combining them before deconvolution. The dynamic range of the deconvolution depends 
strongly on the u-v coverage used to make the image, so that only a relatively low dynamic 
range image can be obtained from the short time interval data. 

2.1. Variable sources. 
One of the fundamental assumptions in forming an image using a synthesis array is that 

the distribution of brightness on the sky remains constant during the observations. If the 
source varies during the observations, then the image that is derived is not the convolution 
of the average brightness of the source with the dirty beam derived in the usual manner. 
This will lead to an incorrect deconvolution for the source. Two classes of violations of the 
assumption of constancy are considered below. 

2.1.1. Variable point sources. Pulsars may exhibit considerable brightness fluctuations due 
to interstellar scintillations, and some compact, galactic sources have been observed to have 
significant variations on timescales of a day. An example of a deconvolved image derived 
from data for a time variable point model is shown in Figure 8-6. 

Various artifacts appearing in this Figure correspond to sidelobes during time periods 
when the flux density of the source was different from the average. Especially troublesome 
are the artifacts which appear similar to jets—these are due to the arms of the VLA. 

Two approaches which can be taken to the problem of a time-variable point source 
are (a) to divide the data into time intervals for which the data can be considered to be 
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Figure 8—9. The deconvolved ('CLEAN'ed) image derived from model data for a point source with time- 
variable flux density. The u-v distribution used was that of a source observed with the VLA in the A 
configuration at 1.4 GHs. 

constant, or (b) to subtract a time-variable point model from the data before making the 
image. The latter approach is preferable if there is weak extended emission in the field and 
a high dynamic range image is desired. 

2.1.2. Variable extended sources. Under some circumstances, extended emission may be 
variable on the timescale of the observations. Two examples of this are observations of 
the sun, which can vary on short timescales, and observations of planets, which rotate. In 
these cases, if an image is desired, then the data must be divided into sufficiently short 
time intervals. This will result in relatively poor u-v coverage and correspondingly poor 
dynamic range. If the desired result can be described by a time-evolving model, such as for 
VLBI observations of the rapidly changing galactic object SS 433, then the parameters of 
the model can be fitted directly to the observations. 

2.2. Variable sidelobes. 
Antennas with altitude-azimuth mounts have the property that the antenna primary 

beam pattern A(l,m) rotates on the sky. If there are strong confusing sources outside of the 
main beam of the antenna pattern, then they will appear to vary during the observations, 
as the pattern rotates over them. This is especially problematic at lower frequencies where 
the primary beam patterns of the array elements are broad and typically contain many 
strong sources. The effects of these sources on the region of interest will not be completely 
removed by the standard deconvolution techniques. 

An approach to this problem is to divide the data into short time intervals and remove 
the effects of the confusing sources from the data in each interval. After the effects of the 
confusing sources are removed, the data can be recombined to form the image of the region 
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of interest. For reasons discussed above, the image of the region of interest should not be 
deconvolved before the different time intervals are combined. 
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APPENDIX 

An Example of the Bandwidth Smearing Effect. Let us consider a specific example 
of the bandwidth smearing of a unit amplitude point source. Since the smearing is due to 
the averaging along a radial path in the u-v plane, we can consider the one-dimensional case, 
with no loss of generality. Using the shift theorem (Bracewell 1978) the visibility function 
becomes 

y(u) = e"2™10 , (A8-1) 

where IQ = the location of the source. Further, assume a rectangular bandpass function 
which is given by 

The relation between intensity and visibility can then be explicitly stated by averaging over 
frequency: 

/oo     i pV(t+Ai//2 
^-   / e2Tiule-2*iulodvdu. (A8-3) 

-oo Al>   y„0_Ai//2 

Expressing u explicitly as a function of frequency, 

u=tt0(1+!^f)' 
and du = j?-duo. Since the fractional bandpass can be assumed to be small, V/VQ will be 
close to unity and can be ignored. Rewriting the expression for the intensity, 

/(0= r J_ r+A"/,.«M'+=s»)-'...(»s5rt)(h,<h 
J-oo AV ./„0_Ai//2 

J-oo &V Ji/o-^v/2 

"o-*"'2 A  „ (AS-4) vo+Av/2 v ' 
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Let us for the moment consider the inner integral—substitute v' = u — VQ, du' = du. 
Then 

±v y_Al//2 

A^2   ,«.,'.^£=£a . .      sin2jr^'uo^ft      * cos 2*u'uol-iz   *V,t 

dflT 

l-l, 

j^^^izji dj/, = sm^uxiQ-^ _ tcos^i/uo— 
e _ 

&v J_Al//2 2x1/^0^ 2*1/^0 ^ i-lo o /.._ /-!« 
-Ai//2 

sinyAi/UQ^1 (A8-5) 
XAVUQ1-^. 

Auuo(l — IQ) 
= sine  

VQ 

Equations A8-5 yield the result which earlier was stated without proof (Eq. 8-3). 
By the convolution theorem, Equation A8-4 can be rewritten as 

1(1) = J" e*««o«-*o)duo, J00 8inc f*™oV-to)\ c2«uoiduo> (Ag^g) 

where * denotes convolution. The first integral corresponds to our initial model; i.e., S(lo). 
Bracewell (1978) solves the second integral, which gives what we will call the smearing 
function S(l). Recognizing the Fourier transform of the sine function as a unit step function, 
and applying the similarity theorem (see Bracewell 1978), we get 

where 

* '     \o,       otherwise. 

hUC WlUliU Ul litllB luuuiauu is eg 

as was asserted in the text for the two-dimensional case. 
Again applying the approximation ^f < 1, we find that the width of this function is /o^f, 
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TIM CORNWELL 

1. PROBLEMS WITH ORDINARY CALIBRATION 

Calibrating a synthesis array is one of the most difficult aspects of its operation and, in 
many cases, is the most important factor in determining the quality of the final deconvolved 
image. Small quasi-random errors in the amplitude and phase calibration of the visibility 
data scatter power and so produce an increased level of "rumble" in the weaker regions of 
the image, and other systematic errors can lead to a variety of artifacts in the image. 

Ordinary calibration (see Lecture 4) relies upon the monitoring of the variable quanti¬ 
ties in the array by frequent observations of a calibrator source of known structure, strength 
and position. The relationship between the visibility Vijt0ha observed at time t on the i-j 
baseline and the true visibility Vij>iTUt.(t) can be written very generally as: 

V^otaW = G»(*)Gj(t)Gii(t)Vii>true(t) + ai.it) + €^(1) . (9-1) 

The terms Gi(t) and Gj(t) represent the effects of the complex gains of the array elements 
t and j; the term Gij(t) represents the non-factorable part of the gain on the i-j baseline; 
aij(t) represents an offset term and e«y(t) is a pure noise term due to the thermal noise. The 
effects Gi3(t) and atj(t) which factor per baseline can usually be eliminated to a satisfactory 
degree by clever design (see Lecture 3), so I will mainly ignore their presence hereafter. 
Equation 9-1 can then be simplified to 

Vtf,ob.W = GMGlm,^) + ei3(t) . (9-2) 

For simplicity I have neglected the effects of time averaging and finite bandwidth, discussed 
in Lectures 2 and 8; these have relatively little impact here. The element gain (usually 
called the antenna gain in radio astronomy) really describes the properties of the elements 
relative to some reference (usually one array element for phase and a "mean" array element 
for amplitude). Although this use of the word "gam" may seem confusing, it is quite helpful 
in lumping all element-based properties together. The gain for any one array element has 
two contributing components: firstly, a slowly varying instrumental part and secondly, a 
more rapidly varying part due to the atmosphere (and ionosphere) above the element. 
Variations in the phase part of the atmospheric component nearly always dominate the 
overall variation of the element gains (see Lecture 4). 

Given a calibrator source near the region to be imaged, one can solve for the element 
gains as functions of time. Interpolation of the solutions then provides approximate values 
for use in correction of the source visibility data. If the equations are overdetermined, then 
a least-squares technique can be utilized to good effect in overcoming the random errors 
embodied in the e»y(t). In particular, for an array in which all baselines are correlated 
and whose elements are identical, when calibrating on a point source of flux density S the 
variance in the gain estimates due to the receiver noise is (Cornwell 1981): 
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where 0y denotes the variance of a visibility datum (assuming all visibilities have equal 
variance) and N is the number of array elements. 

The main drawback to ordinary calibration arises from temporal and spatial variations 
in the atmosphere (and ionosphere) through which the wavefront passes before reaching 
the array elements. Values for the Gi(t) inferred from observations of a calibrator may not 
apply to a source observed at a different time and in a different part of the sky. Hence, the 
effect of the Giffls cannot be removed completely and residual errors are left. The level 
of error varies tremendously with the frequency at which the observations are made and 
with the lengths of the baselines involved, but on a source of appreciable strength it nearly 
always overwhelms the error due to the receiver noise term. 

Other obstacles to ordinary calibration are the strength (or lack of it) of the calibrators, 
and any resolved structure they may contain. In some circumstances one may not be able to 
find a sufficiently strong unresolved calibration source anywhere near the source of interest. 

The net effect of this calibration problem depends upon the context. In VLBI, it 
prevents imaging altogether, whereas for shorter-baseline arrays (such as the VLA and 
Westerbork) it merely lowers the image quality attainable. Fortunately, progress can be 
made if the element gains are allowed to be degrees of freedom when determining the sky 
intensity distribution. Allowing the element gains to be free parameters is the basic principle 
of self-calibration. 

2.   REDUNDANT CALIBRATION AND SELF-CALIBRATION 

I now discuss the pros and cons of letting the element gains be free parameters. If all 
baselines are correlated then there are, at any one time, N complex gain errors corrupting 
the ^N(N—1) complex visibility measurements. Hence there must be at least ^N(N—1)—N 
"good" complex numbers hidden in the data that can be used to constrain the true sky 
intensity distribution1. Let us briefly consider what is lost by using only these "good" 
numbers. The most obvious losses are the absolute position and strength of the source. 
The former produces a phase term in the visibility which depends upon the difference in 
position of the element in an interferometer (see Lecture 1); hence it can be factored out 
as two element-related terms. The loss of absolute source strength information is obvious 
from Equation 9-2. One also loses the ability to distinguish between various different source 
structures but I will show that for large enough numbers of array elements this effect is not 
too important since the ratio of constraints to degrees of freedom increases. 

It is clear what one can expect to lose by letting the element gains be free variables 
but the degrees of freedom embodied in the element gains, G«(t), must still be balanced 
somehow. There are two different schemes: the explicit use of redundancy, and the use of a 
priori knowledge about the object. I will examine these in turn. 

2.1. Redundant calibration. 
Suppose that the geometry of the interferometer array is arranged so that some different 

pairs of array elements measure the same spacing, or u-v sample. As an example, consider a 
one dimensional linear array of N elements equally spaced, with separation d. All spacings 
except the longest are measured at least once. In fact there are only N — 1 different 
spacings measurable while there are ~N(N-1) pairs of elements. This redundancy enables 
the solution of both the N — 1 true visibility samples, up to a linear phase slope, and the 
N complex gains, again up to a linear phase slope (Hamaker et al. 1977). Since the system 

1 Actually, because absolute phase b meaningless for an interferometer, there are ^N{N — 1) — {N — 1) 
"good" phases and \N(N - 1) - N "good* amplitudes. 
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of equations is overdetermined, a least-squares method can be employed to good effect in 
suppressing the effects of receiver noise. 

Complete redundancy is not necessary for this approach to work; in fact, since only N 
complex gains need be solved for, there need only be N redundant spacings. The drawback 
is that the signal-to-noise ratio of the estimated true visibilities decreases, and nulls can 
prove disastrous. 

Redundant calibration is currently used at the Westerbork Synthesis Radio Telescope. 

2.2. Self-calibration. 
The basis of this approach is that in many cases, even after adding the degrees of 

freedom in the element gains, the estimation of an adequate model of the brightness is still 
overdetermined (see Lecture 7). Hence self-calibration is really just another method like 
'CLEAN' (Lecture 7, Section 2) which is used to interpret the visibility data by introducing 
some plausible assumptions about the source structure. 

Our aim is to produce a model / of the sky intensity distribution, the Fourier trans- **. 
form V of which, when corrected by some complex gain factors, reproduces the observed 
visibilities to within the noise level. The model / should be astronomically plausible: for 
example, possible constraints are positivity of brightness and confinement of the structure. 
(Other, more elaborate, constraints could involve the maximization of some measures of 
"goodness" of an image; see Lecture 7). One convenient method (Schwab 1980) of obtain¬ 
ing such an agreement is to minimize, by adjusting both the complex element gains G,-, Gj 
and the model intensity distribution /, the sum of squares of residuals 

s = E E ■wftO VvM*h) - ^ftOc'ftdfyftd I*. (9-4) 
k     *,i 

where the Wij(tk) are weights (purely from signal-to-noise considerations these should be 
set to the reciprocals of the variance of the e«j(tfc)). The time over which the gains should 
be held constant depends upon the signal-to-noise ratio and upon the variability of the 
atmosphere (see Section 5.3). 

An interesting and illuminating connection to ordinary calibration is apparent if Equa¬ 
tion 9—4 is re-expressed as: 

S = EE-wMfiMPPM**) - G,(t*)G;(tiO|J, (9-5) 
•w 

where: 

*>W=%#- (<M5) 

Division by the model visibilities Vij(t) turns the object being imaged into a pseudo-point 
source, though admittedly with rather strange receiver noise, which can then be used in the 
ordinary calibration outlined in Section 1. 

It is crucial to this gain-solution step that there be too few degrees of freedom (i.e., 
the element gains <*•(£)) to allow the model Ky(*) to be reproduced exactly. If there were, 
nothing would be achieved. The overdeterminacy also means that errors in the model are 
averaged down, to an extent dependent on the number of elements in the array. This 
suggests a possible line of attack in which the model is iteratively refined: 

(1)    Make an initial model of the source using whatever constraints we have on the 
source structure. 
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(2) Convert the source into a point source using the model. 
(3) Solve for the complex gains. 
(4) Find the corrected visibility 

Vi3,corr(t) = G^G^t) ' (9"7) 

(5) Form a new model from the corrected data, again using constraints upon the source 
structure. 

(6) Go to (2) unless you are satisfied with the current model. 

This approach divides the optimization problem into a part dealing only with the u-v data 
and a part dealing only with the model of the sky brightness. The former can be solved by 
a simple iterative approach (Schwab 1980) and in Lecture 7 we showed that both 'CLEAN' 
(Section 2) and the Maximum Entropy Method (MEM, Section 4) solve the latter problem. 

Another view of this iterative approach arises from the application of an optimization 
approach, such as MEM, to gain correction. The unknown gains are added as free variables 
in the optimization. In the specific case of MEM, the problem is then to choose the image 
Ik and the gains Gi(t) to maximize the image entropy 

subject to: 

and: 

5=EE "vCtW/.ob.e*) - <?<(tft)<3(t*)?«(**)i' 
*   'A (9-9) 

= expected value, 

7J Ik — estimated value of total flux density, (9-10) 

where Vij(t) is given by the inverse Fourier transform of the MEM image I*. 
The most general approach to solving this optimization problem would vary the image 

and the gains simultaneously, whereas the iterative approach consists of alternately fixing 
either the image or the gains, and varying the other as required. The latter is certainly 
easier to code and seems to work most of the time. 

2.3. Redundant calibration or self-calibration? 
The relative merits of redundant calibration and of self-calibration are still being de¬ 

bated. The real question is not "Should redundant calibration be used with an existing 
array?9 (of course, it should, if it is possible), but rather "Should new arrays be designed 
with redundant spacings?" The main advantage of redundant calibration is that the re¬ 
sults are almost model-independent (there is a variable phase shift to worry about), but it 
is less flexible than self-calibration, and uses the available signal-to-noise ratio rather less 
efficiently. A compromise would be to use redundant calibration to get the structure ba¬ 
sically correct, and then to use self-calibration to improve the signal-to-noise. In practice, 
self-calibration is more commonly used simply because many arrays are not instantaneously 
redundant. Therefore in the rest of this Lecture I will concentrate on self-calibration. First, 
however, I digress slightly to emphasize the links of both schemes with other methods of 
phase correction. 
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3.   OTHER APPROACHES TO PHASE CORRECTION 

The two schemes for phase correction described in Section 2 have two close relatives: 
the concept of closure, and adaptive optics. 

3.1. Closure quantities. 
In the early days of radio interferometry, Roger Jennison was faced with the problem 

of measuring phase information with interferometers which were inherently phase-unstable. 
He was struck by the fact that an appropriate sum of visibility phases around a closed loop 
of baselines is free of element-related errors (Jennison 1953, 1958). This can be confirmed 
by taking the phase part of Equation 9-2: 

<f>i3,obs(t) = &y,true(*) + •,•(*) - *,(*) + noise term, (9-11) 

where 0i(t) = arg(Gt(t)). Now suppose that a loop of three baselines is formed from 
elements i,j and k. Then the quantity Cijktob»(t)i known as the observed closure phase1, is 
given by: 

Cijktoba(t) = &y,obs(*) + <frjk,obs(t) + <£fct,obi(0 

= &y,true(t) + ^MrueW + ^w.trueM + (noise term) . (9~12) 

= Ci3k,true(t) + (noise term) 

Thus, for an array of three or more elements, and neglecting noise, closure phase is always 
a good observable. For an array of N elements there are \N(N — 1) — (N — 1) independent 
closure phases; these are just the "good" constraints mentioned in Section 2. 

A closure amplitude Tijki can be defined for any loop of 4 elements: 

r     ft-x _ AijiQAkifr) .       . 
Vi^-Aik(t)Ajl(t)^ t9"13* 

where the A's here denote the amplitudes of the complex gains. Apart from noise, the 
observed and true closure amplitudes should be identical. There are jN(N — 1) — N such 
closure amplitudes. 

These closure quantities were of little use until the advent of sufficiently fast computers. 
Neither closure quantity can be used directly to form an image. However, in the 1970s 
iterative schemes were developed by Readhead and Wilkinson (1978), Cotton (1979) and 
others to produce 'CLEAN' images consistent with the closure quantities—see Ekers (1984) 
for an account of the history of closure phase and self-calibration. 

Readhead and Wilkinson (RW) used the following approach to incorporate the closure 
phases: 

(1) Make an initial model of the source. 
(2) For all independent closure phases, use the model to provide estimates of the true 

phases on two baselines and derive the phase on the other baseline in the loop 
from the observed closure phase. 

(3) Form a new model, using 'CLEAN', from the observed visibility amplitudes and 
the predicted visibility phases. 

(4) Go to (2) unless you are satisfied with the current model. 

1This terminology is similar to that of closing, or closure, errors in traversed loops, used by surveyors. 
Eds. 
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Readhead et al. (1980) developed a similar algorithm to include the closure amplitudes as 
constraints. The aspect of choice in part (2) was eliminated in Cotton's (1979) algorithm 
by utilizing a least-squares technique. 

These various approaches have been widely used in VLBI to produce so-called hybrid 
images from the poorly calibrated data that are commonly collected. Only three serious 
drawbacks are present in the RW-Cotton type algorithms: 

(1) Proper treatment of noise is difficult because it occurs additively in the vector 
visibility not in the amplitude or phase (see Equation 9-2). Thus it obeys a simple 
normal distribution in the vector but a much more-complicated Rice distribution 
in the phase. 

(2) For any array with a large number of elements there are very many more possible 
than independent closure quantities. For a source showing significant structure 
the different closure quantities will have varying signal-to-noises and so in the RW 
approach it is not easy to choose an optimum set of closure quantities. 

(3) Calibration effects in radio imaging really do occur in relation to antennas, not 
baselines, so incorporation of other constraints on, for example, the variability of 
the atmospheric phase, is simplest in an element-based approach (Cornwell and 
Wilkinson 1981). 

All of these disadvantages are overcome in self-calibration which, since it alters only element 
gains, must conserve the closure quantities and thus is equivalent to the use of closure 
quantities (Cornwell and Wilkinson 1981). 

3.2. Adaptive optics. 
Optical "antennas" are typically limited to about one-arc-second resolution by rapidly 

varying path length fluctuations due in turn to variations in the refractive index of air (see 
Woolf 1982 for a good description). One recently developed technique for overcoming this 
distortion is known as adaptive optics; a well-chosen name since the optics of the element 
are distorted in order to cancel the effects of the path length variations. A "rubber mirror", 
which can be distorted at rates up to 1 KHz, is inserted into the light path, and its shape 
is controlled by a feedback loop designed to optimize the quality of the final image (see e.g. 
Muller and Buffington 1974). One of the measures of quality is the sharpness, defined to be 
the sum of the squares of the pixel values. In an interesting paper, Hamaker et al. (1977) 
show that in redundant spacing interferometry the sharpness is maximized by requiring 
that all redundant spacings yield the same visibility phase, exactly the same requirement 
as used in Section 2.1. 

The connection between adaptive optics and the scheme outlined in Section 2.2 should 
be obvious. In both, the phase of the array element is seen as a free variable which can 
be changed to obtain a plausible image. Fortunately, at radio wavelengths the "fringes" 
(complex visibilities) can be recorded for each interferometer and the correction can be 
made subsequently, rather than in real time. Furthermore, since "fringes", rather than the 
image, can be recorded we can keep track of which pair of elements produced each datum. 
Dyson (1975) has investigated the latter point in relation to adaptive optics; he has shown 
that interferometer-based correction requires only one photon per atmospheric coherence 
time per aperture patch to be corrected, while the image-based correction scheme requires 
the same rate per pair of patches. In the latter the extra photons are lost to decorrelation. 

4.   WHY DOES SELF-CALIBRATION WORK? 

No proof of convergence has ever been given for self-calibration, so the exact circum¬ 
stances under which it works are unknown. Such a proof would be very difficult because 
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of the required use of non-linear methods of deconvolution such as 'CLEAN' to enforce 
constraints on the source structure. We do however understand qualitatively why it works. 
There are two, related, reasons: 

(1) Self-calibration is most successful for arrays with large numbers of elements. The 
ratio of visibility constraints to unknown gains, ^ ~ ' for phases and 2(N-I) *or 

amplitudes, rises without bound as N increases. Consequently, by allowing the 
calibration to be a variable only a small amount of information is lost. 

(2) Sources are relatively simple and can be well represented by a small number of de¬ 
grees of freedom (in the case of 'CLEAN', the parameters specifying the 'CLEAN' 
components). Hence the source is, in many cases, effectively oversampled and we 
can afford to introduce a small number of extra degrees of freedom (the antenna 
gains). The other side of this is that the u-v coverage is usually quite good for the 
simple sources we are interested in. 

The basic requirement is that the total number of degrees of freedom (the number of free 
gains plus the number of free parameters in the model of the sky brightness distribution), 
should not be greater than the number of independent visibility measurements (see Lecture 
7 for further details). 

Self-calibration fails either when the signal-to-noise ratio is sufficiently poor or when 
the source is too complex (relative to the model). Quantitative estimates of the signal- 
to-noise requirements can be made, whereas the effect of source complexity is much more 
difficult to estimate and further work is needed. 

5.   PRACTICAL PROBLEMS IN SELF-CALIBRATION 

I will now consider the details of controlling the self-calibration process. Of all the steps 
involved in image construction, self-calibration is probably the easiest to perform incorrectly 
and so a certain amount of care must be employed when choosing the various parameters. 
Many of these steps are also described in more detail in Lecture 11. 

5.1. Specifying the model. 
In the early days of hybrid imaging great care was taken when producing, usually 

by model-fitting to the amplitudes, an initial model of the sky brightness; the subsequent 
convergence depended strongly upon the quality of this model. However, experience with 
self-calibration algorithms used on data from arrays with relatively modest numbers of 
elements, such as MERLIN, indicates that for a reasonably simple source, use of an initial 
point source model may delay but will not prevent convergence—see Cornwell and Wilkinson 
(1981), for example. 

Partially phase-stable arrays such as the VLA usually produce visibility data which, 
on initial imaging and 'CLEAN'ing, give 'CLEAN' component models which can be used 
to start self-calibration (even though the associated 'CLEAN' images have only modest 
dynamic range—typically 10-20 dB). 

At any stage in self-calibration it is important to exclude any features of the model that 
are due to the very calibration errors we wish to eliminate. Otherwise, the calibration errors 
will just be passed through from one iteration to the next. A good rule of thumb when 
constructing a model from 'CLEAN' components is to exclude all components found after 
the first negative one1. The same rule usually works well in subsequent passes through the 
self-calibration process. Thus the role that 'CLEAN' or MEM plays in rejecting unsatisfac¬ 
tory models of the sky brightness is apparent; if one used a deconvolution method which 

1See Lecture 11 for discussion of possible exceptions to this rule. — Eds. 
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did not at least partially reject artifacts due to calibration errors, self-calibration could not 
increase the dynamic range. 

Since the model does not have to be very accurate, an image taken at another frequency 
will often be useful in speeding convergence. Also, for arrays with many elements, a model 
made at a higher resolution may be adequate. 

5.2. Type of solution and weighting schemes. 
One can sometimes help convergence by choosing whether to solve Equation 9-4 only 

for the phases or for both amplitudes and phases. Different weighting schemes can be used 
to emphasize different parts of the model. 

Initially, although the phase errors are usually dominant, the model may represent 
the true visibility phases very well but the amplitudes very poorly. One such example is 
the use of a point source model for a symmetrical source such as a Gaussian. Correction 
of the amplitudes using such a model could produce severe errors in subsequent models. 
Experience shows that in most cases the quality of the fit of a model to the amplitudes is 
inferior to the fit to the phases, and so it is often prudent to solve initially for the phase 
errors only. 

The form of the weights can be used to control the solution: in the preferred "natural" 
weighting scheme, the weights Wij(t) in Equation 9-4 are set to the reciprocal of the expected 
variance of the errors. The effect of weak visibility points is thus decreased; for visibility 
functions containing nulls this can be important. If the model has systematic errors then it 
may be advantageous to make the weights depend upon the u-v coordinates. For example, 
suppose that at high resolution the source is well represented but that an additional amount 
of extended emission is present. By setting Wij(t) to zero for y/u2 + v2 less than some limit 
dependent on the source structure we may obtain better estimates for the gain errors than 
those which would be obtained from all the data. 

5.3. Self-calibration averaging time. 
Either Vij,0b»(t) or Xij(t) can be averaged over a finite time interval to improve the 

signal-to-noise ratio. Note that averaging of Xij(t) will not, in general, produce the best 
signal-to-noise ratio but will correct phase winding that is due to position errors or offsets. 

The choice of the optimum averaging time, r8C, obviously depends upon the timescale 
for gain changes and upon the source strength. The error in the gain estimate due to the 
receiver noise on a nearly unresolved source is (for good signal-to-noise ratio), for amplitude 
and phase correction, 

'«('"> = swA)' (9"14) 

and, for phase correction, 

where S is the approximate flux density of the source, and trj-fr) is the variance of the 
receiver noise on each baseline as a function of integration time r (see Cornwell 1981 for 
the derivation). One interpretation is that the r.m.8. error in the calculation of the gain of 
an antenna is approximately the reciprocal of the signal-to-noise ratio for each antenna. 

An optimum time between gain solutions can be defined by requiring balance between 
the errors in the Gi(t) due to gain changes and the errors in the estimates of Gi(t) due 
to finite signal-to-noise ratio. The condition for self-calibration to be possible is that "the 
time scale for gain changes should be much greater than the time taken for the noise per 
antenna to equal the source flux density". 
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The errors in the estimated gains must feed back into the image and amplify the noise 
level. A noise analysis (Cornwell 1981) indicates that on a nearly unresolved source which is 
sufficiently strong that the errors in the gain estimate are much less than a radian, the noise 

level in the background is increased by a small factor yjfE^- The corresponding analysis 
cannot be performed for an extended source, but experience indicates that the noise level 
is seldom increased by more than a factor of 2 to 3. 

5.4. Schwab's Li and Li solutions. 
Schwab (1982) has noted that minimization of sums of squares of errors (Li) is overly 

sensitive to spuriously discrepant points or outliers. He suggests that instead the Li form 
should be minimized: 

s = X) J2 ^c*) K,ob.(*fc) - Gt(*jO<?i («*)£,('*) | • (9-16) 
k     •%* 

Tests on artificially generated data confirm the superiority of the Li minimization algo¬ 
rithm when outliers are present. However, if the noise is normally distributed then the 
L2 minimization should provide superior results. Averaging of the data also alleviates this 
problem since seriously discrepant points are downweighted in the averages {Vij/Vij)- 

5.5. Spectral line self-calibration. 
In many spectral line observations the signal-to-noise in a single channel is too poor to 

allow separate self-calibration of each channel. Instead it is preferable to self-calibrate on 
the continuum emission and then use the gains so derived to correct the individual channel 
data. Note that separate bandpass calibration is required (see Lectures 4 and 12). 

In cases where different lines appear at different locations, one could form a model 
having three dimensions, two of space and one of frequency, and then solve the corresponding 
least-squares problem: 

k i *.* 

5.6. Spurious symmetrization. 
Suppose that we use a point source model for a slightly resolved source; if the number 

of array elements is sufficiently small then the corrected phases will be significantly biased 
towards zero. As a consequence, after one iteration of self-calibration some features in the 
image will be seen reflected relative to the point-like component. However, in successive 
iterations are performed the spurious parts of the image will disappear. 

Other, more subtle, symmetrizations are also possible but will disappear if enough 
iterations are performed. One example has been found by R. Linfield: in simulations of the 
VLBA augmented by a high orbit satellite-based antenna, self-calibration failed to correct 
the gain of the orbiter. His explanation is that since one antenna is at one end of all 
the long spacings, it is difficult to distinguish between the astronomical structure phase, 
which is nearly equal on all spacings to the orbiter, and the antenna phase. Thus spurious 
symmetrization of the fine scale structure occurs. One cure is to calibrate the ground- 
based spacings internally before introducing the orbiter spacings, and then to allow only 
the orbiter phase to vary. 
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5.7. Non-convergence and non-uniqueness. 
Self-calibration nearly always converges to an answer but, especially for arrays (such as 

MERLIN) containing small numbers of elements, the final image is not unique. As should 
now be apparent, there are a large number of free parameters available to the astronomer: 
apart from those inherent in the 'CLEAN' algorithm (see Lecture 7) the following can be 
altered in self-calibration: 

(1) Number of 'CLEAN' components passed in each iteration. 
(2) u-v range allowed for data to be used in solution. 
(3) Averaging time. 
(4) Type of solution and weighting scheme. 

However, in most cases, poor choices for these and the 'CLEAN' parameters simply yield 
an image in which the effect of the corrections is not optimal. Only in cases of exceptionally 
poor u-v coverage (e.g. near declination 0°) and a relatively small number of array elements, 
< 10, have two, or more, significantly different self-calibrated images be found in practice. 

5.8. Baseline-related effects. 
If the gain errors are not purely element-based then self-calibration will, at some level, 

fail. The r.m.s. sidelobe level introduced by non-factorable errors is: 

""-ffi (9-18) 

where aa c is the r.m.s. baseline-related gain error, M is the number of such independent 
non-factorable errors. For the case of a reasonable synthesis with the VLA CTG.C = 0-01 
and thus the best VLA image, in the absence of baseline-related calibration, will not have 
a dynamic range greater than about 35 dB. 

Many different effects can lead to non-factorable gain errors. Clark (1981) has enumer¬ 
ated some of these and has described their correctability and relative magnitudes. I shall 
merely summarize some of these (see Clark's memo for more information): 

(1) Errors due to actual correlator problems. These are very unlikely in a digital 
correlator. They may be correctable if they are sufficiently constant with time. 

(2) Bandpass mismatches. These do not factor out on an antenna basis. They can, in 
principle, be corrected if the individual bandpasses are known. They are exacer¬ 
bated by poorly adjusted delays. 

(3) Random, varying pointing errors. Simple self-calibration cannot correct for these 
if the size of the emission is comparable to the main lobe of the primary beam 
A(/, m) of the array elements. 

(4) Non-isoplanaticity of the atmosphere, i.e., different parts of the field of view to 
be imaged are seen through different cells in the atmosphere. Schwab (1984) has 
described a solution to this problem. 

(5) Finite integration time and/or bandwidth. The latter can, in principle, be cor¬ 
rected but this may be difficult to do in practice. 

(6) Incorrectly set sampling levels in the quantizers preceding the correlator. 
(7) Faulty analog quadrature networks. 

All of these effects, save the first, are minimized by locating the source at the phase tracking 
center. The calibration and correction of baseline-based effects is discussed in Lecture 11. 

BIBLIOGRAPHY 

A good and extensive review article on self-calibration appears in the 1984 edition of 
the Annual Review of Astronomy and Astrophysics (Pearson and Readhead 1984). 
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10.  Error Recognition 

RONALD D. EKERS 

1.   INTRODUCTION 

In this Lecture I have two main aims: to use the discussion of image defects to give a 
better feel for how you can understand a synthesis telescope such as the VLA with the aid 
of a few basic concepts and analogies, and to provide some practical information for use 
when observing with synthesis radio telescopes. 

Most of the image defects are caused by errors which occur in the measurement plane 
(i.e., the u-v plane). In synthesis imaging, the image in the l-m plane is the Fourier transform 
of the visibility data in the u-v plane. But it is the effects of the errors in the image plane 
that finally matter, so we must make heavy use of the relationships between the two Fourier 
domains. The collection of Fourier transform pairs in Bracewell (1978) provide an excellent 
source of inspiration when considering the relations between the two domains. Since the sky 
brightness takes only real values, the data in the u-v plane must be Hermitian, so instead 
of measuring visibilities over the whole u-v plane we fill in half of it with the complex 
conjugates of the values measured (with the baseline orientation reversed) in the other half 
of the plane. Because of this, we need handle only Fourier transform relationships between 
Hermitian functions and real functions. 

2.   DIAGNOSING ERRORS 

2.1. Image plane or u-v plane? 
We have two contradictory requirements: Since the errors usually occur in the u-v 

plane they are often more readily recognizable and easier to diagnose in the u-v plane, but 
it is their effects in the image plane that finally matter—so, unless the effects are important 
in the image, there is no point in diagnosing them! The Fourier transform of a serious error 
may not be so serious. For example, we can totally destroy a small part of a hologram, with 
little effect on the image generated from it. Of course this is just the reason why we can 
succeed in making a reasonable quality radio image even when we haven't measured over 
all of the u-v plane. The holes in the u-v sampling with completely incorrect values (zeros 
for the principal solution) don't completely destroy the image. 

One of the most important of the Fourier transform properties is that a sharp peak in 
one domain transforms to a broad feature in the other (Fig. 10-la or 10-ld). Consider the 
effect of a single bad value in the u-v plane. We put the complex conjugate of this value in 
the opposite half of the u-v plane and make the image. The situation then corresponds to 
Figure 10-lb, and the transform of the pair of error delta functions produces a sinusoidal 
ripple through the image. The effect of this error is then spread over the entire image, so 
the relative amplitude of the erroneous sine wave in the image will be very much smaller 
than the relative amplitude of the erroneous point in the u-v plane. For example, consider 
an observation of a point source of flux density S. At the position of the peak of the 
source in the image, the Fourier transform will correspond to the sum of all the observed 
visibility samples. The number of samples in a full observation with the VLA is N = 
351 (interferometers) x 2880 samples (8 hours with 10 second sampling) a IQ6. Any point 
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Figure 10—1. Fourier transform pairs. The broken lines indicate the imaginary domain. For many more 
examples see Bracewell (1978). 

in the image is a linear combination of these N samples, giving an amplitude S; hence 
each sample has weight l/N (assuming natural weighting). A single erroneous visibility 
with amplitude e will cause an error sinusoid with peak amplitude e/N. If we want an 
image with peak error < 0.1% then e/N < 10~ZS, so for N = 106 we need only remove 
errors with amplitude € > 103<S! This illustrates that, whereas an error of this kind would 
be easily detected in the u-v plane, there is very little point in doing so unless the error 
is thousands of times larger than the correct value. If the observation is much shorter, a 
single erroneous point will have more effect. For the above example in the case of a 30 sec 
"snapshot" observation iV = 103, so a single bad value of the amplitude S will be important 
at the 0.1% level. 

Compare this to the situation with an error which is very spread out in the u-v plane. 
For example, consider an error caused by one correlator having a constant offset for the 
entire observation. Near the center of the final image all the affected u-v points will add 
with the same phase; this is 2880 (samples) times worse than the case we first considered of 
a single bad point. Summarizing, the errors which are easy to detect in the u-v plane must 
have very large amplitude to be important, but some of the subtle effects in the u-v plane 
can cause bad errors in the image plane—so that is often the best place to look for them. 

2.2. Short and long time-scale errors. 
Short time-scale errors in the u-v plane produce large angular scale features in the 

image, whereas long time-scale errors in the u-v plane will give small angular scale effects 
in the image plane. In the normal two-dimensional situation the error often has a large 
scale in one direction and a short scale in the other direction. For example, if a single 
interferometer has an error which is fairly constant in time, this will be a slowly varying 
error along the direction of the u-v track, but a very sharp error in the direction normal to 
the u-v track. The corresponding error in the image plane will have a small angular scale 
in one direction and large angular scale in the perpendicular direction. Typically this will 
result in a corrugation in the image plane. The rate at which the error corrugation falls 
off with distance depends on the duration of the error. If only a single point is wrong the 
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Figure 10-2. (Top) The inner portion of an image of Cassiopeia A, centered on the phase tracking center. A 
baseline-based error which persisted throughout the observations caused the concentric rings in this image. 
(Bottom) The (inverse) Fourier transform of the above image. The two curved linear features near the left 
and right edges of the display correspond to the locus of the error-corrupted interferometer baseline. 
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corrugation will have constant amplitude over the entire image, but if a whole scan is wrong 
the corrugation will die away on a scale which is inversely proportional to the scan length. 

Another important clue results from the geometry of the earth rotation synthesis. If 
an error has a long duration and the source declination is not near 0° the error will cause 
a ring of anomalous values (or a segment of such a ring) in the u-v plane; this transforms 
into a feature in the image whose radial profile resembles a Bessel function, producing an 
obvious concentric ring structure (e.g. Fig. 10-2). However if the error has occurred for 
a very short duration, the anomaly will not be a ringlike feature in the u-v plane, and its 
transform will contain only linear features (e.g. Fig. 10-3a or b). 

2.3. General forms of errors. 
The errors e(u, v) can be divided into different types, depending on whether they cor¬ 

respond to modifications of the visibility data V(u,v) that are additive, multiplicative, 
convolutions with other functions, or more complex corruptions. 

Additive errors are those whose Fourier transform Fc is added to the image and is 
independent of the position and amplitude of any other structure in the image, i.e., for 
which 

V + c^Z+Fc; (10-1) 

where the ^ symbol here denotes a Fourier transform pair relationship between quantities 
in the measurement (u-v) plane (left hand side) and in the image (l-m) plane (right hand 
side). Examples of additive errors are interference, cross-talk, correlator offsets, and receiver 
noise. 

Multiplicative errors are those for which 

V€^/*Fc; (10-2) 

i.e., the Fourier transform of the error is convolved with the source distribution in the image. 
Examples are atmospheric and ionospheric phase errors, calibration errors in amplitude or 
phase, and multiplicative baseline-based errors (closure errors). 

For errors corresponding to a convolution of the observed visibility function we have 

V*€^/Fc, (10-3) 

so in this case the image is multiplied by the Fourier transform of the error function. 
Examples are the effect of the primary beam of the array elements and the convolution 
needed to resample for the fast Fourier transform (Lecture 5). 

Finally, there are errors which are like a convolution in the image plane but which 
increase in severity with distance from the phase center, delay center or pointing center for 
the observations. For example, bandwidth smearing (Lectures 2 and 8) is a multiplicative 
error in the u-v plane that depends on the source position, so in the image plane it becomes 
a spatially dependent smearing, rather than a simple position-independent convolution. 
Other examples are time-average smearing, baseline errors, pointing errors, and shadowing 
errors. 

2.4. Real and imaginary parts of errors. 
If the error term c(tt, v) is real-valued, then, since the Fourier transform of an even, real 

function must be symmetric (Fig. 10-4a), this will produce a symmetric error pattern Fc in 
the image. If the error term has an imaginary component, then the Fourier transform of this 
imaginary odd quantity will give an asymmetric component to the error (Fig. 10-4b) in the 
image. Hence, by looking at the symmetry, or asymmetry, of the error pattern in the image 
plane it is possible to tell whether the cause is a real or an imaginary error in the u-v plane. 
This difference is illustrated for a short VLA "snapshot" observation in Figures 10-3a and 
10-3b. 
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Figure 10-3. Images from a Snapshot" observation of a point source (a) with a 10% amplitude error on 
one antenna and (b) with a 1096 phase error on one antenna. 
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Figure 10-4. Fourier transforms of symmetric and asymmetric functions. The broken line indicates the 
imaginary domain. 

3.   EXAMPLES 

3.1. Additive errors. 
These are errors of the form (10-1). They result in an error pattern which is added to 

the image and is unrelated to the amplitude or position of any features in the image. 

8.1.1. The Sun. Sources of radiation which are far away from the position being observed are 
suppressed by the primary beam of the array elements, by the sidelobes of the synthesized 
beam, and by the bandwidth smearing described in Lectures 2 and 8. However, the solar 
emission can be 1011 times the level being studied in the image, so it may not be adequately 
suppressed, even if the Sun is tens of degrees away. Since the Sun has a relatively large 
angular size, and since the bandwidth smearing selectively suppresses responses from the 
longer spacings, the errors in the image which are caused by the Sun will be very broad. 
The effects of solar interference will therefore be very much worse on narrow bandwidth 
observations, or on observations using compact arrays. One way to check whether the error 
has been caused by the Sun is to look at an affected baseline in the u-v plane. Since the Sun 
is likely to be a long way from the position of the observation it will cause rapid variations 
which can by seen by plotting the visibility as a function of time. The approximate angular 
distance to the source of the interfering signal can be calculated from the period of oscillation 
in the visibility function. This is also an example of an error which will look very severe in 
the u-v plane but, because the variations are very rapid, their effect on the image may not 
be important. 

8.1.2. Interference. Interfering signals have two properties which are important in deter¬ 
mining the nature of their effects on an image. They may fluctuate in intensity (or have a 
very short duration), in which case they will transform to features which cover a large an¬ 
gular scale in the image. If the interference is occurring on large baselines, the features will 
have a small fringe spacing even though they are spread over a large scale. Secondly, they 
will be coming from the wrong direction and will not be moving at the sidereal rate. This 
means that they will only produce a strong response on baselines for which the expected 
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Figure 10-5. Top left quadrant of an image of a point source (bottom right comer) with continuous 
narrow band interference. 

fringe rate is near zero. The example in Figure 10-5, taken from Thompson (1982), shows 
the result of a constant source of interference on an 8 hour observation. The interference 
has caused horizontal stripes through the image because the only baselines for which the 
expected fringe rate is zero are those which project to a North-South orientation. 

Another way to look at this is to note that a source of interference at a fixed position 
is like a source at the North pole. Hence the pattern of horizontal stripes is just a small 
section of a set of rings concentric with the North pole. 

8.1.8. Cross-talk. This is the same kind of effect as external interference, except that the 
interfering signal is generated in one antenna and transmitted to another. Since it usually 
occurs between close antennas, it is a more serious problem in compact arrays (such as 
the D configuration of the VLA), and it results in an error in the image with a very large 
angular scale. 

8.1.4. Baseline-dependent errors. Baseline-dependent errors (such as offsets in the correla¬ 
tor) affect individual interferometer baselines. They may take the form of a single bad data 
point, as was discussed in Section 2.1, or of small constant offsets for the entire observation. 
A constant offset in the data for one baseline is identical to the response produced by a point 
source at the phase reference position used by the on-line computer (Lecture 2). Hence, if 
all the baselines had the same constant offset, the result would be indistinguishable from a 
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point source at the phase reference position. In practice, the offsets will vary from baseline 
to baseline, so that the result will be an error with absolute maximum amplitude near the 
reference position and with a sidelobe pattern determined by the distribution of offsets. Fur¬ 
thermore, the time-varying calibration of the atmospheric phase errors will redistribute the 
phase of the error, reducing the effect on the image. For this reason, baseline-based offsets 
are less important in higher resolution observations. Since there are separate correlators for 
each polarization, the error is likely to be highly polarized. 

Although such errors are kept to a very low value in the VLA, they are not completely 
unknown there. Measurements of very weak sources or point source detection experiments 
will be more reliable if the phase reference position is displaced a few beamwidths from the 
position of the object of interest. 

8.1.5. Noise. This form of error has been extensively discussed in Lecture 6. One additional 
point may be of interest. Since the receiver noise only occurs at places in the u-v plane 
where the visibility has been measured, it will appear to have the same sidelobe structure 
in the image plane would as a real source1. Consequently, the presence of sidelobes does 
not provide a method of distinguishing between a real source and a noise fluctuation in the 
image. In images made from data with well-filled arrays, the peak sidelobe level will be 
low enough that this effect will be noticed only for noise fluctuations that are well above 
the r.m.s. noise (e.g., > 5 X r.m.s. for VLA data). Note however that such fluctuations are 
not unlikely in large (> 1000 pixel) images! The effect is most noticeable in images from 
telescopes, such as Westerbork or Fleurs, that produce strong grating responses. 

3.2. Multiplicative errors. 
These are errors of the form (10-2). Since they result in a convolution in the image 

plane they appear to be "attached" to the sources in the image. 

8.2.1. u-v coverage effects. A serious "error" in our data is caused by all the missing 
information in the u-v plane. Where the data are missing, the source visibility V(u,v) has 
effectively been multiplied by zero. This is not usually called an error and, as discussed in 
Lecture 7, we normally attempt to correct its effects by using some form of deconvolution 
algorithm e.g., 'CLEAN'. How well we do depends on the size of the unsampled regions 
and their location relative to significant structure in the visibility function, especially near 
u = v = 0. The problem is that when you look at your raw image it is difficult to distinguish 
the effects caused by the missing information from effects caused by errors in the measured 
data. Our main clue about the nature of effects caused by the missing information is in 
the point spread function (dirty beam). The sidelobes of this dirty beam are the (negative) 
Fourier transform of the missing information. If an image has features around the sources 
which look just like the sidelobe pattern of the dirty beam then this is most likely to be 
an effect of the missing u-v spacings. If we see effects which have a very different shape 
then they may be caused by errors in the data. But beware of the following complication: 
When making this assessment we use the dirty beam to give us a way to gauge the effect 
of the missing information on a point source. The sidelobe pattern for an extended source 
is not the same. A very extended source is affected only by the information that is missing 
at short u-v spacings. Although this information is included in the point source response 
function, it may be present with such low amplitude that it is completely masked by higher 
amplitude sidelobes coming from the missing information at large spacings. Thus, even if 
your image shows large amplitude broad sidelobes which do not seem to be present in the 
dirty beam, these sidelobes may still be caused by poor u-v coverage. To find out whether 

1This effect will be most noticeable on "dirty" images. Deconvolution will redistribute the errors, inciden¬ 
tally making false sources produced by noise "spikes* seem more convincing) — Eds. 
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Figure 10-0. Asymmetric pattern which could be caused by atmospheric phase errors. 

they are caused by u-v coverage you could either make an image and its beam with a taper 
chosen to emphasize the scale of the broad structure, or see whether the putative sidelobes 
are removed by a deconvolution algorithm. 

8.2.2. Gain calibration errors. The problems of calibrating the amplitude and phase (com¬ 
plex gain) of each antenna were discussed in Lectures 4 and 9. Any errors introduced as a 
result of this calibration multiply the visibility function, so their effect on the image is to 
convolve each source with the Fourier transform of the calibration error. Amplitude cali¬ 
bration errors, i.e. e(u,v) real, give rise to symmetric error patterns associated with each 
source in the image. Phase calibration errors, i.e. e(u, v) imaginary, give rise to asymmetric 
patterns, as discussed in Section 2.4 above. Figure 10-3a shows the effect of an amplitude 
calibration error, and Figure 10-3b the effect of a phase calibration error. 

For the VLA, the amplitude and phase calibration is antenna-based, so any error will 
affect all interferometers involving that antenna. In a long observation the Fourier transform 
of an error confined to this set of interferometer tracks will have a ring-like structure (as in 
Fig. 10-2). This ring-like structure degenerates to a linear structure near 0° declination. In 
a short VLA observation the distribution of all interferometers associated with one antenna 
is a "Y"—so an antenna-based calibration error produces an artifact in the image that looks 
like a six-pointed star associated with every source (as in Figs. 10-3a and 10-3b). 

8.2.8. Atmospheric (and ionospheric) errors. Differences in the refractive index of the 
atmosphere along the line of sight from the different antennas to the radio source cause 
phase differences which do not correspond to source structure.   The magnitude of the 
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atmospheric phase error increases linearly with increasing spacing up to a few km, and then 
the fluctuations become uncorrelated. In the linear regime (i.e., the D and C configurations) 
if we have a phase difference of A radians per wavelength of baseline, the visibility is modified 
to 

V(u)e-2*iu*, 

and then by the shift theorem for Fourier transforms we have 

V(u)e-2*iuA ^ 1(1 - A). 

Hence, the effect of an atmospheric phase error is to shift the position of the source. For 
longer baselines, a random phase error will be introduced; this will cause the image to 
be convolved with an asymmetric error function (see the example in Fig. 10-6). If the 
fluctuations occur on a short time scale compared with the length of the observation, then 
the resulting image will be smeared out and will have reduced amplitude. This is equivalent 
to "bad seeing" in optical astronomy, with one important difference—in the optical case the 
aperture is always filled, so all of the spatial Fourier components are measured at all instants 
in time, and the smeared-out image is the superposition of many perfect instantaneous 
images (speckles) which dance around in time. In the synthesis telescope, each instantaneous 
image has a different sidelobe pattern. Consequently, the feature in the final image is not 
only smeared and reduced in amplitude, but it also has a higher than average sidelobe 
pattern which can be spread over a large area. Since the atmospheric errors are antenna- 
based they can be removed by the self-calibration technique described in Lecture 9. 

If the atmospheric effects have a long time scale compared with the length of the 
observation, the result is a good image but one which may be displaced from the correct 
position. This can occur in compact arrays when the atmosphere above the telescope 
contains a wedge (perhaps a slowly moving weather front) which remains constant for the 
observation but is not completely removed by correcting for the phase gradient observed 
for the calibrator. In this case the resulting image will appear to have high quality, but 
the sources will be displaced from their correct positions. When this situation occurs, the 
combination of short "snapshot" observations made at different times may result in a worse 
image than that from any of the individual "snapshots". 

3.3. Errors increasing with distance from the phase reference center. 
In general these errors cannot be expressed as a simple operation in the image plane, 

but, if an error has a linear dependence on the radial distance from the image center, then 
it can be corrected to the form (10-2) by converting to exponential radial coordinates, as 
discussed in Lecture 8 of the 1982 Synthesis Mapping Workshop, Section 3 (Eqs. 8-11 and 
8-13). 

8.8.1. Bandwidth and time-average smearing. These effects have been discussed extensively 
in Lectures 2 and 8. Their characteristics are easy to recognize in an image, since the 
bandwidth produces a radial smearing, and the time constant causes an approximately 
tangential smearing. The bandwidth effect is like adding together images with different 
angular scaling corresponding to the range of frequencies in the band. At the North pole 
the averaging-time effect is exactly like a rotational smearing corresponding to the range of 
times in one sample. Away from the North pole, different baselines are smeared by different 
amounts, giving a more complicated result. Both these effects increase monotonically with 
the distance from the center of the image. 

8.8.2. Shadowing of the antennas. At low elevations and in compact arrays, it is possible 
for one antenna to be blocked by another. This blockage has three effects: the amplitudes 
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of all correlations with the affected antenna are decreased, the blocked antenna has an 
asymmetric primary beam, and, more importantly, the effective interferometer spacing is 
changed. The amplitude effect is the same as the amplitude calibration errors discussed in 
Section 3.2.2. The error caused by the incorrect effective spacing is like a multiplicative 
error which increases with distance from the field center (i.e., it is like a scale change). In the 
image plane, sources will be convolved with an asymmetric error function which increases 
in amplitude away from the field center. Since a source very near the field center will have 
almost no error, such a source can not be used to judge the quality of the image further 
away from the field center. This effect is most important when imaging large fields (small 
Au). 

8.8.8. Pointing errors. Differences in pointing between the elements of the array cause 
amplitude errors which can be different for each element and which can vary with time. 
Since the magnitude of the error depends on the position of the source in the primary 
beam, this type of error can not be represented by a convolution and will not be corrected 
by 'CLEAN' or by the self-calibration techniques unless the region of emission is confined 
to a small region in the primary beam. The effects of this type of error are strongest near 
the half-power point of the primary beam, and, since only the amplitude is affected, they 
will be purely symmetric. This type of error is discussed extensively in Lecture 8, Section 3. 

3.4. Computational errors. 
A number of additional errors can be introduced by the computational methods used 

to produce a final image. Since these have all been discussed in other Lectures, I will 
not repeat the discussion now, but only give a list for completeness. The effects of the 
approximations used in obtaining the Fourier transform relation and the effects of the 
aliasing and convolution required to use the fast Fourier transform (FFT) algorithm are 
discussed in Lecture 5. The effect of having noncoplanar interferometer baselines and finite 
computing precision are discussed in Lecture 8. Errors may also be introduced by the 
image restoration algorithms (e.g., 'CLEAN') and the self-calibration technique; these are 
discussed in Lectures 7 and 9. 

4. DIAGNOSTIC TOOLS 

4.1. Low resolution images. 
A heavily tapered image covering a large area (the full primary beam) is sufficiently 

useful that it should be made as the first reduction step. This low resolution image will 
give an immediate overview of all the radio emission in the primary beam, and can be used 
for a number of different purposes: 

(i)    Possible confusing sources which would either alias into a smaller field or have 
sidelobes in the smaller field (see Lecture 2) can be recognized, 

(ii)    Extended emission is more obvious. If unrecognized in a higher resolution image, 
it can be mistaken for an error (see Section 3.2.1). 

(iii)    Various checks and computations (e.g., deconvolution) can be performed quickly, 
because of the smaller size (in pixels) of the low resolution image, 

(iv)    You may even discover something new and unexpected by looking at the largest 
possible field of view, and having higher brightness sensitivity. 

4.2. Polarization. 
Some instrumental errors are highly polarized because they affect only one of the two 

independent receiver channels. Other errors (e.g., atmosphere, imaging algorithm approx¬ 
imations) and most of the effects of source structure cancel out for all the unpolarized 

159 



10.  Ronald D. Ekers: Error Recognition 

emission. The circular polarization images are especially useful as a diagnostic tool since 
very little circularly polarized emission is expected for most classes of radio source (see also 
Lecture 11). 

4.3. Fourier transforming the image. 
In some cases the instrumental errors can be isolated in the image plane. It may be 

possible either to spatially isolate a region with errors from other sources or to stop the 
deconvolution, before the errors are reached, and to make use of the residual image. In 
these cases, the Fourier transform of the errors may show their nature in an obvious way. 
This technique was used to diagnose the error in the Cas A data shown in Figure 10-2. 

4.4. Effective use of image displays. 
Finally—to introduce a point to be discussed in Lecture 15: the effective use of image 

displays, both in the image and the u-v planes, is one of the most useful diagnostic tools 
available. 
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RICHARD A.  PERLEY 

1.   INTRODUCTION 

In recent years, outstanding images of the radio sky have been produced from inter¬ 
ferometric data obtained with modern, high-precision synthesis arrays such as the VLA, 
Westerbork, and MERLIN. The production of the images is by no means automatic, for the 
data are invariably corrupted by a host of errors, due both to atmospheric and instrumental 
effects. Removal of these errors is now possible to a degree unimaginable a few years ago, 
thanks to sophisticated new algorithms which, when employed by a cognizant user, allow 
accurate imaging, often with the noise near the theoretical limit. The complexity of these 
algorithms, especially in regard to their interaction with the user, requires that users be fa¬ 
miliar with their use and effect. It is important to realize at the outset that these processes 
do NOT constitute a 'black art'. The stunning results recently achieved come from careful 
application of simple and basic principles to interferometric data. This Lecture is intended 
to discuss and elucidate these techniques and to display their potential. Real observations 
of a familiar source will be used to illustrate the results of various steps in the process of 
image improvement. 

This Lecture title includes 'Fidelity', rather than 'Dynamic Range', and it is important 
to understand the distinction. Common usage has the latter term meaning the ratio between 
the peak brightness on the image and the r.m.s. noise in a region believed to be void of 
emission (such regions, fortunately, are commonplace in astronomy). It is thus implied that 
dynamic range is a measure of the accuracy of the resultant image. This can be misleading. 
What is true is that the noise in an empty region represents an easily calculated lower 
limit to the error in the brightness of a non-void region. The true error distribution is 
non-uniform; indeed, the errors of calibration must result in effects which behave like the 
sidelobes in the beam. These are almost always greatest near the peak, so that, in an 
image, the errors will be greater in regions containing structure. Furthermore, errors in 
deconvolution must be included. These are due to inadequate sampling of the u-v plane, 
and will result in an imaging error which varies from pixel to pixel. The estimation of these 
spatially dependent errors appears to be impossible, or at least impractical. 

The term 'Image Fidelity' is meant to describe how close the resultant image is to the 
true brightness distribution. The problem with this generalization is that in the absence 
of knowledge of the true image, the errors cannot be calculated. Some studies have been 
made, using artificial sources, to assist the planning of array configurations. From these 
studies there arise no simple rules, other than the self-evident one that the more complete 
the u-v plane coverage, the better the image fidelity. Another approach, experimental in 
nature, is to observe an object on different days, with different u-v plane coverages, but 
sufficient to allow reliable deconvolution. Independent processing (by different individuals, 
if deemed important) will likely result in slightly different images. These can form a sort of 
'ensemble average' by which errors of the sort mentioned can be estimated. Only limited 
work has been done in this way. 

Lacking a firm method for estimating image fidelity, we must fall back upon experience 
and intuition. Experience with considerable quantities of VLA data has shown that self- 
calibration of data of simple, strong, isolated objects results in reduction of the 'noise' 
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in regions of no known structure, and an increase in the source brightness. That is, the 
'dynamic range', as defined above, increases. This increase is invariably accompanied by 
reduction, or disappearance, of features known (or suspected) to be false. These features are 
usually of a non-physical nature, such as parallel ridges of positive and negative amplitude 
which cover much of the image. These changes agree with our intuition concerning the 
appearance of the radio sky—and it is therefore believed that the improvement in dynamic 
range which usually accompanies self-calibration actually represents an increase in image 
fidelity. As the process of self-calibration continues, physically reasonable structures (such 
as background objects, and regions of low surface brightness) which were formerly masked 
by errors become clearly discernible. All of this is as it should be, according to our intuition. 
Thus, this ratio shall be employed in this Lecture as the parameter of choice in judging the 
fidelity of the images which result from processes discussed at length in this Lecture. The 
reader should keep in mind that the noise estimates determined in this manner will be a 
lower limit to the true, position-dependent errors in the image. 

It must be emphasized that the techniques described below are not for every database. 
It is necessary that every observer calculate the expected thermal noise, and compare this 
to what is attained. If the actual noise on the image is equal, or close, to the expected, and 
if there are no large artifacts (strictly speaking, there can't be, if the noise is as expected), 
then no further processing of the type to be described is required. Don't waste time in 
pursuit of impossible goals! 

The principles behind the techniques employed and discussed in the following have been 
discussed in detail in the previous Lectures. In particular, the Lectures on Calibration (#4), 
Self-Calibration (#9), Deconvolution (#7), and Error Recognition (#10) are of particular 
relevance. 

2.   DYNAMIC RANGE—POSSIBILITIES AND REALITIES 

2.1. Definitions and origins of important errors. 
Lectures 4 and 9 discussed calibration of interferometric data at length, so only a brief 

review will be given here. The relation between the true visibility, V^ and the observed 
visibility, Vij, can be written 

Va = GiGfajK + *<£ + etf • 

Here, Gi and Gj are the factorable antenna gains for antennas * and j, Gij is the non- 
factorable multiplicative baseline-dependent gain (G^ — 1 is commonly called the 'closure 
error'), and the remaining terms describe baseline-dependent offsets and thermal noise, 
respectively. All quantities can be considered to be functions of time. By proper design, 
the offset terms can be reduced to levels important only for extremely deep searches for weak 
sources—a situation in which high image fidelity will rarely be important. Conversely, the 
situations in which high fidelity is expected will rarely be affected by these additive offsets. 
Attention will thus be restricted to the gains G» and G^. 

It is useful to consider the origin of these errors. An antenna-based gain is a (com¬ 
plex) product of the antenna gain, normally a slowly varying quantity, and an atmospheric 
component, which varies on short time scales. The antenna gains in a well designed system 
vary slowly, so they can be calibrated a priori. At the VLA, the amplitudes of the gains 
are pre-calibrated (through periodic observations of sources with known flux density) at 
most bands to an accuracy of a few percent (although in units of tens of Janskys), but 
there is no attempt to pre-calibrate the antenna phases. The atmospheric 'gain' is almost 
entirely a phase effect, with absorption effects becoming important only at very low (less 
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than 20 MHz), and very high (greater than 20 GHz) frequencies. The time variability can 
be extreme, with changes of radians in minutes being possible on longer baselines. 

The baseline-based errors are mainly instrumental in origin. The important exception 
is the effect of background sources. If the summed flux density of background sources ap¬ 
proaches that of a calibrator source, closure errors will occur if a point source model is 
used. This effect will exceed the instrumental errors at wavelengths longer than about 20 
cm. This limitation is not fundamental since a correct representation of the calibrator—that 
is, including the background sources—will allow proper calibration. The instrumental con¬ 
tributions to baseline-dependent errors are many. Recent studies done for the VLA (Bagri, 
1986) have indicated two main contributions. The first is incorrect delay settings. For 50 
MHz bandwidth, 2 nsec delay errors will result in amplitude closure errors of approximately 
5%. The obvious solution is to set the delays more accurately—however, these settings drift 
in time, and more studies are required to determine the optimum combination of accuracy 
and repeatability. The second, and more fundamental, contribution comes from errors in 
the quadrature networks, the Hilbert transform devices described in Lecture 3 (Sec. 2). 
These wideband 90° phase shifting devices, used in the VLA continuum system, are analog 
devices with an inherent error of l%-2% in amplitude, and l0-20 in phase. In VLA spectral 
line mode the quadrature networks are not used, so this error is not present (see Fig. 3-5 of 
Lecture 3). Furthermore, in spectral line mode the effects of delay errors are unimportant, 
since these effects are inversely proportional to bandwidth and images are made for each 
channel. The best solution to dynamic range limitations is likely to include use of spectral 
line mode. 

In principle, calculation of both types of gain errors can be based on observations of 
bright, isolated point sources. Standard calibration, as described in Lecture 4, seeks to 
calculate only the antenna-based gains, which, in nearly all cases, contain the largest er¬ 
rors. However, the residual errors, due to non-isoplanatic1 effects and inadequate calibrator 
source models, will vary from a few degrees to many radians. The effect of these errors is 
to limit the dynamic range to values of tens to a few hundred. Since this is not adequate, 
self-calibration can often allow dynamic ranges of up to 20,000. Beyond this, correction 
of baseline-dependent errors is required. The techniques to do this are given in Section 3. 
Before this, it is instructive to consider the effects on an image of these errors. 

2.2. Effects of calibration errors on imaging. 
I here apply some simple arguments to allow a rough estimate of the best dynamic range 

achievable with various classes of errors. For simplicity, I consider only one dimension— 
expansion to two is trivial. I consider phase and amplitude errors separately, beginning 
with phase. 

Consider a single 'snapshot' observation of a unit amplitude source located at the 
phase tracking center, using N antennas. Assuming all correlations are made, there are 
N(N — l)/2 complex visibilities. Suppose all but one are perfect—i.e., they have unit 
amplitude and zero phase. Their visibilities are described by V(u) = 8(u — Uk), while the 
discrepant visibility (from a baseline of length UQ) is 

V(u) = $(u - uo)e-* 

where (f> is the phase error (in radians), and 6 is the Dirac delta function. The image is 
formed by evaluating the transform /(/) = fV(u)e%2wuldu, so for each 'good' baseline, the 

1 Non-isoplanatic effects are important when the phase in the direction of the calibrator is appreciably 
different from that in the direction of the source. The magnitude of an important difference depends on the 
dynamic range. 
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integral gives a contribution of 2 cos (2™*/). (The factor 2 arises because each visibility is 
counted twice, once at the position Uk, and again, with its complex conjugate, at u = — u*.) 
The 'bad' baseline contributes 2cos(2*uo/ - 4), which for small ^, becomes 2[cos(2jruo/) + 
<£sm(2jruo/)], so that the resulting image is 

JV(JV-l)/2 

/(/) = 2^sin(2jruo/) + 2     ^T     co&(2xukl) 
fc=i 

while the beam, or point spread function is 

N(N-l)/2 

B(l) = 2     J^     cos(2*ufc/). 

Defined in this way, and with a quasi-uniform distribution of spacings, the beam and image 
both have amplitude N(N — 1), and width ~ l/um radians, where um is the maximum 
spacing (in wavelengths). Deconvolution in this case is accomplished by subtraction of 
the beam from the image, giving a residual, R(l) — 2^sin(2jruo/), a periodic function of 
amplitude 2<£ and period I/UQ. Note that the phase error results in an odd residual, (as 
required by the arguments in Lecture 10), whose amplitude is proportional to the error (for 
small errors). If the Dynamic Range, D, is defined as D = (peak on image)/(r.m.s. on 
image residual), then 

N(N-\)       N2 

~      y/2+      ~ >/24> * 

with the approximation valid for large iV. 
Analysis of an amplitude error is similar. In this case, write the visibility of the 'bad' 

baseline as V(u) = (1 + e)6(u — UQ). Following through, the same results as before are 
recovered with the substitutions 

<f> —► €   and    sin —* cos . 

An important conclusion from this exercise is the following: 

A 10° phase error is as bad as a 20% amplitude error. 

Since 10° degree phase errors are commonplace, while 20% amplitude errors are rare, it is 
dear that phase correction is by far the most important component of self-calibration. 

Suppose now the error is antenna-based. Thus, instead of one bad baseline, there are 
N. Then, again assuming incoherence in the noise (which is approximately right), the 
dynamic range becomes 

[NN -1      [NN 

^VT—~V2T- 
If all baselines have random errors of this magnitude, the dynamic range is decreased from 
the single correlator case by a factor y/N(N — l)/2 , giving 

VN(N-l)      N 
4>       ~ +' 
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Extension of these results to many snapshots is straightforward, as the signal rises with the 
number of observations, M, and the noise, presuming incoherence, with s/M. Thus, for the 
last case, the dynamic range becomes 

n      y/My/N(N -1)      y/MN 

These equations, though simplistic, return reasonable results. They predict that for 
a single snapshot with 27 antennas, residual calibration errors of order 10° will limit the 
dynamic range to approximately 2500 if confined to a single baseline, 500 if due to an 
antenna, and 100 if equally distributed amongst all antennas. After self-calibration, the 
residual errors are of order 0.5°, so the limiting dynamic ranges are a factor of 20 higher. The 
observed limiting dynamic range of ~ 10,000 is then predicted if the number of 'independent' 
scans is approximately 20 to 30. These considerations can also be used to estimate the 
required phase accuracy needed to attain the theoretical best dynamic range. Anticipating 
a result derived in the next section, the maximum potential dynamic range attainable for 
the VLA is of order 107, —the required phase tolerance is better than 10~3 degrees. 

These simple considerations indicate that residual calibration errors of a few degrees 
are responsible for the limiting dynamic ranges attained in imaging. Before embarking on 
a detailed description of the techniques for removing these errors, it is useful to enumerate 
other sources of error which may ultimately limit the dynamic range of an image. 

2.3. Other forms of errors. 
The ultimate dynamic range will be that set by the thermal noise. This has been 

derived in Lecture 6, and can be written 

6!=   ,       C 

y/N(N - l)Al/T 

where C is a constant depending upon the antenna size and efficiency, the receiver system 
temperature, and the type of correlator. It is important that anyone contemplating en¬ 
hancement of an image know the 'base' noise level. If the noise level on the current image is 
close to the theoretical limit, there is little more to be done, and the time that would have 
been wasted can now be used for some other purpose. Note that the potential dynamic 
range for some objects is enormous. For example, consider the famous quasar, 3C 273. The 
core flux density is approximately 35 Jy, while the theoretical noise, for the VLA with 35 
hours of observing at 6 cm, is about 10 jiJy. Thus, the theoretical maximum dynamic range 
exceeds 3 million! Even more extreme examples can be imagined (or concocted). 

Before the thermal limit is reached, other factors may be important. We should consider 
the following, incomplete list: 

2.8.1. Van Vleck correction. This time-dependent baseline-based error, discussed in Lecture 
3, cannot be corrected by the techniques described here. It is important only for very strong 
objects such as Cygnus A (especially at lower frequencies), and for spectral line observations 
of masers. 

2.8.2. Calculation errors. These take many forms. Errors in baseline coordinates cause 
spatially dependent errors in the image. Gridding errors have a similar effect, although 
they are reduced if each u-v cell is well filled. Aliasing of sidelobes and of sources outside 
the image, due to use of the Fast Fourier Transform, is often important, especially in smaller 
databases which have vastly less data than the number of u-v cells to be filled. Use of 16- 
bit integers in imaging gives an interesting, and unnecessary, limitation of approximately 
65,000 in dynamic range. Round-off errors in internal calculations are expected to show up 
in the 1-10 million range in dynamic range. 
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2.8.8. Coverage errors. Inadequate u-v coverage constitutes an error just as real as any 
other, and one which is responsible for numerous incorrect interferometric images. Recall 
that the interferometer is a spatial filter, so that if one is observing a large object with any 
given array configuration, all information about large scale structure (approximately larger 
than 30 synthesized beams) is absent.1 What one recovers is a spatially filtered image, 
—and often a bad one at that, since the transfer function is rarely smooth. Typically, 
the shortest spacings 'stick into' the central hole in the u-v plane, producing large-scale 
undulations in the image. If the size of the hole is significantly larger than the reciprocal of 
the source angular size, the deconvolution algorithms cannot possibly reconstruct correctly.2 

The result is an incorrect image, with large-scale undulations to boot. In this situation, 
the only proper solution is to obtain short-spacing data, through observations with a more 
compact configuration, from another array with the required spacings, or from a single 
antenna. 

3. TECHNIQUES OF ERROR CORRECTION 

It is clear that the antenna- and correlator-based errors are the most important lim¬ 
itations to high dynamic range imaging. I will now discuss the techniques developed over 
the past few years which are employed in accurately removing these errors. I will illustrate 
my remarks with examples of the improvement of images of the well-known quasar 3C 273. 

3.1. Initial editing and calibration. 
Initial calibration is nearly always performed using observations of nearby unresolved 

sources. It is obviously advantageous to perform these steps of initial editing and cali¬ 
bration carefully in order to avoid subsequent problems in imaging. The question of how 
carefully one should edit is a difficult one to answer in detail. Due to the great robustness 
of self-calibration algorithms, it is unnecessary to delete any data whose errors are simple 
multiplicative ones (i.e., involving an antenna phase shift or gain error). If the source being 
imaged is weak, so that self-calibration is unlikely to succeed, such points should be deleted. 
Data involving loss of sensitivity should be deleted if the loss is appreciable. Such an error 
occurs if the antenna is significantly mispointed, as occasionally happens at the beginning 
of a scan. Effective procedures for identifying discrepant data include displaying the data in 
a baseline-time plot, or computing the mean and r.m.s. of each correlator for each scan. An¬ 
other useful technique is to plot the 'one-dimensional' visibility function—plotting visibility 
amplitude against u-v distance. 

Careful perusal of the data at this stage in processing nearly always pays off in quick 
and efficient imaging. However, it is inevitable that despite the best calibration efforts, 
important residual errors, especially phase errors caused by atmospheric turbulence, will 
remain. The only effective procedure to correct these is to employ self-calibration. 

Baseline-dependent errors large enough to degrade dynamic range should be flagged if 
they are time-variable. These errors can be roughly estimated by examining the residuals 
of the antenna-based gain solution (e.g., the 'ANTSOL' listings at the VLA). Keep in mind 
that background sources will cause apparent closure errors varying from in excess of 10% 
at 90 cm to less than 1% at 2 cm. These will not degrade dynamic range, since they will 

1This ratio is appropriate for the VLA. In general, the value is approximately the ratio of the longest to 
the shortest spacing present in the configuration. 
2Another way to consider this is to note that important coverage errors will occur when the hole in the 
coverage is the location of a significant change in visibility. Changes in holes located away from the center 
of the u-v plane may not be critical since information on the relevant spatial structure is found in other 
regions. This is not true of the central hole, so that the information in this hole is, in essence, unique. 
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be correctly handled in imaging. One should be on guard for large, sporadic errors, and 
delete the appropriate data. Non-variant, baseline-dependent errors can be handled by the 
techniques of Section 3.3. Before flagging in this manner, be sure to calculate, using the 
concepts presented Section 2.2, the magnitude of the error which will be important. If the 
expected dynamic range is low (say, < 100), the tolerance to a closure error is very high, 
and correlator flagging will usually be unnecessary, and often undesirable. 

3.2. Antenna-based error correction using self-calibration. 
If the noise on an initial image is significantly above that expected, and there is sufficient 

signal, self-calibration is feasible and useful. As stated in Lecture 9, fast convergence of self- 
calibration is a function of the correctness of the input model. This, in most cases, takes 
the form of a set of 'CLEAN' components derived from the initial image. However, this is 
not necessarily the best model. In many cases, the object is dominated by an unresolved 
core, such that the longer spacings resolve out any associated emission to high degree. In 
other cases, a model image taken from other data at the same frequency but at different 
resolution will suffice. Very occasionally, an image from a different frequency can be used. 
The point is that an external image, or model, if available, is often the best way to start 
things off. Examination of the visibility plot can be extremely helpful in setting an initial 
model. A good example is provided by 3C273, as illustrated in Figure 11-1. Due to the 
large quantity of data, only 10% of the data are actually plotted—however, this is sufficient 
to illustrate the main points. 

This plot clearly shows the signature of a core-dominated source with associated sec¬ 
ondary structure. This structure is essentially totally resolved out for spacings in excess of 
200 KA—the scatter of ~ 5% is due to closure errors. Furthermore, one can see that there 
are no wildly erroneous data (although 90% of the data are not plotted, the most important 
errors are those which repeat, and these will be displayed. Single erroneous values have lit¬ 
tle effect and can be removed later). The fact that this source is core-dominated allows an 
excellent initial model for self-calibration—a point source with 31.5 Jy flux density. This 
model is nearly perfect, provided that only longer spacings are utilized in the solution. In 
this case, since the flux density is known, the self-calibration can include both amplitude 
and phase in the first pass. Note that in this method of self-calibration, any positional 
information on the source position provided by the original phases is lost. 

However, this example is unusual. The more normal situation deals with an extended 
source, in which case one must make a image, and deconvolve it to provide the model. In 
this case, the usual, and rather conservative, prescription, is to include in the model only 
those 'CLEAN' components preceding the first negative component. Because this procedure 
will rarely recover the total flux contained in the short spacings, one simultaneously applies 
a restriction in the u-v spacings used, so that only those spacings whose visibility amplitude 
is less than the total provided by the model will be used. In addition, because poor phase 
stability can 'lose' flux, the first round of self-cal usually is a phase-only solution. For 
example, if, in my example, I had chosen to employ a 'CLEAN' model, and the first negative 
component was number 11, at which point 33 Jy had been removed, I would have used 10 
components as the model, with a u-v restriction of 120 KA to 650 KA. In this case, the safe 
approach is to calibrate the phases alone. After this, a new image would be created, and 
the subsequent deconvolution should produce more positive components than before. This 
initiates a second round of self-calibration, with both amplitude and phase solutions. When 
employing amplitude solutions, it is usual and advisable to 'float' the gains—prenormalize 
the gain solutions so the mean solution is of unit magnitude. This prevents the gain solution 
from being affected by the model having too little flux, thus systematically decreasing the 
total apparent flux density of the source. 
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Figure 11-1. The visibility plot of 30 273 at 6 cm in the A configuration. The 'trumpet horn' shape is 
indicative of a point-dominated source with larger-scale structure which is completely resolved out on longer 
spacings. A point source of flux density 31.5 Jy provides an excellent initial model for self-calibration. 

On occasion, the self-generated initial model is so poor that there is little hope for fast 
convergence. What then? This situation occurred for the B configuration data of 3C 273. 
The visibility plot for this array configuration is shown in Figure 11-2. A point-source 
model is obviously a poor choice here, as the secondary is not resolved out on any baseline. 
The usual procedure is to make a dirty image and deconvolve—however, in this case, the 
first negative 'CLEAN' component came before the first component from any point other 
than the core, so the usual prescription would return only a point-source model. This situa¬ 
tion was the result of some very poorly edited data—I was was a little lax in my standards, 
since I was sure that self-calibration would work! Under these circumstances, the A config¬ 
uration image was used to self-calibrate the B configuration data, with a u-v restriction to 
baselines longer than 50 KA.1 Because the core flux density had changed between epochs of 
observation, a phase-only solution was made.3 The resulting improvement was spectacular, 
and is shown in Figure 11-3. This gave a much improved model for the second round of 
self-calibration, allowing phase and amplitude gains to be simultaneously calculated.3 The 
result of this is also shown in Figure 11-3. It will be immediately apparent that the noise is 

1This restriction is not required, but is a useful precaution as the A configuration undersamples the u-v 
plane in this region. 
3 The visibility phases are less sensitive to a change of flux than are the visibility amplitudes. 
3 Adherence to the usual rules in amplitude self-calibration can introduce significant errors.   Specifically, 
if a strong point source lies between two cells in the image plane, and the model employs only positive 
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Figure 11—2. The visibility function of 3C 273 at 6 cm in the B configuration. Here the secondary noted 
in the previous figure is not resolved out, so self-calibration will benefit by a model more sophisticated than 
a point source. 

not uniform. This is generally true for all objects, but is especially so for this object since 
its declination is 2°. The distribution of noise must follow the beam sidelobes, since the 
origin of the noise is limited to sampled u-v cells. At most declinations, the distribution 
of filled cells is sufficiently uniform to allow the noise distribution in the image to appear 
uniform. However, at low declinations, all tracks are nearly E-W, so the resultant noise is 
primarily distributed N-S. At high declinations, all tracks are circular, and the resulting 
noise patterns are similarly circular. 

Experience shows that after two or three loops of self-calibration, improvement is rather 
slow. The limitations to dynamic range are now primarily due to baseline dependent errors. 
These take two forms. The first are those which are due to a few very bad points—for 
example, due to weak interference or correlator malfunctions. The second are what I would 
term 'true' closure errors, slowly varying, multiplicative in amplitude and additive in phase. 
The truly discrepant points can be quickly identified by subtracting the (inverse) Fourier 
transform of the model from the data, thus reducing the database to those residuals which 

components, it is easy to see that the self-calibration will force a double source model. With good signal 
and good data, this situation will be avoided if negative components are also included. However, these 
simultaneous requirements are rarely met, and the only solution allowed by current software is to greatly 
oversample the beam—using 5 or even 10 points per beam. However, this obviously requires much larger 
images, and a better solution might be to allow fractional-cell cleaning. This problem is unimportant for 
partially resolved objects, or when the point objects are weak. 

169 



Richard A. Perley 

3C273 IPOL        4835.10 3C273 IPOL        4835.10 3C273 IPOL        4835.10 

-10 r- 

-20 

-30 

10 0     -10     -20 
ARC   SEC 

10 0    -10    -20 
ARC   SEC 

10 0    -10    -20 
ARC   SEC 

Figure 11—3. Images of 3C 273, made from B configuration data, demonstrating three stages of self- 
calibration. All three images have been rotated to make the structure vertical. (Left) The image without 
any self-calibration. The greyscale extends from —1 to 1 Jy/ beam. The peak is 28.2 Jy/beam, the r.m.s. 
noise is 134 mJy/beam. (Center) The image after self-calibration using the A configuration image as an 
input model, correcting phases only. The greyscale extends from —25 to 25 mJy/beam. The peak is 32.9 
Jy/beam, and the r.m.8. noise is 5.5 mJy/beam to the North and South, 2.3 mJy/beam to Bast and West 
of the core. (Right) The image after a second self-calibration iteration, using the center image as a model, 
and solving for both amplitude and phase. The greyscale is the same as the center, and the r.m.s. noises 
are 4.5 and 2.3 mJy/beam in the directions indicated before. 

are in strong disagreement with the best image. The largest discrepant values can then be 
easily identified by plotting the residuals, and removed by flagging. The model can then 
be put back in (adding the inverse Fourier transform of the model to the data), and a new 
image made. Figure 11-4 shows an example of this procedure. 

Some bad values are clearly present. At this point, I recalled that the antenna-based 
gain solutions for the calibrator persistently complained about high and variable closure 
errors for all baselines attached to one antenna/IF. Closer inspection revealed that the data 
from baselines formed from this antenna/IF were erratically variable. The decision made 
at that time was to keep the data, in case further processing could allow correction. Since 
current software cannot handle time-variable baseline-dependent errors, the data from this 
antenna/IF were now flagged. The subsequent image, shown in Figure 11-5, improved 
dramatically. Considerable time and effort could have been saved had I done the required 
flagging initially. 

The techniques given above are the main tools for antenna-based self-calibration. Some 
minor refinements, dependent on user, exist. If you have gotten approximately 40 dB in 
dynamic range on your image, know your thermal level lies well below the current noise, 
and have noticed that repetition of the above steps is achieving little, then you are ready 
for baseline-based calibration. 

3.3. Baseline-based error correction. 
The principles of baseline-based calibration are identical to those of antenna-based 

calibration. By measurements of strong, isolated sources, estimates of the (complex) mul- 

170 



11.  High-Fidelity Imaging 

100 
KILO  UAULNGTH 

Figure 11-4. A plot of the visibility amplitudes after the inverse Fourier transform of the model has been 
subtracted. The points lying under 1 Jy represent normal residual closure errors, while the points scattered 
above this are all due to a malfunctioning correlator. 

tiplicative corrections can be made and applied to the data. Since these corrections are 
much smaller than the antenna calibration corrections (generally less than 1% and 1° for 
the VLA), they must be done after the best antenna calibration has been completed. The 
software within AIPS necessary to make these calculations has only recently become avail¬ 
able, so that the extensive testing required to properly and fully utilize the new technique 
have not yet been completed. However, the results so far are extremely encouraging, and I 
present below the current ideas for implementation of this technique. 

Let me re-emphasize that the majority of observations will not require correlator cal¬ 
ibration, ff the limiting dynamic range, set by thermal noise, is less than 1000 to 10,000 
(depending on the quantity of data), then this calibration will not be effective. Another 
way of approaching the question is to look at the noise 'footprint' on the best image without 
baseline-based calibration. If traces of the beam sidelobes are still present, then this form of 
calibration is likely to be effective. For example, the residual sidelobes in Figure 11-3(right) 
clearly show the N-S disturbance expected for a low-declination source. These are likely 
due to persistent correlator offsets. So, before embarking on this form of calibration, be 
sure the images show the effects expected of baseline-based errors. 

Recent tests performed with VLA data from observations of strong calibrators show 
that the correlator errors are present at levels of approximately 0.5% in amplitude, and 
0.5° in phase.   The distribution of errors is non-Gaussian, with a few baselines showing 
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Figure 11—5. Images of 3C 273 after further stages in processing. All are shown with greyscale wedges from 
—10 to 10 mJy/beam. (Left) After self-calibration, followed by removal of a strongly variable correlator. 
The r.m.8. noises are 2.5 and 0.9 mJy/beam in the N-S and E-W directions respectively. (Middle) After 
application of closure corrections calculated from the source itself. The noises are 1.23 and 0.5 mJy/beam. 
(Right) After clipping residual visibilities, thus removing the largest time-variable closure errors. The noises 
are 1.03 and 0.42 mJy/beam. 

3 to 5 percent/degree errors. Following the arguments of Section 2.2, it is reasonable to 
expect that these errors are responsible for the low apparent dynamic range. Furthermore, 
these errors are slowly time-variable. The software available at the present time allows only 
time-invariant solutions—however, the results are generally encouraging, so it appears that 
the time-variable part is less important than the mean level, on the time scales of interest. 

The procedure for calibration of these errors parallels that for the antenna-based cali¬ 
bration. Observers wishing to include closure correction must observe a very strong calibra¬ 
tor. Closure correction calculations are almost always noise-limited—simply because the 
desired correction is of order 0.1% of the amplitude, and must be done baseline-by-baseline. 
Simple application of the radiometer equation given in Section 2.3 shows that calibrator 
flux density is of the utmost importance. Use of phase calibrators (typically of 1 Jy flux 
density) is not as effective as two or three observations of 3C286 or 3C48. An important 
point is that ALL the structure of the calibrator, including all background sources, must 
be included in the closure calculation. Typically, the effect of background sources is similar 
to that of the closure errors. Structure not included in the process will show up on the 
resulting image. 

The procedure is thus as follows: 
(1) For the calibrator, apply the best antenna-based calibration, with at least two 

passes of self-calibration, and careful editing of the residuals. 
(2) Divide the u-v data by the transform of the best model (usually represented by 

a linear combination of a finite number of 'CLEAN' components). It is ABSO¬ 
LUTELY ESSENTIAL that all the flux density present in the visibilities be rep¬ 
resented by the model. 

(3) Average the quotients, baseline by baseline, over the database. Within AIPS, this 
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step is accomplished by 'BCALl*. 
(4)    Apply the corrections to the source database.    Within AIPS, this is done by 

'BCAL2\ 

Some results of applying this procedure to observations of 3C 273 are shown in Figures 
11-5 and 11-6. In almost all situations, one must use a strong, isolated, simple source 
for these corrections. However, for this case, 3C 273 itself satisfies these criteria, so I have 
used it to calculate its own closure errors (a procedure called by some 'incestuous self- 
calibration'). The reason for using a simple isolated source for closure corrections is to 
prevent 'pre-defining' the structure.1 This danger is reduced by restricting the solutions to 
be time-averaged. However, inadequacies in the model show up as excess flux in the short 
spacings, which also have the slowest fringe rates. Time-averaging the residuals will only be 
effective if the averaging interval is many times the fringe period. In D configuration this 
resulting time span will often be impossibly long. Thus, use of the source itself for closure 
corrections is dangerous, and should always be avoided. The only exception is when the 
model clearly includes all the flux density. The result of dividing the data by the inverse 
Fourier transform of the model, as shown in Figure 11-5(left), is shown in Figure 11-6. 
Any unmodeled flux shows up as a drift of the mean ratio away from 1.0—so in this case 
it appears that all the flux is represented. Note that the closure levels are as expected, 
generally less than 1%. Application of the mean correlator-based offsets to the data results 
in the image shown in the center panel of Figure 11-5. Especially note the almost complete 
disappearance of the N-S disturbance—good evidence that the closure errors have been 
greatly reduced. The final step performed was a second subtraction of the inverse Fourier 
transform of the model from the data, followed by deletion of the largest remaining residuals. 
Restoration of the model results in the image shown in the right hand panel of Figure 11-5. 
The dynamic range here is 78,000. 

The dynamic range of the image shown in Figure 11-5 is good, but still at least an 
order of magnitude from theoretical. What next? The suspicion is that small, time-variable 
baseline-dependent errors are the next limiting factor. It is hoped that the necessary changes 
to software will soon be made to allow this suspicion to be tested. I have already noted that 
the baseline-dependent errors are very much smaller with the spectral line mode operating, 
and tests have shown that the dynamic range achievable in this mode is at least a factor of 
four higher than in continuum. Thus, it is likely that the best results will come from the 
use of this mode. Unfortunately, at present this means giving up polarization capabilities. 

3.4. Coverage errors. 
It may be thought that the solution to this problem is trivial, and indeed it often is, 

if getting and calibrating more data is to be considered such. However, there are some 
subtleties, which I will briefly comment on here. 

I first demonstrate how this 'error' can affect you. In Figure ll-7(a) is shown an image 
of 3C 273, taken in the A configuration after the very best self-calibration and closure 
corrections. Notice that the noise is not 'flat', but that there are large-scale undulations 
radiating away from the secondary. These are a result of inadequate short-spacing u-v 
coverage. Recall that any given VLA array configuration covers adequately a range of 
about 20 in resolution. That is, any structure larger than about 20 times the angular 
extent of the synthesized beam will be significantly attenuated, with accompanying errors. 

1To better grasp this problem, note that closure corrections are modifying every visibility. If a time-varying 
correction is calculated from a model of a source, and applied back to the data at each time the correction 
is calculated, then clearly the data will be modified to exactly reproduce the model. Thus, for example, a 
double source could be turned into an unresolved point source. 
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Figure 11—0. The visibility after division by a model provided by the image after self-calibration. The 
scatter about 1.0 is due to multiplicative closure errors 

For this example, the resolution is approximately 0.35 arcsec, so any structures larger than 
approximately 7 arcseconds are suspect. This is the scale of the secondary. The solution is 
simple: get some B configuration data. 

In principle, combining the data from two configurations is simple, requiring only that 
the basic calibration be correct, so that the two databases have the same amplitude scale. 
Different phase centers can be handled, provided that the shift is a small fraction of the 
primary beam size (so that objects near the image edge do not appear time-variable). 
However, there is one complication. Core-dominated sources, such as 3C273, are time- 
variable, so that the source structure actually changes in time (violating the first principle 
of aperture synthesis). Fortunately, the solution is simple, if the changes in flux density are 
known: One can merely subtract the difference from one database. In practice, the position 
of the variable component must be accurately known, so individual self-calibration of the 
databases is required. This requirement indicates that the subtraction should be done on 
the data from the higher resolution configuration. Subsequent concatenation of the two 
databases should not be done unless they are in the same phase frame. The easiest way to 
guarantee this is to perform 'cross-self-calibration', using the model from one configuration 
to self-calibrate the other. This actually works for adjacent configurations of VLA data! 
Another approach, often better, is to combine the databases, make an image, and use this 
for self-calibration of each database. 

When combining data taken from different arrays, a common question is whether one 
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Figure 11-7. Illustrating the effect of missing u-v coverage on 3C 273 at 6 cm. In both panels the grey 
scale runs from —10 to 10 mJy/beam. The left panel shows the image using A configuration data only, so 
that structures of scale > 7" are severely attenuated. Note the large scale undulations in the noise around 
the source. The right panel shows the image after adding the B configuration data. The background 
undulations are completely absent, and much missing source structure has appeared. 

should use the high-resolution data to self-calibrate the low-, or vice-versa. The answer 
depends upon circumstances. For core-dominated situations, it is clearly advantageous to 
start with the high-resolution data, since in this case a simple and accurate model for the 
data is readily available. However, for large, complicated objects such as Cygnus A, I have 
found the reverse procedure to be much more effective. The D configuration data in this 
case was of excellent quality, and it provided an excellent model for the C configuration 
data, and so on. Again, the best rule of thumb is to start with the best model available. 

Another, related question is one of bandwidth synthesis. This is the technique of ob¬ 
serving at slightly different frequencies (different by, say, 10%) to improve the u-v coverage. 
It can be highly effective for large objects when the u-v plane is inadequately sampled at 
one frequency alone. However, this technique will be dangerous for sources with large spec¬ 
tral index gradients. If the main source of the spectral index difference is in an inverted 
spectrum core, the problem can be quickly repaired by the same technique as for time- 
variability—subtraction, from one of the databases, of enough flux density to make the core 
appear to have the same spectral index as the extended emission. 
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1. INTRODUCTION 

In this Lecture, problems specific to multi-frequency aperture synthesis observations 
are discussed. Such observations may be required either in order to measure kinematic or 
physical conditions in line-emitting regions or, in continuum observing, when the monochro¬ 
matic approximation is inadequate (see, for example, Lecture 8). Spectral synthesis differs 
from single-band synthesis in more ways than the number of frequencies. These differences 
will be discussed here. 

2. BANDPASS CORRECTIONS 

Astronomical calibration of the complex antenna-based bandpass function is needed. 
Fortunately, the standing wave modulation of the bandpass—which is one of the largest and 
most uncertain errors in single dish observations—is not a problem, because the receiver 
noise is not correlated between elements. 

Usually the bandpass calibration is performed by observing a calibrator for sufficient 
time to reach the required signal-to-noise ratio. Bandpass normalization by the autocorre¬ 
lation spectrum for each antenna can be used to correct for the amplitude variations across 
the band, but this does not correct for the phase variations. If there is likely to be line 
emission or absorption toward the calibrator (e.g., in the case of galactic HI observations), 
then one can do the bandpass calibration by shifting the frequency enough to avoid the 
line—e.g., by shifting symmetrically by plus and minus a few MHz and averaging the two 
observations. 

In almost all aperture synthesis telescopes, the spectral line capability is provided by 
a digital cross-correlation spectrometer. Although this avoids many of the errors involved 
in an analog system, it does introduce an additional effect, the Gibbs phenomenon, which 
must be considered. The Gibbs phenomenon is the ringing around sharp changes in the 
frequency spectrum which occur because of the truncation of the temporal cross-correlation 
measurements. The consequences of the Gibbs phenomenon can be more serious in spec¬ 
tral line image synthesis than in an autocorrelation spectrometer. For the autocorrelation 
spectrometer the correlation function must be real and even (so that no negative lags need 
be measured), because the power spectrum is known to be real and even. However, the 
cross-correlation function lacks these symmetries, and yields a spectrum of complex source 
visibilities. As a result we will find the mirror image/complex conjugate of the "real" spec¬ 
trum at negative frequencies. This causes a phase discontinuity at i/ = 0 if the visibility 
phase is nonzero (see Lecture 3). Since the effect of the Gibbs phenomenon now depends 
on the visibility phase, the frequency ripple will change with position in the image and with 
a change in the instrumental phase. The only place where the effect will be correctly cali¬ 
brated by the bandpass calibration is at the position of the bandpass calibrator in the field 
(usually at the phase center). The effect can be attenuated by a suitable tapering of the 
cross-correlation measurements prior to the Fourier transform (e.g., by Hanning smoothing), 
but this significantly degrades the frequency resolution. 

177 



Jacqueline H. van Gorkom and Ronald D. Ekers 

To determine the optimum bandpass calibration method it is useful to consider three 
categories of observations: 

(1) Line source without a continuum background. If the line emission is confined to the 
flat part of the receiver bandpass, then the resulting spectrum has no discontinuity 
at the bandpass edges. This is the only situation where it might be advisable to 
use a different cross-correlation taper for the source than for the calibrator. A 
uniform taper can be used for the source spectra to obtain maximum frequency 
resolution, while Hanning smoothing should be used for the calibrator. In this 
case, the passband edges will be calibrated improperly. 

(2) Line source and one continuum point source. Here, the Gibbs effect can be cal¬ 
ibrated out completely, provided that the relative positions of the point source 
and the calibrator coincide (e.g., when both are at the field center). The same 
weighting must be used for source and calibrator. It can be either uniform or 
Hanning. 

(3) Line source and extended continuum emission. The Gibbs effect will be different 
for the source and calibrator and cannot be calibrated out. Hanning smoothing is 
highly recommended for both the calibrator and the source. 

Finally, here are a few other general comments on the Gibbs effect: The peak amplitude 
of the ringing does not decrease as the number of lags, or, equivalently, the number of 
frequency channels is increased. However, as the number of lags is increased, the effect 
does become more confined to the neighborhood of the discontinuity. In particular, as 
the number of channels is increased, the Gibbs effect that is due to the bandpass skirts 
becomes more highly concentrated at the band edges. Since the Gibbs phenomenon can 
be calculated for the observed structure, it could, in principle, be included in a three- 
dimensional deconvolution procedure. For an extensive discussion of the Gibbs effect, see 
Bos (1984,1985). 

3.   CHROMATIC ABERRATION 

As was discussed in Lectures 2 and 8, synthesis radio telescopes have an inherent chro¬ 
matic aberration which results from the formation of an image by adjusting the phase A<f> 
of the correlated signals for each point in the image plane (the Fourier transform relation), 
instead of the arrival time of the wavefront At = A$/2xv at each point, as would occur 
in the focal plane of an imaging optic. This aberration causes a radial smearing which 
increases linearly away from that point in the image for which the time delays have been 
equalized by the delay tracking system. It is commonly known as the delay beam smearing. 

In order to overcome this defect it is necessary to subdivide the band into channels 
which are sufficiently narrow to have negligible aberration, and to use the actual frequencies 
of each channel rather than the band center frequency. In most spectral line observations 
the channel bandwidth criterion is automatically satisfied by the spectral resolution require¬ 
ments, but for broadband continuum observations using spectral line mode the number of 
channels required will be determined by the smearing. 

Even if there is negligible delay beam smearing in the individual spectral line channels, 
the sidelobe structure due to the array geometry will still change with frequency, and this 
will have to be taken into account in the analysis of the spectral line data cube. The effects 
of frequency-dependent sidelobes could be removed by use of deconvolution procedures, but 
it is preferable to proceed as far as possible without introducing the additional deconvolution 
uncertainties, discussed in Section 7. Consider two extreme cases: 

(1) If the spectral line images are computed using the correct frequencies for each 
channel, then the structure in the image will all be in the correct place, but the 
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sidelobe pattern will be changing from channel to channel by a radial scaling factor 
proportional to frequency. This is preferable if the spectral line images contain a 
lot of weak, frequency-dependent structure spread out over a large field. 

(2) If the same frequency is (artificially) used for all channels, then the sidelobe pat¬ 
terns will all be the same, but the structure in the image will now be distorted 
by a radial scaling factor proportional to the actual frequency offset. (If all these 
channels were added, this would give the delay beam smearing.) If the dominant 
source is near the field center the sidelobes will be correctly removed in channel 
differences and the image distortion may be acceptable. 

4.   HIGH SPECTRAL DYNAMIC RANGE 

By spectral dynamic range we mean the channel to channel stability or, in other words, 
the ratio between the continuum and the residual that is left when two line-free channels are 
subtracted from each other. In some spectral line observations, very high spectral dynamic 
range is required. For example, in a recombination line observation the line to continuum 
ratio may only be a few percent. The spectral dynamic range must be better than 1000:1 
at every point in the image if the line is to be measured to 10% accuracy. Fortunately, the 
phase errors caused by the atmosphere—one of the main sources of error in a continuum 
observation—are independent of frequency and can be removed by subtracting a continuum 
image formed by averaging frequency channels outside the line emission. Errors that limit 
the spectral dynamic range are multiplicative errors (see Lecture 10) that differ from one 
frequency channel to the next because bandpass calibration is not perfect. The effect of 
baseline-dependent errors has not been investigated, but it is believed to cause problems 
at a level much lower than residual antenna-based errors (see Lecture 11). The Fourier 
transform of the error term is convolved with the strong continuum source distribution, 
and thus if the errors differ from one channel to the next, then that is exactly what remains 
when the continuum is subtracted. Examples are bandpass calibration errors in amplitude 
and phase. The patterns that arise from gain and phase errors are well known, but they 
may still be hard to recognize, since they are convolved with extended source structure. 
An additional problem is that if the errors vary systematically with frequency then it may 
be impossible to distinguish velocity structure in the line emission from chromatic errors. 
In Figure 12-1, examples are shown of the effects of very small phase errors on images of 
the weak recombination line emission from the compact HII region DR21. In one example 
a small frequency-dependent phase error causes an apparent (and erroneous) rotation of 
the HH region. The second example shows that a phase error of only half a degree on 
one baseline produces sidelobes in a line-minus-continuum image that are almost as strong 
as the line. The errors can most easily be found by differencing two (preferably line-free) 
channel images. A very powerful way of locating errors is by looking at the inverse Fourier 
transform of a difference image. 

5.   CONTINUUM SUBTRACTION 

Before subtracting the continuum image from the line channels, the possible effects of 
the chromatic aberration discussed in Section 3 must be considered. The easiest way to 
subtract a continuum is to form an image from the average of frequency channels on either 
side of the line emission and subtract that from all channels—before any deconvolution is 
done. Because of the frequency structure of the sidelobes, this method is satisfactory when 
the total bandwidth Av is small compared to the observing frequency, e.g. AIZ/J/Q <C 0.01, 
and the intensity of the continuum emission is not very high. If the frequency dependence 
of the sidelobe structure is important, then it may be necessary to subtract the inverse 
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Figure 13—1. An example of the effects of very small phase errors on difference images, (a) shows images 
without phase error; (b) shows a similar observation, but here a phase error occurred which increased with 
distance from the band center, and changed sign at the center. As a consequence, the line emission seems 
to move from right to left with increasing velocity, (c) shows twice a line image of the first observation. At 
left, one telescope has a phase error of 0.5 degree, at right the 2 baselines with that telescope have been 
removed. 
The contour intervals are: for the continuum, (a) 500, (b) 770 mJy/beam; for the line, (a) 15, (b) 25, (c) 
10 mJy/beam. 

180 



12.  Spectral Line Imaging 
1    1 ; (-     i   i 

42 38 

40 

42 

L  0 

;   o 1 ^ 
44 

■^ f :0 -■! 
46 

■H 
48 ." 
50 . • '•         i 

13 23 00       45 30        15     22  00 
RIGHT ASCENSION 

(A) 

13  23 00       45       30 15     22  00 
RIGHT ASCENSION 

(B) 
' r v 1   1 

42 38 
-'■ ' 

40 

42 

- 
0 o : 

44 . V . 

46 

48 

- 

^\) 0 
Q  : 

SO - 0 • " - 

45 30        15     22  00 
RIGHT ASCENSION 

(C) 

45 30       15       22  00 
RIGHT ASCENSION 

(D) 

Figure 12—2. An example of the effects of chromatic aberrations on a line-minus-continuum image, (a) 
shows the continuum source, Cen A. The contours range from 1 to 18 Jy/beam. (b) shows a line-minus- 
continuum image at 260 km/s. The dirty mean continuum image has been subtracted from the dirty channel 
image, (c) same as (b), but now the continuum has been subtracted by taking the 'CLEAN' components 
of the continuum and subtracting these in the u-v plane from the channel image, (d) as (c) after 'CLEAN', 
the HI is real! 
The contour intervals are: (b) 260, (c) and (d) 26 mJy/beam. The total flux of the continuum source is 
200 Jy, which is the reason that the residuals in (b) are so high that the line remains undetected. 

Fourier transform of a model of the continuum from the measurements in the visibility 
plane, using the exact frequencies and geometry to calculate the u-v coordinates of the 
visibility samples. This model might consist of the positions and amplitudes of discrete 
continuum sources. This is convenient in circumstances in which there are many confusing 
continuum sources in the field but the line emission is confined to a small region. One can 
then make one large image of the line-free channels, find the continuum sources, subtract 
these in the visibility plane from all channels—and then make a set of small images to 
study the line emission. Alternatively, a model could be derived using the deconvolution 
procedures discussed below. This is especially useful when the flux density of the continuum 
source is very large. An extreme example is shown in Figure 12-2, showing weak hydrogen 
emission from the strong (200 Jy) radio galaxy Centaurus A. In this example, the mean 
continuum image was 'CLEAN'ed, the 'CLEAN' components were subtracted in the u-v 
plane from all frequency channels to correctly remove most of the strong continuum. Finally, 
the mean remaining continuum from the residual images was formed and subtracted from 
all frequency channels. The noise in the resulting line-minus-continuum images is a factor 
of ten lower than in an image obtained after simply subtracting the continuum image from 
a line channel. The example illustrates how a line can remain undetected if an improper 
subtraction of the continuum is done. 
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6.   SELF-CALIBRATION 

When applying the self-calibration relations to correct for the atmospheric phase errors 
in spectral line observations, the same set of phase corrections can be used at all frequencies. 
The optimum procedure to determine these corrections depends on the nature of the image. 
If there is strong continuum, then the average of all continuum channels can be used to 
obtain the self-calibration solution. However, if the line emission is much stronger than 
the continuum, then the channel with the highest signal-to-noise ratio in the line could be 
used (e.g., a channel containing a maser line). For cases in which all the channels have 
comparable intensity and spatial structure changing with frequency it may be necessary to 
develop a three-dimensional model to be used for a global self-calibration solution (Ekers 
and van Gorkom, 1984) 

7.   DECONVOLUTION 

The deconvolution of spectral line images presents a number of special problems. Con¬ 
sider the case of an absorption line experiment involving strong and complex continuum 
emission. If individual channels are deconvolved independently then a small fractional error 
in the deconvolution can result in a substantial increase in the errors when these channels are 
subtracted to form the line-minus-continuum image. An example of this with the 'CLEAN' 
algorithm is shown in Figure 12-3. It shows the HI absorption in the radio galaxy NGC 315. 
'CLEAN'ing the continuum and line images separately and then subtracting the continuum 
image produces spurious emission along the jet. If the channels are subtracted before de- 
convolution this problem is avoided, because the strong continuum signal and its sidelobes 
are removed and do not have to be deconvolved. The resulting image after subtraction can 
contain a mixture of positive and negative features, so algorithms which rely on positivity 
to suppress sidelobes (e.g., MEM) cannot be used. 

Often we want to determine the ratio of the deconvolved line-minus-continuum to 
a deconvolved continuum image, in order to compute the distribution of optical depth 
or electron temperature (recombination lines). For this purpose we have an additional 
constraint on the deconvolution algorithm: it must produce estimates of the real sky as 
seen through identical transfer functions (i.e., with the same beam). 

Finally, information in adjacent channels may be needed to optimize the deconvolution. 
For example, if uniform weighting is applied in the transform from lag to frequency domain, 
then the sidelobes in the frequency domain may be deeper than the spatial sidelobes. In 
this situation a three-dimensional deconvolution algorithm would be essential. 

8. PROFILE ANALYSIS 

The optimization of the signal-to-noise ratio in many spectral line problems is equiva¬ 
lent to a matched filter problem where the filter characteristics are determined by the data 
to be filtered (adaptive filtering). Consider the problem of using a set of spectral line images 
to determine the integrated properties of the line emission at each point in a rotating object. 
Such properties would be the integrated emission, its velocity and velocity dispersion (the 
zeroth, first, and second moments of the velocity profile). 

That is, we visualize the set of spectral line images as a set of profiles at various 
positions in the sky (gridpoints) and calculate the zeroth, first, and second profile moments. 
Let Ii(a,S) be the surface brightness at velocity v^, Av the velocity separation between 
channels, and ntot the total number of channels; then (in the case of an HI observation) the 
hydrogen column density is given by 

•Ho* 

Nm(a,6)ocAvY^Ii(a,6), 
*=i 
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Figure 12—S. An example which illustrates how 'CLEAN' can introduce spurious emission or absorption 
features, (a) shows the continuum source NGC 315. (b) shows an image centered at the peak of the HI 
absorption line. The peak of the core is 400 mJy/beam; in (b) it is reduced to 250 mJy/beam. Both images 
have been 'CLEAN'ed, and that process has, erroneously, slightly increased the surface brightness of the 
jet in the absorption image. As a consequence, the optical depth image in (c) shows negative optical depth 
along the jet. (d) shows the difference image of continuum and absorption channel. The dirty images have 
been subtracted, and the difference has been 'CLEAN'ed. No pseudo-emission can be seen. 
Contours: in (a) and (b) 15 to 250 mJy/beam; (c) letters are negative, contours 0.09; (d) 5 mJy/beam. 

the intensity weighted mean velocity by 

and the velocity dispersion by 

V( '   V     E*S *(•.*) 
The result is to collapse the frequency dimension and produce one image for each 

of the moments. Coming back to the rotating object, in each channel the emission will 
appear at a different position because of the Doppler shift. One obvious way to get the 
total emission is to take the sum over all the channels. However, at any given point in the 
image the line emission is only present in a few channels—the rest containing noise—so this 
straightforward procedure will increase the noise level significantly over that in individual 
channels. As an example, the neutral hydrogen emission in four different velocity channels 
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Figure 13-4. An example of four line images of the HI emission in NGC 1097. The velocity is indicated 
in the upper left comer. The contour interval is 6 mJy/beam. 

N1097 IPOL 1411.517 MHZ   1097C 

-38 25 

%"iA-*P  ', i P 
82 44 45 30 15 0B   43  45 

RIGHT   ASCENSION 

Figure 13—5. A total hydrogen image of NGC 1097. The image has been obtained by taking the sum of 
all channel images. The contour interval is 210 mJykm/s. 

of the barred spiral NGC 1097 is shown in Figure 12-4. The total hydrogen determined by 
summing all the channels is shown in Figure 12-5. The increase in noise is clear. A number 
of methods have been developed to avoid this signal-to-noise degradation by including only 
the channels with line emission. 

Methods that have been used to separate the line signal from the noise in the profiles 
are: 
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Figure 13-6. The same as Figure 12-5, except that points below a 2a cutoff were not included in the sum. 

(1) Apply an acceptance gate in intensity (CUTOFF method), 
(2) Apply an acceptance gate in velocity (WINDOW method), 
(3) Set the acceptance gate interactively, based on displays of 2-D sections of the 3-D 

image, 
(4) Fit the line profile to a preconceived shape (GAUSS), 
(5) First smooth the data, then use either (1) or (2). 

Comparisons of methods (1) and (2) have been made by Bosma (1981) and of methods (3) 
and (4) by van der Kruit and Shostak (1982). 

8.1. CUTOFF method. 
This method was first described by Rogstad and Shostak (1971). To exclude points 

with no line emission, a cutoff in surface brightness is applied. For example, all points with 
Ii(ot, S) smaller than twice the r.m.s. noise a are set to zero and thus do not contribute in the 
calculation of the above quantities. As an example, the total hydrogen image of NGC 1097 
using a cutoff of 2a is shown in Figure 12-6. Although the image is considerably improved, 
the method does have a serious disadvantage. The calculated moments are subject to 
systematic effects depending on the cutoff value used. If there are weak features just below 
the cutoff value, then the calculated zeroth moment will be too small. The calculated radial 
velocity will be biased toward the middle of the velocity range, because of noise peaks 
above the cutoff value. If the line emission is at extreme velocities, then the noise peaks 
are likely to be at less extreme velocities, thus moving the mean value toward less extreme 
velocities (see Fig. 12-7). The velocity dispersion can be biased either way. The cutoff of 
weak wings on the profiles can make it too small, while noise peaks above the cutoff value 
can considerably increase the calculated velocity dispersion, due to the strong impact of the 
factor (vi — v)2. 

8.2. WINDOW method. 
This method has been developed to overcome the biases introduced by the CUTOFF 

method (Bosma, 1978 and 1981). Around each profile a window or acceptance gate in 
velocity is chosen. In this way the influence of noise peaks outside the HI emission range is 
eliminated (Fig. 12-7). In practice, the velocity of the peak of the profile, VQ, is determined 
first, a narrow window is centered around it, and the mean intensity /me»n of the points 
outside the window is computed. The window is then made larger and larger, and each time 
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Figure 12-7. Some examples of WSRT profiles observed in the galaxy NGC 5033. N denotes the noise 
level (Ic), C and V are the results for continuum and velocity from the window method, while C and 
V are the results from the cutoff method. The profile integrals are shown with coarse shading. The fine 
shading indicates the additional contribution to the integral from the cutoff method. The cutoff level used 
is 1.5<7 (Bosma, 1978). 

-fmean is calculated. Obviously the value /mean should converge (to zero if no continuum 
emission is present), and the iteration is stopped if two subsequent values of /mean differ 
by less than a specified value—e.g., by less than <T/ne where ne is the number of channels 
outside the window. This convergence criterion has been determined experimentally by 
Bosma (1981). 

8.3. Interactive study of individual profiles. 
This is a variation on the WINDOW method, in which each profile is inspected on a 

display and the is window set interactively using a suitable graphics input device. Although 
often superior, this does introduce the possibility of personal bias, and it is very time 
consuming for a larger database. 

8.4. Fit the line profile to a preconceived shape. 
This method first locates at each position on the sky the highest point in the profile 

and then fits a Gaussian (or Voigt) profile to the data around those points. Fitting a 
baseline (continuum) can easily be included. No bias is introduced by a cutoff; however, if 
the assumed functional form is incorrect, this can introduce a bias. Some limited testing 
has shown that this method and WINDOW give very similar results for the zeroth and first 
moments (van der Kruit and Shostak, 1982), while the velocity dispersion determined by 
fitting is far more reliable. 

8.5. Hybrid method. 
An improvement to both the CUTOFF and the WINDOW methods is obtained by 

using smoothed data—smoothed either spatially or in velocity—to determine the points 
to be included, but then going back to the full resolution data for the actual moment 
calculations. Figure 12-8 shows examples of this method in which different smoothing 
functions have been applied. Note that different smoothing functions bring out the hydrogen 
in different parts of the galaxy. 
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Figure 12—8. An illustration of the use of different smoothing functions to determine the acceptance 
window, (a) spatial smoothing with twice the resolution, (b) Hanning smoothing, (c) Hanning smoothing 
over 5 channels, (d) spatial + Hanning smoothing. 
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13.   Very Long Baseline Interferometry 

R. CRAIG WALKER 

1.   INTRODUCTION 

Very Long Baseline Interferometry (VLBI) is the technique that allows the use of 
widely separated antennas as elements of an interferometer array. It is distinguished from 
other forms of radio interferometry by the fact that there need not be any communication 
between the elements while the observations are being made. Instead, independent, high- 
quality frequency standards are used in place of a distributed local-oscillator signal, and 
the baseband, digitized signals are recorded on magnetic tape for later correlation. Test 
experiments have been done using satellite links, but nearly all VLBI observations are done 
using separate frequency standards and recorded data. 

Since no communication is required between the array elements, the baselines can 
be arbitrarily long. Currently, baselines are limited to about 11,000 km by the size of 
the Earth and by the practicalities of mutual scheduling of antennas. There are plans to 
extend the technique to even longer baselines using antennas mounted on spacecraft. The 
resolution typically achieved in ground-based experiments is about 1 milli-arcsecond at 6 
cm wavelength and scales inversely with wavelength. VLBI observations at 1.3 cm are now 
relatively common. To visualize typical VLBI resolving powers, note that 1 milli-arcsecond 
corresponds to about 1 a.u. at one kiloparsec (a typical galactic distance) and about 1 pc 
for an object at a redshifb of 0.067 (HQ = 100 kms-1 Mpc-1). It is also about the angular 
diameter of an orange in Los Angeles, as seen from Europe. 

There are no fundamental differences between VLBI and the connected-element in¬ 
terferometry that has been discussed in the previous lectures. However, some operational 
differences complicate the data analysis and lead to the use of calibration techniques for 
VLBI that differ in detail from those used for connected-element interferometers. The most 
important differences result from the use of separate frequency standards (requiring that 
frequency and time offsets be determined from the data), and from the difficulty in deter¬ 
mining the geometry of the array (including atmospheric and ionospheric effects) accurately 
enough to allow the use of phase calibration sources. In addition, there are differences be¬ 
tween traditional VLBI methods and those used for connected-element interferometry that 
exist either for historical reasons or because of differences in the types of sources normally 
observed. The use of tape recorded signals and delayed correlation does not introduce any 
significant differences. In this lecture, I will concentrate on those areas where VLBI differs 
from connected-element interferometry. 

2.   VLBI SYSTEMS 

The VLBI technique was developed in the late 1960's to study the very high brightness 
sources in the nuclei of active galaxies and quasars and to study masers in our own galaxy. 
The antennas used belonged to existing observatories and, in most cases, were not designed 
for use as part of an interferometer. Two recording systems were developed in 1967: the 
Mark I system in the United States recorded digital data on standard computer tapes, 
while the system developed in Canada recorded analog data on video tapes.  After a few 
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years, the Mark II system was developed in the United States and is still in use world¬ 
wide. It records 4 Megabits per second (Mbs) of digital data on video tapes. There have 
been three generations of video tape recorders used with the Mark II system. The current 
version uses home-style video cassettes and records four hours per tape. There are Mark 
II correlators at NRAO in Charlottesville (3 stations), Caltech (5 stations), and in Bonn 
(3 stations). Caltech is modifying their Block II correlator (primarily designed to process 
Mark IH tapes) to process 16 Mark II tapes simultaneously. 

More recently, the Mark III system has been developed, primarily at the Haystack 
Observatory. It uses instrumentation tape recorders and (in its standard wide-band mode) 
records 28 separate 4 Mbs signals at once on a single tape, for a total bit rate of 112 
Mbs. In this mode, each tape can be used to record 13 minutes of data. A narrow head 
system is being tested that will extend that time to about 3 hours. The Very Long Baseline 
Array (VLBA)—currently under construction by the NRAO—will use an enhanced version 
of the Mark III system that can record at least 128 Mbs for 12 hours per tape. There are 
operational Mark HI processors at Haystack (4 stations) and in Bonn (4 stations). Plans 
exist to upgrade both of these processors to more stations. A processor that uses the Mark 
III tapes has been built in Japan for geodetic work, a Haystack-design Mark HI processor 
has been built for the geodetic community in Washington, D.C., and the Block H processor 
(for Mark HI data) is being tested at Caltech/JPL. 

The frequency standards used for VLBI are either rubidium vapor frequency standards 
or hydrogen masers. For the time-scales of interest (a few seconds to a few hours) the 
hydrogen masers are the best available standards. Unfortunately, the quality is reflected 
in a cost of several hundred thousand dollars per maser. On short time-scales, crystal 
oscillators are somewhat better and, in fact, the VLBI local-oscillator signals are generally 
derived from a crystal oscillator locked to a maser. It is somewhat ironic that the best 
standards for absolute time, the cesium beam standards, do not work for VLBI. They are 
better for time measurement than the rubidium or maser standards because their absolute 
frequencies are less sensitive to environmental factors. However, as long as the environment 
is carefully controlled, rubidium and maser standards provide a more stable signal. 

The antennas used as the elements of VLBI arrays are still mostly ones that are used 
primarily for single-dish observations. To understand what this means for VLBI observa¬ 
tions, imagine trying to use the VLA if all of the antennas were of different designs, worked 
to different maximum frequencies, had sensitivities ranging over a factor > 100, and were 
operated and scheduled by different organizations, many with primary responsibilities to 
other user communities!1 You should then understand part of the reason for the VLBA, 
and be able to anticipate some of the problems that arise in calibrating VLBI observations. 

3. DATA FLOW 

This section presents an overview of the data flow for typical VBLI observations—with 
special emphasis on those operations that differ from what is normally done in connected- 
element interferometry. Detailed discussions of some aspects of the data reduction will be 
presented in later sections. 

3.1. Data acquisition. 
The signals are received and amplified at each antenna using normal radio-astronomical 

equipment. They are mixed with a local-oscillator signal derived from the VLBI frequency 
standard, to bring one edge of the observing passband to 0 Hz. Current practice is to use 

1 Imagine also that the "instrument" is allowed to observe for a few weeks at a time and is then dismantled 
and reassembled before the next observing run! — Eds. 
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the same total local-oscillator frequency at all stations, but the frequencies could be offset 
to remove partially the Doppler shifts caused by the Earth's rotation, or to avoid zero fringe 
rates. The mixing and amplification generally occur in several intermingled steps. 

The signals are then filtered and digitized. The quantization is to two levels in all 
current systems but will be to two or four levels on the VLBA (the VLA has three-level 
quantization). The sampling is typically at the Nyquist rate, which is the reciprocal of 
twice the bandwidth. The VLBA will have an oversampling capability that improves the 
signal-to-noise ratio for narrow band (usually spectral line) data. After digitization, the 
data are formatted and recorded on magnetic tape. Extra information, most importantly 
the time, is encoded with the data. The tapes are shipped to one of several correlators 
within a few days of the observations. The effects on the signal-to-noise ratio of the various 
aspects of the digitization of the data were discussed in Lecture 3. 

3.2. Correlation. 
The tapes are correlated on special digital equipment built for this purpose. Each 

correlator has a maximum number of stations that it can process simultaneously. Modern 
experiments almost always involve more stations than any existing correlator can process at 
once, so it is necessary to make many passes to process all baselines. The VLBA correlator 
is being designed to handle up to 20 stations for the most common kinds of experiments. 
It should be possible to process most experiments in one pass (the VLBA will have 10 
antennas). The 16 station Mark II capability being installed on the Block II processor 
at Caltech should soon allow those large experiments for which the Mark II system has 
sufficient bandwidth to be processed in one pass. 

The correlator aligns the tapes in time; reads and decodes the data; aligns the data 
streams from each station, accounting for clock offsets and geometric delays; shifts the 
frequency of one data stream from each baseline to account for clock rate offsets and the 
Earth rotation Doppler shift difference between the stations; multiplies each pair of data 
streams for a range of delays to generate a correlation function; accumulates the results; and 
writes the results to some archive medium, usually a magnetic tape. For spectral line data 
(all data on the VLBA), the correlator may transform the correlation function to a spectrum 
and may generate an autocorrelation function for each data stream. The frequency shift 
that removes clock rate offsets and Doppler shifts is accomplished by multiplying one of the 
data streams for each baseline by a digital approximation (usually 3 level) of the desired 
sine wave. Actually, two shifted data streams are formed, using sine waves that are 90° out 
of phase. The results of correlation of both of these streams with the data from the other 
antenna of the baseline form the complex components of the correlation function. This dual 
fringe rotator is one of several possible ways of obtaining a complex correlation function 
that were discussed in Lecture 3. 

3.3. Editing and fringe fitting. 
The data need to be edited after correlation but before imaging. Any large blocks 

of bad data should be deleted before the fringe fitting (discussed below) to prevent poor 
results. However, prior to fringe fitting, the volume of data can be very large (typically 2 
second records in current practice), so it would be tedious to do a thorough editing job. 
Any really discrepant points or very short integrations should be eliminated, but a modest 
proportion of low amplitude points will not seriously affect the fringe fitting. After fringe 
fitting, the data are averaged so that the data volume becomes more manageable. At that 
point, it is worth inspecting all of the data and eliminating any bad points. Interactive 
programs that use a TV or character graphics on a CRT are available for editing out bad 
data. 
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After correlation, continuum data are fringe fitted. This operation, which is critical 
to VLBI, is the process of solving for, and removing, any residual delay and fringe rate 
offsets. Such offsets arise from a combination of uncertainties in a priori clock parameters 
and in the geometry and atmosphere. Fringe fitting is not needed for connected-element 
interferometers because the a priori uncertainties in delay and rate can easily be made 
insignificant1. Fringe fitting is discussed in detail in Section 4. It is hoped that the geometry 
and clocks for the VLBA will be understood well enough that fringe fitting—and even phase 
calibration—can be done on calibration sources, to allow imaging of very weak program 
sources. Such observations can be done now, but only with great effort. 

3.4. Calibration. 
After fringe fitting, the data resemble those that would be obtained from a connected- 

element interferometer whose phases are uncalibrated. The amplitudes can be calibrated in 
several ways, though it is traditional to start by using system temperatures and gain curves 
rather than interpolated calibrator observations. This is partly because there are very few, 
if any, unresolved calibrators for VLBI baselines and essentially all very compact sources 
are variable. VLBI phase calibration depends on self-calibration (Lecture 9), sometimes 
referred to in the VLBI literature as hybrid mapping. The procedure was originated in 
the context of VLBI by Readhead and Wilkinson (1978) and by Cotton (1979) and was 
extended to include amplitude calibration by Readhead et al. (1980). 

Methods to gauge convergence of self-calibration in VLBI differ somewhat from those 
used for arrays such as the VLA, partly because of the smaller amounts of data available for 
typical VLBI observations, and partly for historical reasons. I suspect both communities 
could learn from each other in this area. Once images are made, there is no real difference 
between VLBI data and other interferometer data, except that, for VLBI data, absolute 
position information is totally lost in the fringe-fitting/self-calibration process while it will 
typically survive self-calibration for connected-element interferometer data to high enough 
accuracy to be useful. 

3.5. Spectral line data. 
The fringe fitting step cannot be performed on the program source data for VLBI 

spectral line observations. Delay offsets that would be removed by the fringe fitting show up 
as phase slopes across the frequency band in spectral line data. There are two ways to deal 
with such phase slopes: (a) observe and fringe fit a nearby continuum source to determine 
the offsets, or (b) use methods of finding the locations of features that use just the rate of 
change of phase (fringe rate) and not the phase itself. Both methods will be discussed in later 
sections. Typical VLBI spectral line sources (usually masers) have very bright features that 
can be used as phase calibrators, allowing traditional imaging methods (not dependent on 
self-calibration) to be used on most of the spectral channels. Bright spectral lines also allow 
the autocorrelation spectra to be used to calibrate the amplitudes—not self-calibration in 
the usual sense, but almost as good. Once the data are calibrated, the analysis and display 
problems are much like those for any spectral line data. One difficult aspect of many VLBI 
line experiments is a result of the nature of the sources. Masers often have very compact 

1For connected-element interferometers, as long as the instrumental delays are determined at least once each 
time an antenna is moved, the errors in the a priori delays will usually be small relative to the spacing of the 
lags in the correlation function. Only the sero-delay correlation need be determined for continuum data, 
and there is no uncertainty in the sero lag of the correlation function used for spectral line observations. The 
phase is far more sensitive but can be calculated with sufficient accuracy that any error is relatively constant 
with time and can usually be calibrated using observations of known sources (normal phase calibration). 
Certainly the residual fringe rate is very small and does not limit the integration time. 
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individual features that can be studied with milli-arcsecond resolution, but the features are 
spread over several arcseconds of sky. If brute-force methods are used, prohibitively large 
image sizes are needed. Some of the ways around this problem are discussed in Section 8. 

4.   FRINGE FITTING 

For any interferometer, the correlated signal will appear at a delay and phase that 
depend on the geometry of the interferometer, the source position, the atmosphere and 
ionosphere, and on details of the instrumental hardware. At the time the data are correlated, 
the expected delay is calculated—and the data streams from each element are aligned at that 
delay. For spectral line observations, a correlation function centered on the expected delay 
is formed and Fourier transformed, to obtain the cross-power spectrum. For continuum 
observations, if the delay is known a priori to much better than the inverse of the bandwidth, 
only the correlation at the expected delay need be determined. If the delay is not known well 
a priori (as is usually the case), the correlation function must be determined over a range 
of delays that is greater than the delay uncertainty, to ensure that the signal is retained. In 
many cases, it is useful to transform the correlation function into a frequency spectrum—in 
which the delay error appears as a phase slope. The spectrum takes less space since only 
one sideband is kept, and it is what is needed for global fringe fitting. 

Significant delay errors can lead to very large phase offsets, since the phase is the delay 
times the observing frequency (which is large). Phase offsets, as such, are not a problem 
because they will be corrected by self-calibration. But if they change rapidly compared to 
the desired integration time, the data will be degraded. The rate of change of the difference 
between the expected and actual phases is known as the residual fringe rate. The integration 
time must be kept well under the inverse of the residual fringe rate. 

For VLBI, the use of separate clocks, uncertainties in the geometry and atmosphere, 
and high resolution (i.e., high sensitivity to any uncertainties in geometry) combine to make 
accurate, a priori determinations of the delay and phase very difficult. The troposphere and 
ionosphere, the relative drift of the clocks, and even the position of the Earth all change on 
day-to-day (or shorter) time scales in ways that are difficult to predict. For these reasons, 
the correlator must deliver several delay (or frequency) channels and records integrated for 
only a few seconds. To reduce the volume of data to reasonable levels, either very careful 
observations must be made to determine clock and geometric parameters—consuming much 
of the available observing time—or the delay and fringe rate must be determined from the 
data. The latter is the traditional method, and the process is called fringe fitting. Note 
that—since the geometric information is contained in the delays—fringe fitting, like self- 
calibration, removes any absolute position information from the data. However, the delays 
determined in sophisticated versions of fringe fitting are just the information used for VLBI 
astrometry and geodesy. 

4.1. Theory of fringe fitting. 
Conceptually, fringe fitting is fairly simple. The correlator delivers a correlation func¬ 

tion as a function of time, covering a delay range larger than any delay uncertainty. These 
data can be thought of as a two dimensional matrix with delay and time axes. The trick 
is to find the signal. If the time axis is transformed into a frequency axis (residual fringe 
frequency—often called fringe rate), the signal will appear as an isolated peak in the ma¬ 
trix. The simplest versions of fringe fitting merely search for, and fit for, the parameters 
of the peak in the data from each baseline—for each time interval of some specified length. 
Examples of residual fringe frequency spectra for several delay lags are shown for a strong 
source in Figure 13-la and for a weak source in Figure 13-lb. 
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Figure 13-1. Plots of residual fringe frequency spectra for 7 delay lags for (a) a strong source and (b) a 
weak source. Note how the signal appears in adjacent lags at the same frequency. In the weak source case, 
the problem is to distinguish the signal from noise spikes. 

Finding the signal in the strong source case is fairly easy. However, in the weak source 
case—often where the interesting science lies—it can be tricky. The methods used for fringe 
fitting are an area of active current development. The following describes the situation as 
of mid-1985. 

Essentially all of the uncertainty in delay and phase, except that part due to source 
structure, is the result of uncertainties in parameters for each element of the interferometer. 
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The measured visibility data, in frequency-time coordinates, can be expressed as: 

V^i, i/) = Gi(t, !/)£,*(*, v)Vr(t, i/) + ei, , (13-1) 

where Vf.(t, i/) is the true visibility of the source on the i-j baseline at time t and frequency 
p, Gi(t, u) and G3(t, u) are the antenna gains, 

Gi&v) = «&*)€*«*•*), (13-2) 

and €ij is a thermal noise term (see also Lecture 9). The clock, geometric, tropospheric, 
etc., uncertainties are absorbed into phase slopes in the gains. Equation 13-1 explicitly 
assumes closure by asserting that the baseline gain can be expressed entirely as the product 
of antenna gains. In practice, a non-closing term should be included for each baseline, but 
such terms are less than a few percent and will be ignored for now. For high dynamic range 
imaging, such terms cannot be ignored, and work is in progress to find ways to calibrate 
or remove them. In most of the following equations, the noise term will be ignored—just 
remember that any measured quantity must include a contribution from noise. 

Fringe fitting only concerns the phases of the visibility function. Amplitudes are cali¬ 
brated by more traditional means, as will be discussed later. Separating the amplitude (A) 
and phase (4>) parts of Equation 13-1 and simplifying the notation by dropping the (t, t/) 
dependence gives 

Aqj9** = OiajAljJl*-**+•«>, (13-3) 

or for the phases alone: 
*0 = &-^ + *i;> (13-4) 

where Oij and 0^ are the measured and true visibility phases on the i-j baseline—both are 
functions of time and frequency. The reason for the term "closure" can be seen by summing 
the phases around a closed triangle of antennas t,.;, k and noting that all of the 4>i, 4>j, fa'* 
appear twice with opposite sign, and cancel, 

•a + 9ih + Bki = «k + *}* + Is • (13-5) 

At this point, a simplifying assumption will be made—that, for the bandwidth and 
time interval of the fit, the amplitudes of the gains are constant, while the phases vary 
linearly with both time and frequency: 

AijC* ** = aioajoA^j 

x e«Wi(*Of«^)-#/(*Oii^)+^y(*»«')+(ri(*o»«^)-ry(to,i^))(t-*o)+(r*(to,i^)-ry(*o,«o))(r-i»e)) (13-6) 

where the r* are the antenna fringe rates, 

r^^^O, (13-7) 

and the r« are the antenna delays (residual) expressed as phase slopes, 

dv 

The object of fringe fitting is primarily to determine the rv and r,-, so that the delay 
and rate offsets can be removed from the data and the data averaged in both time and 
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frequency. For a single baseline, the net delay and fringe rate due both to the antennas and 
the source structure can be determined by fitting for phase slopes in frequency and time 
or, as mentioned earlier, by transforming to delay-rate space and looking for a peak. 

Since all of the gain terms are antenna dependent, it is possible, as in self-calibration 
(Lecture 9) to use all of the data to determine the antenna gains. This allows greater 
sensitivity, allows the data from stronger baselines to determine the parameters for weaker 
baselines, and ensures that the delays and rates used really do close and do not introduce 
unnecessary noise in the imaging results. The process of solving for antenna dependent 
delays and rates is called global fringe fitting1 and is described in detail by Schwab and 
Cotton (1983). As in any self-calibration scheme dealing with phases, there is only enough 
information to establish the parameters of iV — 1 antennas relative to a reference antenna, 
where iV is the number of antennas in the array. The phase, rate, and delay of the reference 
antenna must be set arbitrarily—usually to zero. 

There are two ways to do the global fringe fit—a least-squares solution and a Fourier 
transform solution. In practice, the Fourier transform solution is often used to give an 
initial guess for the least-squares solution. For the least-squares solution, the antenna 
phases, fringe rates, and delays are determined using all of the baseline data and assuming 
a source model. Equation 13-6 is used, with the visibilities for the assumed source model 
substituted for the true visibilities. For details, see Schwab and Cotton (1983). The quality 
of the fit will depend on the signal-to-noise ratio of the data and on the quality of the initial 
guess model. If the model is very bad (radians of phase error), it may be difficult to obtain 
a decent fit and it may be desirable to restrict the number of baselines used for the fit. This 
consideration will be discussed further below. 

For the Fourier transform solution, the frequency-time data discussed so far (e.g., Equa¬ 
tion 13-3) are transformed to the delay-fringe rate domain. The fringes will appear at an 
isolated point in this domain, so one need only find the maximum and fit adjacent points 
for the location of the peak. The complication comes in setting up a frequency-time matrix 
that uses data from more than just the baseline between the antenna being calibrated and 
the reference antenna. Useful information can be obtained from the observed phase on the 
direct baseline and from the sum of the phases from any group of baselines that connect the 
two antennas via any other antennas. Only the one, two, and three baseline combinations 
are independent. Combinations of larger numbers of baselines can be expressed as sums of 
smaller combinations. Even the two and three baseline combinations are not totally inde¬ 
pendent because individual baselines contribute to several separate combinations. However 
each does contain some information not available in any other. The equations for the phase 
differences are, in the three cases: 

fckj = fc - +i = (** - t'ik + **) " ('iy " 0*3 + « = (•« + '«) " «* + Ii).     (1M) 

fcw = * - +i = (** - Kk + **) - (-'« + *'ki + <!>*- fc) - M; " ^ + fc) 
=(9ik+'M+*«) - Wk+ii+*y. 

where the jfth antenna will usually be the reference. As can be seen, the phases of the 
intermediate antennas along any string of baselines enter into the sum twice, but with 
opposite signs—so they cancel. Each combination depends only on measured and true 
visibility phases. 

^he program in NRAO's AIPS package that does global fringe fitting is called VBFIT. 
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A frequency-time data array can be formed with the complex, weighted sum, 

Fa = «/,;€»*' + ^ w*3ei*iki + Z)ViUi**""' . (13-10) 
it fc,< 

where the weights can reflect a variety of factors, including the signal-to-noise ratio of 
the baselines in the combination, preconceived notions of the value of certain stations or 
baselines, and the expected source visibility amplitude on the baselines. Use of a reduced 
set of baselines is equivalent to setting some of the weights to zero. Again, for details 
see Schwab and Cotton (1983). Fij is now a frequency-time matrix that can be Fourier 
transformed in both dimensions and searched for a peak in the resulting delay-fringe rate 
matrix. 

Note that to use Equations 13-9 and 13-10, both the measured visibility phases and 
estimates of the true visibility phases are needed. Without the latter, a complicated source 
could introduce such large phase differences that the various terms in Equation 13-10 would 
cancel each other rather than enhance the signal-to-noise ratio. If the source structure is 
unknown, as it usually is in the first pass (or why is it being imaged?), it is often best to 
use a very restricted set of baselines to obtain the solution for each antenna. It may be best 
to use just the direct baseline to the reference antenna, or the two baseline combination 
through some other strong station. However, errors in the assumed true visibility phases 
that are not large enough to degrade the amplitude of the sum (less than about a radian) 
will not seriously degrade the solution for fringe rate and delay. Since the visibility phases 
due to structure are usually slowly varying in time and frequency, the main effect of errors 
in the model is to introduce errors in the phase, but not in the fringe rate and delay. Phase 
errors are removed in the later imaging stages. For these reasons, the initial model does 
not need to be especially good. All of these considerations with regard to the initial model 
also apply to the least-squares solution. 

The result of the fringe fitting process will be a table of the delay, phase, and fringe 
rate offsets for each antenna relative to the reference antenna, as a function of time. That 
table can be used to correct the measured data. Once the residual delays and fringe rates 
(and phases too, although this is not especially important) are removed, the data can be 
averaged. The limits to the averaging in delay are set by the field of view or the desired 
spectral resolution. In time, the limits are set by the field of view, the coherence time, or 
the scan lengths. The averaging time should probably be kept shorter than, or equal to the 
time interval used in the fringe fit, as will be discussed below. 

4.2. Practical considerations. 
So much for the theory of fringe fitting—now for the art. For a number of reasons, the 

fringe-fitting step of the data reduction is not straightforward. There are questions about 
what baselines to use in a solution, how to weight the baselines (or antennas), what model 
to use, how long a time interval of data to use in the solution, what reference antenna to 
use, etc., that do not have clear answers in all circumstances. Many of these questions arise 
because of the wide range in sensitivity of different baselines in typical VLBI experiments, 
resulting from the use of a wide variety of antennas. Resolution effects also increase the 
range of signal-to-noise ratio's on the different baselines, often in a time dependent manner. 
Problems also arise in many VLBI experiments because no one antenna is on for the entire 
time of the observations. At least two reference antennas must be used, and glitches at the 
time of transition must be avoided. 

If the program source has unknown structure that is likely to cause the true visibility 
phase to be far from zero (e.g., more than roughly a radian), it is probably best to use only 
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single baselines to solve for the antenna delays and rates. If the signal-to-noise ratio on 
the single baselines is low, the multiple baseline combinations can be used, while accepting 
the fact that some of the data will be lost. An image can be made from the results of this 
preliminary fit and used in a second fit, presumably with much better results. On the other 
hand, if the source structure is dominated by a point source, so that the true visibility 
phases on any baseline never get very large (several tens of degrees should not cause much 
problem), any combination of baselines can be used. Similarly, the model of a complicated 
source need not provide perfect phases in order to allow a good solution with many baseline 
combinations. 

I suspect that there is a tendency to do second fits more often than necessary. This 
should be avoided, if possible, because the fringe fit places large demands on computer 
resources. The object of the fringe fit is to determine the delay and fringe rate with sufficient 
accuracy that the signal is not degraded by being averaged in delay and time. If the signal- 
to-noise ratio is sufficiently high, a single pass with single baseline solutions and a point 
source model may be all that is needed. No matter how bad the model is, if good signal- 
to-noise ratio is obtained in the fit, the only significant errors will be in the phases—and 
those get fixed by self-calibration during the imaging process. A second fit is not needed. 

How well does the delay need to be determined? The amplitude, as a function of delay, 
will follow a —^ function, somewhat smeared because the bandpass is not perfectly square. 
For Nyquist sampling, the spacing of delay channels is half the inverse of the bandwidth. 
The first null in the ideal s^ occurs two lags from the true delay. In this case, the amplitude 
will be degraded by 1 percent with a delay error of about 1/6 of a lag. Delay errors can 
cause closure errors, so large errors should be avoided if possible. For most experiments, 
delays good to 1/6 of a lag (about 40 nsec for Mark II) are a reasonable goal. Note that the 
tolerable delay error will depend on the distribution of baseband channels in the multiple 
band systems like Mark IH and will have to be calculated based on the experimental setup. 

The optimal way to use the delays derived in the fringe fitting for an experiment is 
a matter that is currently under study. The fringe fitting program delivers a table of 
delays and fringe rates that, in the default mode, are interpolated and used to correct 
the data. However, there is a certain amount of noise in the results, especially on weak 
sources and/or weak antennas. The causes of the delay errors, such as clock offsets and 
geometric and tropospheric uncertainties, are likely to be smoothly varying. The scatter in 
the measurements is due almost entirely to measurement noise, not to real fluctuations in 
the delay errors. Therefore it seems reasonable to try to smooth the fitting results before 
applying them to the data. To avoid errors, this process must be done carefully if delay 
steps were used in the processing, or if there are times when the delay is changing rapidly 
because of (for example) rapidly varying and unmodeled tropospheric variations in low 
elevation data. 

For a recent 18 station experiment aimed at very high dynamic range, smoothing of 
the fringe fit results was done by hand to teat the procedure. The results are encouraging, 
and the capability to do it automatically should probably be provided. Figure 13-2 shows 
the residual delays and fringe frequencies, as output by the fringe fitting program, for some 
of the stations of the 18 station experiment. 

The differences in signal-to-noise ratio between various stations are clear as are the 
jumps at times when the reference antenna changed (note that the time ranges of the 
various plots are not aligned). Reference antenna changes were necessary because the 
source was not above the horizon at any one antenna for the entire time that a source was 
observed somewhere on the array. The delays were smoothed by first removing any steps 
introduced by clock offset changes used during correlation to keep the fringes centered in the 
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Figure 13—2. Plots of the fitted residual delays (a) and fringe frequencies (b) for 6 antennas of an 18 
antenna experiment. Note that the time scales are not aligned. The reference antenna changed at about 
1.75 days, causing a jump in delay and rate. Other large delay jumps were caused by steps in the assumed 
clock offset used during processing to keep the fringes centered in the correlator delay window. The large 
changes in fringe frequency at extreme times are caused by unmodeled atmospheric effects at high senith 
angles. 
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delay window (some clocks drift rather rapidly), applying an offset at the reference antenna 
change to remove that step, generating a smooth delay for each station that consists of a few 
straight lines approximating the fit results, reintroducing all the steps, and using the results 
to correct the data. The fringe frequency fit results were not smoothed. Examination of 
the fit results using plots such as those in Figure 13-2 is a good method of gaining an idea 
of the quality of the fit and of determining any corrections that need to be made. The 
software for the display and manipulation of the fit results is still very much in a testing 
stage. 

With the very wide range of sensitivities on the current networks, it is often best to 
just do the single baseline fits, using one of the strong antennas (e.g., VLA or Bonn) as 
the reference antenna. The signal-to-noise ratio is so much higher on those baselines than 
on most others that the others don't contribute much in a many baseline fit. However if 
the source is heavily resolved on the long baselines, there may be a problem. While a good 
reference antenna can be found for the US baselines and another good reference antenna 
can be found for the European baselines, there may not be a good reference antenna for the 
whole array. It would be good to be able somehow to use a two baseline combination rather 
than the direct baseline in such cases. For the weak antennas far from the reference antenna, 
the high signal-to-noise ratio baseline to the nearby sensitive antenna could be used, along 
with the baseline between the sensitive antennas, to derive the fit results. Unfortunately, 
the software is not conveniently set up for this method yet. 

Another choice that must be made for fringe fitting is the time interval over which 
to do the fit. The longer the time interval, the higher the signal-to-noise ratio. However, 
eventually the linearity assumption of Equation 13-6 breaks down, either because some of 
the offsets due to the troposphere change rapidly or because of fluctuations in the frequency 
standards. We shall refer to this situation, generally, as loss of coherence. The effect of 
coherence loss on an integrated signal is to reduce the amplitude and spread the power in 
fringe rate. For imaging, it is important to have good amplitudes, so the post-fringe fitting 
integration time should be kept well under the coherence time. However, for fringe fitting, 
amplitudes are not important, so integration can be extended as long as the signal-to-noise 
ratio for detecting a signal increases. Since the noise decreases with the square root of 
integration time, and the amplitude 1MS due to loss of coherence decreases more slowly at 
first, it is often worth integrating considerably longer for fringe fitting than for imaging. 

The choice of an integration time will depend on the signal-to-noise ratio, on the 
scan lengths, and on the maximum integration set by coherence. If the signal-to-noise 
ratio is high, it is probably best to use relatively short integrations to avoid averaging over 
tropospheric fluctuations. The fit interval should be a reasonable match to the length of the 
observing scans. It is not wise to pick an interval that gives a very short effective fit interval 
at the end of a scan. The low signal-to-noise ratio in that interval will degrade the results. 
For current experiments, the maximum integration time allowed by coherence is likely to 
be established by one or two antennas that have especially poor frequency standards. In 
practice, the best way to determine the fit interval is to "fringe fit" a short subset of the 
full data set, using several different intervals, and to choose the one that works best. This 
is also a good way to determine what reference antenna and baseline combinations to use. 
Obtaining a feel for the data in this way may avoid problems, and possible reprocessing, 
later on. 

5.   AMPLITUDE CALIBRATION 

For calibration, we wish to use Equation 13-1, along with knowledge of the antenna 
gains, to obtain an estimate of the true visibility amplitude from the measurements. Rewrit- 
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ing Equation 13-1, retaining only the amplitude terms of the gains as expressed in Equation 
13-2 and ignoring the noise term, we have 

where Si3- is the calibrated, correlated flux density and A»j is the raw correlation coefficient 
from the correlator. With this formulation, the correction factors that account for the 
signal-to-noise ratio losses due to effects such as the digitization are absorbed into the a*. 
It is more instructive to rewrite Equation 13-11 in a form that applies to one frequency and 
time and that shows more clearly how the various calibration parameters are used: 

where 6 is the factor that accounts for digitization losses etc., the Ki are the antenna 
sensitivities in K Jy'1 (Lecture 6, Section 3), and the T8y8i are the system temperatures in 
Kelvins. 

Most current experiments use Equation 13-12 directly. The value of 6 depends on the 
encoding system and on details of the correlator. It is typically about 2.5. The system 
temperatures are measured at the time of the observations, and gain curves are determined 
at some time. One of the complications of current VLBI is that each station provides the 
necessary information in a different form, and with different levels of reliability. For strong 
sources, for which antenna temperatures can be measured, the Ki can be replaced with 
T&nt{/Stot, where 5tot is the source total flux density and Tant,. is the antenna temperature. 
While there is an effort to provide system temperatures continuously, most observatories still 
measure the system temperatures only sporadically. When there are few measurements, it 
is advisable to examine them carefully before using them, in case there are some bad points, 
as there often are. 

The measured system temperatures and gain curves rarely provide calibration consis¬ 
tent to better than about 10 percent. To improve the calibration, one or more calibration 
sources known to have simple structure and enough flux density to give high signal-to-noise 
ratio are usually observed. Models and/or images of these sources can be used with self- 
calibration to determine constant offsets for each station; these then are used to improve 
the a priori calibration of the program source data. 

6. CONTINUUM IMAGING 

After fringe fitting and amplitude calibration, the data set is essentially the same as a 
data set from a connected-element interferometer that has not been phase calibrated. The 
procedure for making an image begins with deciding on a source model to use in the first 
pass of self-calibration (Lecture 9). In many cases, a point source will work, and some 
observers never use anything else. However, there may be circumstances in which a better 
model will help, especially when there is a very limited amount of data (this is an area of 
current debate). It also may be that some self-calibration software works better with a poor 
starting model than others1. If a more complicated model is needed, it can be obtained 
by fitting a number of Gaussians to some or all of the visibility data. Even model fitting 
requires an initial guess. Typically this is derived by examining plots of the visibility data 

1 NRAO's AIPS routines seem to work with a point source starting model. 
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and by guessing what structure in the sky would produce the observed minima and maxima. 
Deep minima in the visibility plots help this process greatly by indicating the position angle 
and separation of features. This whole procedure is rather difficult if the source structure 
is at all complicated. 

Note that model fitting has uses other than to provide a first guess for self-calibration. 
When the source structure is simple and not confused, it is easier to get good error estimates 
by fitting source parameters in the visibility domain than by fitting them in the image plane. 
This could be especially important when trying to obtain a deconvolved size of a barely 
resolved feature. Such features look much like the beam in the image plane, but may have 
obviously reduced visibility amplitudes in the u-v data. However, any structure in addition 
to the features of interest affects the u-v data—so, in the presence of such structure, it is 
best to determine feature parameters by fitting to the final image. 

Now for the hard part—getting the self-calibration started and on the right track. No 
recipe is known that works reliably for all cases. Because there is no preliminary phase 
calibration, and because the data sets are often small, providing relatively few constraints, 
this step is much harder for VLBI than for the VLA. The full imaging procedure involves 
several (often many!) passes through the self-calibration and imaging sequence. For each 
pass, the image from the last pass is used as a better starting model for the self-calibration. 
In effect, one is following an iterative procedure that solves for the antenna gains and the 
source structure simultaneously. 

Because the imaging procedure is iterative, there is no need to try to get everything 
right on the first pass—in fact such an attempt would almost certainly be counterproductive. 
For the first several iterations, no effort should be made to correct the amplitudes in self- 
calibration. This is because the a priori amplitude calibration is probably better than 
what self-calibration would provide, while the model is bad. One should wait until the 
initially uncalibrated phases are reasonably good, before releasing the amplitudes. Also, 
as discussed in Lecture 11, it is usually worth restricting the range of u-v data that will 
be used in the self-calibration. An obvious case where this is worthwhile occurs when a 
large, complex source is dominated by a point component. The initial fit should only use 
the longest baselines, which are sensitive primarily to the point component. As the image 
improves, the shorter baselines can be used. Also as the image improves, the self-calibration 
can be extended to the amplitudes—first, just to constant scaling factors for each antenna, 
and eventually to point by point variations. The full range of u-v spacings might never 
be used, especially if the shortest baselines have excess correlated flux density from poorly 
modeled, large-scale structure. 

A point source starting model biases the self-calibrated image towards symmetrical 
sources. Some common artifacts that can result from this are false counterjets in core-jet 
sources and triple structure in double sources. There is some indication that such bias 
can be minimized by restricting the fits to long baselines at first, but the full procedures 
needed to avoid such behavior are not yet clear. As the number of baselines is increased, the 
number of independent constraints increases rapidly, so this problem becomes less severe. 

It is very important to be alert to possible false features or other problems with the 
images. Experience with imaging from fake data sets for which the final result is known (not 
necessarily by the person doing the imaging) is very useful in obtaining a feel for how the 
procedures work. Certainly, such tests should be done when newly developed algorithms 
are being tested. 

There are two primary clues to the quality of the image: its appearance, and the ability 
of the significant features of the image (e.g., those contained in the 'CLEAN' components) to 
predict the data. The appearance can be judged by looking at contour plots or TV images. 
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If there are regular artifacts (ridges, etc.), there are likely to still be problems. Negative 
holes with amplitudes significantly above the noise are a good indicator of trouble (unless, of 
course, they are expected, as in spectral absorption experiments). If there are any features 
that don't fit one's preconceptions of what should be there, a serious effort should be made 
to make the features go away. An example would be a counterjet in a core-jet source, or a 
feature off to the side of the jet. If the feature persists no matter what is done, that lends 
confidence to its reality. The noise level in an image is another indicator of the quality of 
the calibration, especially in high dynamic range images. As long as successive iterations 
reduce the noise level, the process should be continued. However, the noise level isn't a 
reliable indicator of quality—I've seen what seemed to be low noise images that contained 
spurious features and did not reproduce the u-v data well. Appearance is the traditional 
indicator used to judge the quality of VLA images but has only recently become a major 
indicator for VLBI. 

The ability of the model to reproduce the u-v data has been the traditional quality 
indicator for VLBI. A quick search through the VLBI literature will reveal endless plots of 
models overlayed on data. With small quantities of data, this is important because it is 
possible to obtain images that seem to be of reasonable quality but whose associated models 
do not reproduce the data well. Such images can differ significantly from the final results 
that do reproduce the data. This is possible because, at low dynamic range, significant 
signal can be generated by spurious structures in the residual image. With large data sets 
and high dynamic range, the data should be reproduced better. In fact, when reaching 
dynamic ranges above 100, the minor changes in the predicted u-v data that are made as 
the image improves would be hard to detect in the normal u-v plots. However, the fit of 
the model to the data can still indicate problems. In a recent case where I had a spurious 
feature (counterjet or misplaced core) in an image with a dynamic range of 100 based on 11 
station data, the best indication of trouble was not the appearance of the image—instead, 
it was small but significant differences between the model and data on a few baselines. The 
spurious feature and these differences disappeared together. 

A factor that can be adjusted during image making with the 'CLEAN' algorithm is the 
size and placement of 'CLEAN' window(s) (see Lecture 7, Section 3.1). If there is some a 
priori reason, such as previous images of the same source, to believe that a source is confined 
to a certain region of sky, the imaging procedure can be guided by confining the 'CLEAN' 
windows to that region. With a large, high-quality data set, this is less important—but it 
can help with poor data sets. If the 'CLEAN' window is too small, it will be very hard to 
get a good image. 'CLEAN' will try to account for the flux density outside the window by 
putting negative features and other obvious artifacts in the window. I know of an example 
where an observer could not get a good image until he saw another image of the same 
source that had extended emission well outside his 'CLEAN' window. When he opened the 
window in the correct direction, convergence was obtained quickly. 

There are several antenna dependent factors that can be used to control self-calibration 
programs. One is the weight given to each antenna. This allows one to emphasize certain 
antennas in the fit based on, for example, the reliability of the a priori calibration (mostly 
useful for amplitudes). Another is a restriction that can be placed on the range over which 
the amplitude calibration of each antenna is allowed to vary. This allows one to force some 
antennas to remain nearly at their a prtort values while others vary. With the wide range 
in the quality of the a priori calibration typical in VLBI, this can be very useful. Finally 
there is a smoothing time-scale for the amplitudes from each antenna. This allows one to let 
some antennas vary on a point to point basis while others only change very slowly. Again 
it allows one to utilize information on the quality of the calibration of each antenna. 
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As must be clear by now, there are lots of parameters that can be adjusted while 
attempting to obtain a good image. There is no set procedure that is guaranteed to work. 
The above discussion should be enough to get started, but each case is likely to require a 
slightly different method. Experience helps, but even with it, many false starts and very 
many iterations are often made before a good image is obtained. On the other hand, many 
images converge quickly with minimal fiddling of parameters. This whole area is clearly in 
need of some more advanced algorithms that make the imaging easier and more reliable. 

An example of the imaging process is shown in Figure 13-3. 

Figure 13-3a is the result of the first pass of self-calibration with a point source starting 
model. The image is obviously rather bad, but at least it is not a point, a definite position 
angle has been established and some asymmetry has been introduced. Figure 13-3b shows 
the results after 11 iterations. The source is now much more compact and asymmetric. 
The noise level is lower (note the lowest contour level). There are still hints of problems, 
however. There are some uncomfortably deep negative features to the east and there are 
suspicious, low level features off the line of most of the features. Also, comparison with 
images made at other times casts suspicion on the eastern-most feature that appears as a 
bulge on the side of the strongest feature. But overall, the image is very good on the scale of 
many VLBI images that are made so there is a temptation to stop and declare this to be the 
result of the experiment. As it turns out, that would be a big mistake. The eastern-most 
feature, that in this source would be treated as the core and would be the feature used to 
align this image with images made at other epochs, is not real. 

The best indication that there are still problems with the image in Figure 13-3b is not 
seen in the image plane at all, but rather in comparison of the predicted and calibrated 
data. 

Figure 13-4 shows the calibrated phases (crosses) and predictions of the 'CLEAN' 
components of the image (smooth lines). On one baseline (HSTK-OVRO—Haystack to 
Owens Valley), the prediction misses the data by a small but significant amount. A couple 
of other baselines, not displayed here, showed somewhat smaller problems. These offsets 
may not appear to be very significant but they are—the prediction should be much better 
and was for the final image. In this case, the problem could not be fixed by further efforts 
at self-calibration. Closer examination of the fringe fitting results revealed that the clock at 
one station (not HSTK or OVRO!) was very poor and that too long and integration time 
had been used. Also there were some problems with data at times when the raw fringe rate 
or delay rate were near zero. After redoing the fringe fit and editing some more data, the 
image of Figure 13-3c was obtained. This image is much better. It shows low level features 
that are far from the main emission region and that have been confirmed by observations at 
other frequencies. Also, it contributes to a consistent story about the evolution and motions 
of components in the source. 

The data displayed in Figure 13-4 demonstrate the problem of the wide variation in 
signal-to-noise ratio for VLBI data. Clearly the HSTK-VLA data is very much better than 
the NRL-GRAS (Maryland Point to Fort Davis) data at this frequency. In fact, when the 
scatter in phase is as large as it is on the NRL-GRAS baseline, it may be best to edit out 
the baseline entirely. 

The example of Figures 13-3 and 13-4 was something of an extreme case in the trouble 
encountered during imaging. However it was not because of limited data—the Mark H 
observations were of a 3 Jy source and involved 11 stations. It should have been easy. 
Clearly the procedures are not yet routine. 
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Figure 13-3. VLBI images of a compact continuum source (3C 120) at 3 stages of the imaging process. 
(a) The first iteration. One self-calibration iteration, phases only, has been done using a point source model. 
The   contours   are   at   -35,   35,   69,   139,   208,   278,   347,   417,   486,   556,   and   625   mJy/beam. 
(b) After 11 iterations. This was as good an image as could be made without fixing some problems in the 
data as discussed in the text. The extension to the east (left) of the brightest feature is not real. The contours 
are -10, -5, 5,10, 20, 30, 40, 50,60, 70, 80,100,150, 200, 250,300, 350, 450, and 550 mJy/beam. Note that 
the lowest contour in (a) is between the fourth and fifth contour here—significant progress has been made. 
(c). The final image made after fixing problems in the data and doing many more iterations of the self- 
calibration loop. The image is now much better and significant structure has appeared to the west of the 
bright regions. The fine details of this structure are in some doubt but general features such as the emission 
feature at about 0.05 arcseconds are confirmed by independent observations at a lower frequency. The 
contour levels are —4, 4, 8, 13, 19, 27, 37, 52, 72, 100, 139, 193, 268, 373, 518, and 720 mJy/beam. 
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Figure 13—4. A display of data phases and phases predicted by the 'CLEAN' components of the image 
of Figure 13-lb for 6 baselines. The crosses are the data, the smooth curves are the model. Note the 
systematic offset on the HSTK-OVRO baseline. Also note the wide range of signal-to-noise ratio on the 
various baselines. 

7.   SPECTRAL LINE CALIBRATION 

Spectral line data are traditionally handled rather differently from continuum data. 
It is not possible to fit for residual delays using spectral line data, because phase slopes 
across the band are likely to reflect frequency dependent source structure—not just delay 
errors. It might be possible to use an iterative procedure involving imaging two or more 
well separated channels to solve for a delay term, but such a method has not yet been 
developed. However, since the spectral information is to be retained because it contains 
the science, there is no need to fringe fit to allow averaging in frequency (delay). The delay 
does have to be calibrated eventually in order to make synthesis images without dealing 
with phase offsets. This is usually done by observing continuum sources relatively often and 
fringe fitting them. There is a commonly used mapping method—fringe rate mapping— 
that doesn't care about constant phase offsets, so the delay errors don't necessarily need to 
be calibrated1. 
1The word "map* is used when discussing this method. The method, as commonly used, gives the spatial 
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Recall from Lecture 3 that one of the factors that degrades VLBI data is the so-called 
fractional bit error. It is the result of the fact that the delay cannot be set finer than one 
bit, so that there is a constantly changing phase slope of up to ±90° across the band. For 
high delay rates that give high bit update rates, this just causes a small signal-to-noise ratio 
loss for continuum data. However it causes a frequency dependent loss for spectral line data 
that can be very large at the edge of the band. The best way to deal with this is to only 
integrate for a time short compared to the bit update rate, and then transform and apply a 
phase slope, to remove the known delay error due to the inability to set exactly the desired 
delay. The NRAO VLBI correlator in Charlottesville can do this, except on the very longest 
baselines, when the bit updates happen faster than the minimum integration time of 0.2 
seconds. For those cases, one just has to live with the signal-to-noise ratio degradations, 
although the effects are known and amplitude corrections can be made. 

For a typical spectral line experiment, the exact velocity range covered by each spec¬ 
trum will depend on the Doppler shift produced by the Earth's rotation and orbital motion 
and on the local oscillator settings. These shifts can be significant in that they can corre¬ 
spond to a significant fraction of the width of a spectral line. Therefore, before imaging and 
before any calibration steps that depend on the source spectra, they must be removed. Each 
spectrum can be shifted to a common velocity by transforming to delay space, applying a 
phase slope, and transforming back to frequency space1. 

Fringe rate residuals need to be calibrated and removed, regardless of the imaging 
method. This could be done by solving for the fringe rate residual of one channel as if it 
were a continuum source. However, for many spectral line experiments, there is very strong 
signal in at least one channel. The traditional way of removing fringe rate residuals is to 
rotate the phases of a reference channel to zero, and rotate all other channels by the same 
amount. This is known as phase referencing. If the reference channel has structure, it is 
possible to image that structure using the continuum imaging techniques and then rotate 
the channel phases to match the image. Phase referencing does more than just reduce the 
fringe rates; it actually calibrates the phases of all channels, except for any phase slope due 
to a delay offset. If a reference channel image has been used for final phase referencing, and 
if continuum sources have been used to calibrate the delay offsets, then the phases of all 
other channels are fully calibrated and can be used directly to make images without self- 
calibration. These images will all have the correct position relative to the reference channel 
image. Self-calibration could be used to improve the dynamic range of the images, much 
as it is used to improve images made with well calibrated data from connected-element 
interferometers, but it is not essential. 

The overall amplitude calibration (i.e., a constant factor for each cross-power spectrum) 
can be done in the same way as for continuum data. This is the most effective method for 
weak sources. However, for strong sources, such as most masers, there is a much better 
method that uses the autocorrelation spectra for each antenna as a function of time. The 
method takes advantage of the fact that the autocorrelation data are subject to the same 
effects that affect the cross correlation data. This includes pointing, atmosphere, receiver 
fluctuations, etc. 

To use the autocorrelation spectra for calibration, they must be calibrated themselves, 
in the sense that the bandpasses must be removed. A raw autocorrelation spectrum will 
include the noise power, so it will look like the passband of the final filter, with the source 
signal added on top.   The noise must be removed, usually by observing off-source near 

locations of spectral features, but gives no information on their shapes. Positions can be plotted on a "map" 
without other information, but it is hard to call something with no shape information an "image". 
1The VLBA correlator will be able to do this on-line. 
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the time of the on-source observation and then subtracting the off-source spectrum from 
the on-source spectra. Since many maser sources can contribute significantly to the total 
system noise, the on- and off-source spectra should be scaled by the system temperatures 
prior to subtraction. If the system temperature information is not available, the spectra 
can be scaled so that frequency channels that do not contain signal average to zero. 

For Mark H data, and for good absolute calibration of any data, it is necessary to divide 
all cross- and autocorrelation spectra by the normalized bandpasses. For cross-correlation 
spectra, the geometric mean of the two bandpasses involved should be used. This removes 
any channel to channel variations in sensitivity. It is especially important for Mark H 
because the bandpasses axe poorly matched (yes, this causes closure errors for continuum 
data). One doesn't want such fluctuations to show up as spurious structures in the images. 

Once the autocorrelation spectra have had the bandpass effects removed, some of the 
best should be averaged and calibrated in an absolute sense (i.e., in Jy rather than corre¬ 
lation coefficients). This well calibrated spectrum now serves as a template. For all other 
autocorrelation spectra, the scale factor needed to match each spectrum to the template is 
derived using a least-squares fit. That scale factor is just the antenna gain. The geometric 
mean of the factors from the two antennas at each end of a baseline is then used to calibrate 
the cross-power spectra. Of course, there will be a constant term in addition to account for 
effects of the fringe rotator that don't affect the autocorrelations. 

One final calibration would be useful, although it is not traditionally done for VLBI. 
That is to calibrate the phase passbands. This is important if the instrumental phases are 
not flat across the passband. In fact they are not, but the deviations from flat are only a 
few degrees and, for the low dynamic ranges achieved so far, are not important. They will 
become important eventually. The best way to do this calibration is probably to determine 
the phase passband using observations of a strong continuum source. 

Note that there is more information available for spectral line calibration than for 
continuum calibration, so, although there are more steps, it can be easier and more powerful. 
For this reason, synthesis images were made from spectral line data at 1.35 cm long before 
the advent of amplitude self-calibration opened the possibility of continuum imaging at that 
frequency. At 1.35 cm, most of the telescopes have low efficiencies and poor pointing. It is 
not uncommon to see factor-of-two amplitude fluctuations in a matter of minutes, especially 
at scan boundaries, when the pointing is checked. The autocorrelation spectra allowed 
calibration of such problems. Until methods were developed to determine amplitudes from 
the data, continuum results at high frequencies were very poor. The spectral line calibration 
has the great advantage that, after one channel is imaged without the benefit of calibrated 
phases, all other channels have calibrated phases, and imaging is straightforward. Often 
there is at least one channel that contains a point source or simple double, so even imaging 
the first channel may be easy. 

8.   SPECTRAL LINE IMAGING 

In the last section, it was concluded that imaging of spectral line VLBI data is easy. 
What was meant is that one does not have the complex art of trying to obtain a good 
image with phases that obey the closure relations but axe otherwise uncalibrated. What 
was not mentioned is that the sources often contrive to make the imaging very difficult, by 
being spread over regions of sky often four orders of magnitude larger than the resolution. 
This is especially true of the water masers at 1.35 cm wavelength. The resolution of an 
intercontinental experiment at this wavelength is about 0.2 milli-arcseconds, and the masers 
are usually spread over 2 arcseconds and sometimes as much as 30 arcseconds. Needless to 
say, an image with 3 points per beam covering twice the field containing the source—the 
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Figure 13—5. A spectrum of a complex water maser source (W49 — Walker, Matsakis, and Garcia-Barreto 
1982). There are about 1500 spectral channels in the spectrum. The solid line shows the total power received 
by a single antenna while the dots show the portion of the total power that was successfully mapped in a 
3 station experiment using fringe rate mapping techniques. There is clearly a lot of missing flux density in 
the maps indicating that much could be learned with proper synthesis observations but, as discussed in the 
text, the volume of data in such observations is extreme. 

typical imaging parameters—is out of the question for any computer. It would take over 7 
Gbytes just to store the image of one channel in the 2 arcsecond case! To compound the 
problem, the masers often have very complex spectra that require images to be made of a 
very large number of channels. 

An example of such a complex maser source is shown in Figures 13-5 and 13-6. 
Figure 13-5 shows the spectrum. The maser region consists of hundreds of separate 

features, each a km s-1 or two wide and spread over 400 km s-1. The spectrum shown 
contains about 1500 frequency channels, each of which must be mapped. 

Figure 13-6 shows the layout of the source derived by fringe rate mapping (see be¬ 
low). The features are spread over more than two arcseconds while the resolution of the 
experiment is less than 1 milli-arcsecond. This display only attempts to show the rough 
distribution and intensities of features. Blow ups of individual regions are needed to show 
all the information. 

One consequence of the large fields of view, measured in beams, is that the data 
cannot be averaged very long. Typical water maser cases are limited to one or two seconds 
integration. Orion (30 arcseconds) is limited to 0.2 seconds, and less might be preferred. 
These short integration times, combined with the large number of spectral channels needed, 
lead to very large data sets. One reason that more spectral line experiments haven't been 
done, and that some of those that have are taking so long to reduce, is just that the data 
volume is overwhelming. 

Clearly, clever methods must be found to make the imaging problem reasonable. To 
a large extent, the sources consist of a small number of point sources at each frequency. 
Calculating and storing 7 Gbytes, just to determine the parameters of a handful of separate 
features, is rather inefficient. The method that has been used most is called fringe rate 
mapping. It not only doesn't use a grid, but also it only uses the rate of change of phase 
rather than the phase itself, so it is not sensitive to delay offsets. If the amplitudes are at 
all stable, it can be done on nearly uncalibrated data—only the phase referencing step is 
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Figure 13-6. The fringe rate map of the water maser source whose spectrum is shown in Figure 13-5. The 
main concentration of features is spread over 2 arcseconds with a few features over a larger region. The sise 
of the symbols represents the flux density of the features. The resolution is better than a milli-arcsecond so 
it is difficult to display the full spatial dynamic range in one image. The large ratio of resolution to source 
area leads to unreasonably large images if straightforward synthesis imaging is used. Either a gridless 
method such as fringe rate mapping or model fitting must be used, or the imaging must be restricted to 
small fields around individual features. 
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Figure 13—7. The lower plot is a fringe-rate spectrum of one velocity channel for the source in Figure 
13-5. There are four peaks, each corresponding to a separate feature on the sky. Each peak confines its 
corresponding feature to lie along a line on the sky. The upper plot shows such lines from many scans. 
The peaks in the lower plot and their corresponding lines in the upper plot are labeled A-D. There are 
clearly four separate features at the velocity of these data, including one (corresponding to line D) that is 
sufficiently far from the phase center so that smearing of the fringe-rate peaks will prevent derivation of an 
accurate position. The window in which reasonable positions can be found is about 0.5 arcseconds in R.A. 
and 2.0 arcseconds in declination for this low declination source with 20-min integrations. The window can 
be moved by shifting the phase center of the data. Taken from Walker (1981). 

critical. The method is based not only on the fact that there is a phase offset between any 
two features separated on the sky, but also that this phase offset changes with time. The 
rate of change is the relative fringe rate; it can be as high as 0.2 Hz per arcsecond at 1.35 
cm, on intercontinental baselines. 

The first post-calibration step of fringe rate mapping is to calculate fringe rate spectra 
for each channel. The choice of the interval of data over which to calculate each fringe rate 
spectrum is based on a tradeoff. Long integrations give higher signal-to-noise ratio and finer 
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fringe rate resolution. However, relative fringe rates change with time, so the fringe rate 
peaks will be smeared if the integration time is too long. Typically, times ranging from a 
few minutes to an hour are used. 

Next, each fringe rate spectrum is examined for peaks, and the parameters of each 
peak are extracted. An automatic program is available to do this. Each such fringe rate 
peak constrains the feature to which it corresponds to lie along a line on the sky. The lines 
for all peaks from one fringe rate spectrum are parallel. If the lines from all fringe rate 
spectra for a channel are plotted, it is easy to pick out by eye the places where many lines 
intersect. An example of a fringe rate spectrum and of the plotted lines corresponding to 
all of the fringe rate spectra for a single channel from a 3 station experiment are shown 
in Figure 13-7. The trick is to select automatically all the peaks that correspond to one 
feature and use them in a least-squares fit for the position of the feature. This is complicated 
by the fact that sometimes features overlap in fringe rate space, sometimes some features 
aren't seen in all fringe rate spectra—for noise or dynamic range reasons, and sometimes 
the automatic peak finding routine finds false peaks. A program has been written that tries 
to disentangle all this, to select the fringe rate peaks that correspond to each feature. It 
should be checked by plotting the lines and checking by eye. Probably more sophisticated 
mathematical techniques could be used if someone would take the time to code them. 

The accuracy of positions found with fringe rate mapping is a few times worse than 
what can be achieved with synthesis imaging. The sensitivity of relative fringe rate to a 
position offset is much lower than the sensitivity of relative phase. The accuracy will depend 
both on the sensitivity to position offsets and on the accuracy with which the location of 
each fringe rate peak can be determined. 

The alternate mapping technique is to use a low resolution synthesis image or a fringe 
rate map to identify the locations of features, and then to make images of small fields around 
each one1. This method will give full resolution, in case there is any interesting structure in 
the individual features. However, it will miss any features not found in the low resolution 
maps which are likely to be based on smaller amounts of data and to have lower dynamic 
range. 

It would be possible to devise a gridless method based on relative phase that would 
obtain much higher position sensitivity than the fringe rate method. However it would 
either require data in which the phase slopes have been removed or a method for fitting for 
delays along with position. Perhaps the nastiest problem would be that the 2x ambiguities 
in phase would have to be resolved. Fringe rates are not subject to such ambiguities. 

Once the maps are made, one is faced with all the usual problems of how to display 
spectral line data. But that is the subject of another lecture. 

9. HAZARDS 

In this Section I will note again some hazards that I have already mentioned, and 
discuss a few new ones. 

The digital fringe rotation and delay setting causes losses of signal-to-noise ratio, as 
discussed in Lecture 3 and as mentioned above. However they can also cause much worse 
problems, under certain circumstances, if proper corrections are not made. Those circum¬ 
stances involve short baselines and certain times when either the raw fringe rate or delay 
update rate are small. These are not the residual rates discussed under fringe fitting, but 
the total rates removed by the processor. If the fringes go through less than a few turns, or 

1The AIPS program MX is well suited to this. 
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the delay change is less than a small number of bits during an integration time, the degra¬ 
dations due to the effects will be different from the statistical effect at large rates. The 
magnitude of the offsets tends to follow something like a S1]~ law, so it takes several turns 
or updates for them to become insignificant. This is easy to imagine by considering the zero 
fringe rate case or the constant delay case. For these cases, there is no degradation, so when 
such data are combined with data from longer baselines, there can be large closure errors. 
The effects are calculable, so data in one of the dangerous regimes should be corrected or 
deleted. For the VLBA, all data will be corrected. Baselines shorter than about 500 km 
may show problems for significant amounts of time in 18 cm Mark II observations. The 
effects scale such with frequency and bandwidth. Higher frequency observations have higher 
fringe rates, so slow fringe rate problems only occur on shorter baselines. Wider bandwidth 
observations have faster delay update rates, so the slow delay-rate problem occurs only 
on shorter baselines. Note that the bandwidth that counts is the one that determines the 
sampling rate. For multi-band data such as Mark III, the effect depends on the individual 
channel bandwidth. 

Finally, I emphasize again the need to for effort to understand the reliability of an image. 
Remember that self-calibration likes symmetric structure, so be suspicious of counterjets 
and of other symmetric features. Also remember that the appearance of an image alone 
may not be a reliable quality indicator, especially with small amounts of data. It is worth 
checking both the appearance and the fit of the significant parts of the image (e.g., 'CLEAN' 
components) to the data. If anything looks suspicious, try varying the imaging parameters 
or even starting over with a different initial model or different u-v range, or something. See 
how well features repeat. 
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14.   Image Analysis 

EDWARD B.  FOMALONT 

By image analysis I shall mean the general procedures and techniques which are used 
to interpret and parametrize useful information from an image or a set of images. An 
essential part of this analysis is determining the reliability and sensible error estimates to 
associate with the intensity distribution and derived quantities. This analysis concept is, 
clearly, somewhat vague and dependent on the nature of the observations and the type of 
questions which motivated the observations. Nevertheless, some general analysis techniques 
are useful to discuss. I will emphasize the philosophy of most of the techniques and not 
go into implementation details except when necessary. VLA software will be mentioned in 
connection with specific algorithms. 

I shall assume that the set of images has been appropriately processed. For aper¬ 
ture synthesis, this processing includes data editing and calibration (Lecture 4), as well 
as deconvolution of the point spread function (Lecture 7) and self-calibration (Lecture 9), 
if necessary. Apart from those defects which are peculiar to aperture synthesis, much of 
the material of this Lecture should be applicable to images from a variety of astronomical 
instruments. 

Image display, covered in Lecture 15, is an important aid in image analysis. For simple 
images, grey-scale TV-oriented displays and contour diagrams are suitable visual aids for 
determining the general features in the intensity distribution which are amenable to analysis. 
For complicated images, particularly sets of images over frequency, subtle and ingenious 
displays are required to perceive faint features and morphologies. Once recognized, these 
features can be analyzed and parametrized in a manner which is astronomically useful. 

Throughout this Lecture, wherever an image analysis function is described I will also 
mention the name of the program implementing the function in the NRAO Astronomical 
Image Processing System (AIPS). 

1.   IMAGE MODIFICATION 

Several types of image modification are useful in analysis and display. Two that are 
described in this section are image convolution to change the apparent resolution, and image 
interpolation to change the grid network on which the intensities are defined. Other general 
types of image correction are also mentioned. 

1.1. Smoothing an image. 
The calculated intensity distribution represented by an image is generally a smoothed 

version of the true intensity distribution. One is at liberty to modify the resolution of the 
image in order to better discern very small or very large features. Figure 14-1 shows a con¬ 
tour display of a radio image which contains large-scale and fine-scale features. It is obvious 
that different image parameters are better suited for measurement at different resolutions. 
The overall appearance of the complex features is seen in image (a), the integrated intensity 
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Figure 14—1.   Relative emphases of image features achieved through use of differing resolutions,   (a) 
O'/S x 0'/4 resolution; (b) 2'fO x 2'/0 resolution; (c) 075 x 0'/4 resolution, with high-pass filtering. 

is most reliably calculated from image (b), and the parameters associated with the bright 
feature are best determined from image (c). 

There are several methods which may be used to modify the resolution of an image. 
The most straightforward method is to convolve the image /(/) with an appropriate kernel 
function K(l), to obtain the modified image /'(/). For simplicity I shall assume that the 
intensity is defined on a regularly spaced grid, /», and in one dimension the convolution is 

* 

Some examples of convolution functions are 

(14-1) 

f-il 
0 

1 

(1) 
1.0 

m*-h\) 
(2) 
1.0 

(3) 
1.0 

i 0.5 0.9 -0.4 
2 0.0 0.5 0.3 
3 0.0 0.3 -0.2 

Kernel (1) produces a slight smoothing called Hanning; kernel (2), a heavier smoothing; 
and kernel (3) will sharpen some of the features. Each kernel is symmetric. Extensions to 
n dimensions are obvious (AIPS tasks CONVL, SMOTH). 

A related method of convolution uses Equation 14-1 transformed into spatial frequency 
space, u. If V^u), V(u), and k(u) are the (inverse) Fourier transforms of /'(/), /(/), and 
K(l), respectively, then the convolution formula becomes 

v'(u,) = v(«,)fcK) • (14-2) 

The expression A;(u) can be interpreted as a weighting factor in spatial frequency space. This 
method is easily applicable to those instruments where the (inverse) Fourier transform of 
the image is directly measured (use of UVTAPER in AIPS tasks UVMAP, MX). And, even 
with the extra overhead of two Fourier transforms, many convolutions are more quickly 
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calculated in this manner, using Equation 14-2. For example, high-pass filtering can be 
accomplished by setting k(uj) = 0 for uy < U, k(uj) — 1 for uy > U. The associated 
kernel, K(li), is an oscillating function similar to kernel (3), except that many more terms 
must be kept in the convolution in order to approximate an accurate high-pass filter. 

The third convolution type is associated with the deconvolution/reconvolution methods 
that are used in aperture synthesis to remove that distortion in an image which is produced 
by non-uniform Fourier sampling (Lecture 7). These methods decompose an image into a 
set of point components and then reconvolve this set of components as desired. In principle, 
this set of point components can be smoothed to any desired resolution (AIPS tasks APCLN, 
MX, VM). 

Unfortunately, the deconvolution needed for this third method may not work in a 
uniform manner across the image and can produce an image which is of variable resolution. 
This will happen if the deconvolution does not recover all the flux in the image field of 
view. For example, in the 'CLEAN' algorithm, if the subtractions are terminated while 
large-scale emission is still present in the dirty image, the restored components will have a 
resolution specified by the 'CLEAN' beam, while the unsubtracted emission, generally of 
large angular scale, will have a resolution specified by the dirty beam. The later smoothing 
will give different results with these two different beams. Thus, this simple and inexpensive 
convolution method ought to be used only if the image contains strong, isolated features 
with little extended emission, and has been fully deconvolved. Otherwise, the use of the 
first two convolution methods is recommended. 

1.2. Interpolating an image. 

The image intensity distribution is generally defined over a rectangular lattice which 
is often specified at an early stage of reduction. The calculation of the image intensity at 
an arbitrary point or on a new grid of points is necessary for a host of image analyses and 
displays. Several obvious applications are determining the positions of isolated features, 
registering a set of images of the same field, and mosaicing a set of small images into one 
large image. 

If /(/,) represents an intensity distribution defined over a grid, then the interpolated 
intensity /'(/'), where /' is at an arbitrary point, is also given by Equation 14-1 with lj 
replaced by /'. If the intensity distribution is band-limited—i.e., contains no frequencies 
higher than U—then a perfect interpolation kernel is K(z) = "a^ff*- The Fourier trans¬ 
form of this kernel, k(u), has the properties k(u) = 1 for u < U, k(u) = 0 for u > 27; so 
that V(u) = V'(u) and /(/) = /'(/). If U&l ~ \, then this interpolation is expensive to 
calculate. If the image is well-sampled—that is C/A/ <C \ —then the adjacent points are 
not independent, and much simpler kernels will produce an accurate interpolation (AIPS 
task LGEOM). Examples are truncated sine functions, splines, the Everett linear function, 
etc. (Weast and Selby 1975). There is, however, a slight change of resolution with some of 
the interpolation functions. 

1.3. Primary beam correction. 

The antennas which comprise an array are sensitive to radiation coming from a small 
region of sky. As discussed in Lecture 1, correction for the relative sky sensitivity across 
the image (the primary beam correction) is generally made after the best-quality image has 
been obtained. If the image contains only a few bright features, the correction need only be 
applied locally. Other imaging techniques have similar sensitivity variations over the image 
area. 
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1.4. Other image defects. 
Many second-order image corrections were discussed in Lecture 8: corrections for band¬ 

width smearing, integration time smearing, non-coplanar aperture sampling, and grid curva¬ 
ture. It is generally very expensive to correctly modify an image for these defects. However, 
minor corrections to the parameters of discrete features can be made in order to compensate 
for these defects. An example will be discussed in Section 2.1. 

2.   PARAMETER ESTIMATION OF DISCRETE COMPONENTS 

Images often contain bright, isolated features—components—whose essential charac¬ 
teristics can be represented by a few well-defined parameters. Accurate error estimates can 
often be derived for these parameters, and the features can be easily compared at differ¬ 
ent frequencies and different epochs. The obvious properties which are useful for discrete 
components are the integrated and/or peak intensity, the mean position, and the size. In 
two-dimensional image analysis there are six relevant parameters (one intensity, two posi¬ 
tion coordinates, and three size descriptors). The knowledge of the image resolution is also 
necessary in order to interpret the intensity and the size of the component. 

The simplest set of parameters defining the component properties consists of the mo¬ 
ments of the distribution (AIPS tasks MOMNT, MAXFIT). In one dimension the (first 
three) moments are 

F — S A'*) » Integrated Intensity, 
' = y £ '^('*) > Mean Position, (14-3) 
*=£E('<-')2/('<),  Width, 

and they have been normalized in the usual manner. Extension to two dimensions is 
straightforward. Higher moments can be defined, but they are of little use for most as¬ 
tronomical applications. 

2.1. Model fitting. 
It is often more convenient to solve for these parameters in the framework of a specific 

model intensity distribution. For components which are not too resolved, the point spread 
function is generally chosen. Somewhat extended features can be decomposed into several 
model components, suitably displaced. Finally, images of extended objects with known 
shapes, like planets or stars, can be compared, for instance, to a uniformly-illuminated 
circular disk with several appropriate free parameters. After selection of the appropriate 
model intensity distribution, M(/{), the free parameters of the model are determined by the 
method of maximum-likelihood. If one assumes that the errors are distributed normally, 
then the method is equivalent to minimizing the variance, V, 

V = X;(Af(/.) + 2-/(/i))^ (14-4) 

The zero offset, Z, which has been added in here is often useful to include as a free parameter. 
Many fitting techniques are available, and these depend on the analytical tractability 

of the model functions. Since the free parameters are not generally orthogonal, even in 
the one-dimensional case, nonlinear fitting methods must be used. Most methods need an 
initial guess of the model parameters to converge quickly and at the deepest minimum in 
V. An additional parameter, the zero-offset in the fitted region, should be included, since 
many image defects can produce a local bias near a discrete component. 
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INPUT MAP RESIDUAL MAP 

84 86 88 90 84 86 88 90 
823 0 0 0 0 0 0 0 0 823 0 0 0 0 0 0 0 0 
822 0 0 0 0 0 0 0 0 822 0 0 0 0 0 0 0 0 
821 0 1 0 0 0 0 0 0 821 0 1 0 0 0 0 0 0 
820 0 0 0 0 0 0 1 0 820 0 0 0 0 0 0 1 0 
819 0 -1 0 1 1 0 0 0 819 0 -1 -1 0 0 0 0 0 
818 0 1 4 8 5 0 0 0 818 0 0 -1 -1 0 -1 0 0 
817 0 3 20 38 21 3 0 0 817 0 0 0 0 1 0 0 0 
816 0 4 38 78 46 8 1 0 816 0 -1 0 0 0 0 1 0 
815 0 4 35 76 48 9 1 0 815 0 -1 0 0 0 0 0 0 
814 0 2 15 35 24 5 0 0 814 0 0 0 0 0 0 0 
813 0 0 3 7 4 1 0 0 813 0 0 0 -1 -1 -1 0 0 
812 0 0 0 1 0 -1 1 0 812 0 0 0 1 -1 -1 0 0 
811 0 0 0 1 1 0 0 0 811 0 0 0 1 0 0 0 
810 0 0 0 0 1 0 0 -1 810 0 0 0 0 0 0 -1 
809 0 0 0 0 0 0 0 -1 809 0 0 0 0 0 0 0 -1 
803 0 0 0 0 -1 -1 0 0 808 0 0 0 0 -1 -1 0 0 

Residual of fit -    0.39 
Peak Comp.  Intensity - 85.0±0.2 
Integrated Intensity - 97.7*0.7 
Position -      87.10±0.01,   815.53*0.01 
Comp.   Size - 2.73*0.01 z 2.10*0.01 in    7.3*0.6 
Resolution - 2.50 z 2.00 in    0.0 
Intr.   Size - 1.16*0.02 z 0.55*0.03 in 23.8*1.7 

Figure 14—2. Image fit to a bright component. 

An example of a fit to a strong feature is shown in Figure 14-2 (AIPS tasks IMFIT, 
JMFIT). The feature is only slightly resolved. The residual image suggests that the fit 
is reasonable: the scatter of points near the component is about the same as that over 
the entire region. For features whose peak intensity is less than about 5 times the r.m.s. 
fluctuations, most model fits will add bias into the parameter estimates. The detailed 
corrections depend on the character of the noise and the type of fitting algorithm. 

Correction for image defects, many of which were discussed in Lecture 8, can be applied 
directly to parameters from the model fits. These effects include the primary beam distor¬ 
tion, bandwidth smearing, integration time smearing, and distortions of the image grid. 
For example, the component which was fit in Figure 14-2 is displaced 70" in position angle 
30° from the phase center of the observations. With a 25 MHz bandwidth the calculated 
bandwidth smearing is 1.2 units in the direction of the displacement. Thus, the effective 
resolution of the image at the location of the component is 2.5 X 2.0 units in position angle 
0° from the point spread function, plus a radial smearing of 1.2 units in 30°. The size 
of a point source would then be about 2.7 x 2.1 in position angle 10°. The component 
thus is nearly unresolved, with a size < 0.3. The convolution of the radial smearing and 
the Gaussian point spread function produces a final shape which is not precisely Gaussian. 
More exact methods of analysis are possible. 

The fitting of extended components which require several model components for an 
adequate description can lead to ambiguous results. The parameters (up to 12 for two 
Gaussians) can be strongly coupled, especially the peak intensity and the size parameters, 
so that particular values and error estimates may be in error even if the residual image is 
satisfactory. Less ambiguity will occur if some of the free parameters are held constant. 

2.2. Errors of the parameters. 
Error estimates which are obtained directly from most fits should be viewed with 

skepticism. There is generally a built in assumption that the image errors are stochastic 
and independent, which may not be valid for a variety of reasons. Let R be the post-fit r.m.s. 
error associated with the pixels in the image. Then the minimum errors of the parameters 
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for most models are approximately, 

AZ = <R/3, Zero Bias, 
AP = R, Peak Intensity, 
AF = y/R2-\-(AL/a)2, Integrated Intensity, (14-5) 
Al = R(r/2P, Position, 
Aa = Ra/P, Width. 

The above expressions are only rough guides, and the true errors may be larger. When 
fitting in two dimensions the same expressions apply. 

2.3. Fitting models to the visibility data. 
If the image quality is poor, it is sometimes preferable to compare the visibility data 

directly with the (inverse) Fourier transform of a well-defined, a priori model. Reasons for 
poor image quality are: 

(1) the paucity of input data, 
(2) the inaccuracy of the measured visibility phase, and 
(3) the distortions of very large features in the image. 

Examples of this type of fit are the determination of the positions of strong isolated com¬ 
ponents using only the visibility phases, fitting the visibility amplitude data for a planet or 
star (i.e., speckle data) to a disk model or the outer portion of the Sun to a limb model, and 
determining the size of small features with few visibility data samples (AIPS task UVMOD). 
However, these model fitting techniques are not useful for data of low signal-to-noise ratio, 
and the ambiguity of the fit to complicated models is often a problem. With a reasonable 
amount of data and good phase stability, parameters can be obtained from the image as 
accurately as from fits to the visibility data. 

3. PARAMETER ESTIMATION FOR EXTENDED SOURCES 

3.1. General problem. 
Parameters describing extended features are difficult to obtain and are ambiguous to 

define. Extended features often contain sub-components of various sizes and shapes, and 
there are often long, thin, curved features. Attempts to fit such a complicated distribution 
with a myriad of Gaussian components are a waste of computing resources. The fitting of 
the brighter sub-components does make sense, and the discussion of the preceding section is 
relevant. Intelligent image display (Lecture 15) at this stage is needed to determine which 
aspects of the image or set of images to analyze. Of course, there are many morphological 
properties of some images which cannot be parametrized, and a suitable display is all that 
is needed in these cases. 

Comprehension of the properties of a complicated feature is usually enhanced if the 
dimensionality of the analysis of the feature can be decreased. For example, one-dimensional 
analyses of filamentary features are useful, and various distributions along lines parallel and 
perpendicular to the axes of these features can lend considerable insight. A radio image 
of a source with a jet is shown in Figure 14-3 (left). A one-dimensional analysis has 
been made along lines perpendicular to the jet axis at increasing distances from the core 
(Killeen, Bicknell, and Ekers 1986). The model chosen for the jet emission was a three- 
dimensional circularly symmetric cylindrical intensity distribution in the plane of the sky. 
The distribution was Gaussian-shaped, with an unknown peak intensity on the axis, and 
an unknown width.  The best values of the intensity and width were determined from a 

220 



14.  Image Analysis 

20 cm 10.4" Toto Intensity 
200 J i 1             1 1 

^52? 
100 - 

^ p?^^~ 
0 - 

Jgffl/'"ff 

- 

-100 - Jt - 

-200 

"/ 

a - 

-300 .0 
1 i 1                  1 1 1           1 

8 (Arcseconds) 

20 cm Deconvolved Jet Widths 

50 

i        i        i        i        i         i 

.     A) Western Jet 
•  3.2" 
• 10.4"                                            e       ^ 

40 —                                                                                                                                                                 •"    - 
«>o                              0 
o                         o        o       0 

30 o      0o<»             0                  0- 
0 

20 

i 10 - ^ 
c • 
o •• 
S   0 !/> 
u 

<50 _     B) Eastern Jet                         ^o0000**   - 
■o • 3.2" 

ol0.4"                             »0 

40 _                                                            o 
"of 

30 aoo0    "c" 
/    <^P0 

20 0^ 
Js 

10 f 

0       50     100    150   200    250    300   350 
9 (Arcseconds) 

Figure 14—S. An example illustrating the analysis of an image of a radio jet. (Left) A contour display of 
the total intensity. (Right) Model fits of the jet width. 

fit of the model to the image data, after the data had been interpolated along appropriate 
lines across the jet axis (AIPS task SLICE). The derived width estimates were corrected for 
the resolution of the image. Other examples are given in Perley, Bridle and Willis (1984). 
Features with other kinds of symmetry can be analyzed in a similar manner. An example 
is the determination of the ellipticity of a galaxy image as a function of distance from the 
nucleus (Killeen, Bicknell, and Ekers 1986, Appendix A). 

3.2. The integrated intensity of an extended feature. 
The integrated intensity of an extended feature, along with its error, are useful pa¬ 

rameters. Because an integrated intensity estimate usually is derived from data covering a 
large area, the estimation of integrated intensity is very sensitive to a variety of errors in the 
image. For this reason, a hodgepodge of methods have been suggested for its computation. 
It is first useful to make a reasonably low-resolution image in which the feature is not too 
extended. This ensures that the correct boundaries will be chosen (see Lecture 12 for a 
fuller discussion). Also, some algorithms will not respond to low-level emission in the pres¬ 
ence of much noise. The use of several alternative methods for determining the integrated 
intensity of an extended feature is illustrated below, using the feature in Figure 14-4. 

1. 5um up the intensities within the feature as a measure of the integrated intensity 
(AIPS task IMEAN). A simple summation of the pixel values is usually accurate enough, al¬ 
though a Simpson's rule integration should be chosen for images with near-critical sampling. 
Choose several control regions which surround the feature, and use the same integration 
technique. The integrated intensities in the control regions can be fit to a constant offset, 
or to a higher-order polynomial 'baseline' around the feature, and an error estimate can 
be ascertained from this fit. The analysis shown in Figure 14-3, where the control regions 
were used to solve for a zero offset and error, gave the result 7.09 ±0.14. A similar analysis 
is often used to remove the sky background from an optical image. 

2. Try model fitting the feature with several components (AIPS tasks IMFIT, JMFIT). 
Do not pay too much attention to the individual parameter values. If the post-fit residuals 
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Figure 14—4. The integrated intensity of an extended feature. The peak intensity within the feature is 
shown at center, as is the peak intensity within each of the eight control regions. This is the same feature 
that is shown in Figure 14-1. 

under the feature are about the same as those in the rest of the field, then the sum of 
the integrated intensities of each of the components, and its error, should be a reasonable 
guess for the integrated intensity of the feature and its error. The result for this feature is 
8.22 ±0.45. The model fit was not particularly satisfactory because of the complicated bias 
levels around the feature. 

S. If the 'CLEAN'ing deconvolution technique has been used, sum up the 'CLEAN* com¬ 
ponents within the boundary of the feature (AIPS tasks APCLN, MX). Deep 'CLEAN'ing 
may be necessary. No error estimate is given in this method. The value 7.1 was obtained. 

Method 1 is preferred, although methods 2 and 3 are satisfactory for features which 
are somewhat less extended than the one in Figure 14-4. The final estimate depends on 
the quality of the various methods and their agreement. For this feature a flux density of 
7.1 ± 0.2 was used. 

3.3. Very extended features. 
An estimate of the integrated intensity of a very large feature is affected by small 

biases in the image. Simple sums over the feature can lead to poor estimates, and very 
low-resolution images often have extremely poor image quality. The integrated intensity 
may be more accurately measured by the intensities of the lowest spatial frequency Fourier 
components, which can be obtained by a Fourier transform of the relevant part of the image 
(AIPS task FFT) or by direct measurement in aperture synthesis techniques. Extrapolate 
the lowest frequency Fourier components to zero frequency (AIPS tasks UVPLT) to obtain 
the integrated intensity, F, of the image. Such an extrapolation is not always obvious to 
the eye, but at least some estimate of the value and error can be guessed. At low spatial 
frequencies, the visibility varies as F — Au2, where u is the spatial frequency and A is a 
constant proportional to the size of the feature. This technique is similar to fitting a model 
of the feature directly to the visibility data. 

4. IMAGE COMBINATION, ANALYSIS AND ERRORS 

There are many ways in which a set of images can be obtained. A region of sky is 
often observed at a number of frequencies and in several polarization states simultaneously. 
Repeated observations of the region are also made to improve the image reliability, to cover 
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a wide range in frequency, or to obtain differing resolutions. Finally, observations can be 
made with several different telescopes at totally different frequencies. There is the choice 
of analyzing each image separately and then comparing the results in some manner; or ap¬ 
propriately combining the images pixel-by-pixel to obtain image distributions of secondary 
quantities—which may be more easily and meaningfully analyzed and interpreted. 

If each of the images is defined over the same regularly-spaced coordinate grid, then 
the set of images can be combined naturally into one three-dimensional image, which is 
commonly called an image cube (AIPS task MCUBE). Spectral line observations produce 
a homogeneous set of images over frequency. Observations at equal time intervals also 
naturally produce an image cube. These image cubes can be transposed to rearrange the 
ordering of the data in the computer. Many display and analysis techniques can be achieved 
much more efficiently with proper storage of the data. 

4.1. Image compatibility. 
Image combination makes little sense if the input resolutions are not identical. Other¬ 

wise, strange effects will occur near the edges of discrete features, and the intensity scales 
will not be directly comparable. The resolutions of the images can be equalized using the 
techniques of Section 1. The set of images must also be interpolated onto the same spatial 
coordinate grid. Occasionally, the scale in a set of images will change linearly with frequency 
because of an assumption or simplification made during the calculation of the image. 

Images with different resolution, but which are otherwise comparable, can be combined 
linearly. However, the corresponding sum of the point spread functions must also be calcu¬ 
lated in order to interpret these images. For example, many short observations at the VLA 
can be summed at various stages of reductions. Depending on the instrument, there may 
be a loss of signal-to-noise ratio in such a combination. 

The proper alignment and orientation, called registration, of a set of images usually is 
necessary before they can be combined and compared. For images which have been obtained 
simultaneously from a single observation, it is likely that the images can be aligned precisely, 
unless the set of images covers a large range of frequency or a large field of view. For 
example, dispersive refraction will change the relative position as a function of frequency 
for the images. 

For observations made at different epochs, even using the same instrument in an iden¬ 
tical configuration, offsets between the images may occur because of inaccuracy in the 
determination of the absolute positioning. For images from single telescopes, systematic 
errors in the pointing between observations cause relatively large registration errors. For 
synthesis arrays, registration errors are produced by errors in the positions of the anten¬ 
nas, offsets in the time-keeping, and inaccuracies in the model for removing atmospheric 
and ionospheric refraction. These registration problems can be minimized somewhat, via 
proper calibration (see Lecture 4) and by careful monitoring of the instrument while the 
observations are recorded. 

The final adjustment of the registration of a set of images is often accomplished in the ad 
hoc manner of aligning bright, unresolved features for which there is external evidence that 
these features are coincident. For radio-optical comparison of images, registration errors 
can be as large as 1", and better alignment is obtained by assuming that compact radio and 
optical images are coincident. For VLBI observations where resolutions are much higher 
than the absolute positioning, proper alignment of images obtained at different frequencies 
or at different epochs is exceedingly difficult to determine (see Lecture 13). 

The coordinate system of many images which cover a large field of view is not precisely 
linear. The nonlinearities are caused by a variety of effects. Some examples are: 

(1)    Changing nonlinearity for non- east-west aperture synthesis arrays, Lecture 10, 
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(2) Different projection of the sky by various instruments, Greisen 1983, 
(3) Misalignment of arrays of detectors, and 
(4) Mosaicing of adjacent images. 

The forms of these distortions are generally known and can be corrected by using Equation 
14-1 in order to interpolate all of the images onto the same grid. 

4.2. Image errors. 
The distribution and the properties of errors in an image are important for the deter¬ 

mination of the reliability of the image and the parameters derived from it. In Section 2, 
where discrete features were parametrized, errors were assigned on the basis of the r.m.s. 
variations in the vicinity of the feature; little regard was made to their nature except to 
note whether the errors produced a bias in the image. However, more complicated analysis 
of images and sets of images requires more intricate techniques. 

The error distribution in an image usually consists of two components, due to: (1) fun¬ 
damental limits in the telescope and instrumentation which produce errors that are usually 
stochastic and have reasonably well-defined properties, and (2) systematic effects caused 
by a variety of imaging defects which may or may not be understood or even suspected. 
The gross behavior of stochastic, noise-like, errors depends on the type of detectors used to 
intercept the radiation. For correlation-type detectors, as used by most synthesis arrays, 
the noise is distributed with a normal probability about zero intensity (a small offset is 
possible) with an r.m.s. dependent on many observing and receiver parameters. Systems 
with total-power detectors produce a noise distribution which follows a Rayleigh function. 
The correlation scale of the images is equal to the resolution. An example is shown in 
Figure 14-5. For images on photographic media, the errors scale with the pixel intensity, 
and the photographic grains produce a Rayleigh-type low level noise with a characteristic 
size which is not necessarily the instrument resolution. Finally, for observations where the 
number of detected events per pixel is small, the image will have Poisson statistics. The 
magnitude of the error distribution across the image may change. However, for arrays the 
error is relatively constant across the image (before correction for the instrumental sky 
sensitivity). The error distribution should be about the same as that expected from the 
observing parameters (see Lecture 6). 

Any discussion of systematic errors in images is beyond the scope of this Lecture. 
Obviously, such errors depend on the instrument. It is most important to try to recognize 
these errors and to anticipate their effects. For aperture synthesis, Lectures 10 and 11 
should be consulted. A different set of problems occurs for optical and X-Ray imagery. 

4.3. Linear image combinations. 
A linear combination, Ic, of a set of J images, /,-, has the form 

M') = E0»/i(') + »i- ("-6) 

Examples are: (l) the sum or difference of images at different frequencies; (2) the sum or 
difference of various polarization states; and (3) sums of images made at different epochs 
(AIPS tasks SUMIM, COMB). The noise distribution in the combined image is the appro¬ 
priate combination of the noise on each image. Stochastic errors tend to add in quadrature; 
systematic errors may be highly correlated among the set. For example, the difference be¬ 
tween two images at slightly different frequencies, observed simultaneously, may be of much 
better quality than either of the input images, because errors associated with the point 
spread function or tropospheric phase fluctuations are almost identical. On the other hand, 

224 



14.  Image Analysis 

°~Z  o 

as 
t*-~.mm<a »-J-»-    ->>--mm<* 

Figure 14—5. The noise distribution within an image. (Left) A nearly-Gaussian noise distribution. (Right) 
An approximately-Rayleigh noise distribution. 

the image difference may be substantially worse (see Sec. 5.2). The resolution property of 
the combined image is identical to that of the composite images, and subsequent model 
fitting of discrete features is identical to that discussed above. 

Since many reduction schemes are approximately linear, it may be possible to combine 
the images at an earlier stage in the reduction process, with a subsequent large saving of 
computer processing. In aperture synthesis, the calibrated data associated with different 
polarization states are generally combined before imaging and other application of recon¬ 
struction techniques. Many frequency channels can be combined, in the visibility data stage 
or in the image stage, before expensive deconvolution algorithms are used. However, slight 
registration problems, image scaling differences and nonlinearities, as discussed above, may 
preclude such combinations at an earlier stage of reduction. Some of these problems are 
mentioned in Lecture 12. 

Although these derived images have well-defined resolutions, those images whose pixel 
values can be negative as well as positive can startlingly change with a modest amount 
of smoothing. For example, two neighboring features in such an image which are nearly 
equal in absolute intensity, but opposite in sign, will completely disappear when the image is 
smoothed. The same problem occurs with sums of images over frequency. With a sufficiently 
wide bandwidth, some strong features can disappear completely because of a cancellation 
of positive and negative intensities with frequency range. 

4.4. Nonlinear image combinations. 

Many useful properties of features can be derived from nonlinear combinations of im- 
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ages. A partial list of such combinations (AIPS task COMB) would include: 

RCP + LCP 
/, 

m, 

V, 

P> 

F, 

RM, 

D, 

/c, 
J line,*) 

Total Intensity, 

Magnitude, 

Circularly Polarized Intensity, 

Linearly Polarized Intensity, 

/ = 
2 

m= -2.5 log/, 
_ RCP - LCP 
— 2 

P=y/Q2 + U2, 

Linear Polarization Position Angle,    V' — | tan  1 

Fractional Linear Polarization, 

Rotation Measure, 

U 

F=r r 
RM = 

fa-fa 
xi-xy 

Depolarization, 

Continuum, wide-band, 
Line Emission, channel i, 

•fabs.ti Lin® Absorption, channel t, 

Ti, Opacity, channel t, 

a, Spectral Index, 

B, Blanking, 

ic = T,i*> 
■Mine,* — It ~ Ic > 

fabs,* = Ic - lit 
■tabs,* U = exp -j-*-, 

a=log/1/J2 

logl/i/l/a ' 
Blanked image = / where / > 0, else 0 or a 
"magic value" ignored in subsequent 
processing. 

Many more combinations are possible, of course. 
The major complication of such secondary images is that the error distribution can vary 

enormously from pixel to pixel and, in fact, some output pixel intensities may be undefined. 
For example, the spectral index between two frequencies is proportional to the logarithm 
of the ratio of the intensity on the two images. If the intensities are of different sign, the 
spectral index is undefined. Generally a peculiar number is assigned to such a pixel which 
is then suitably ignored in subsequent analysis. 

An error image whose pixel values are defined as the error of the derived intensity is 
the best solution to the image error problem. Of course, accurate knowledge of the error 
distribution of the composite images is necessary. In order to avoid the generation of an 
additional image, a simpler approach is often taken. In the derived image, those pixels 
whose errors are greater than a specified amount are blanked or given the special intensity 
assigned to an undefined pixel. The remaining pixels are of low error, although their relative 
weights are lost (AIPS tasks RM, COMB). Further analysis and display algorithms then 
can be used with these blanked images, without having the confusion of pixel intensities 
which are grossly in error. Often, the most useful blanking level is unknown, so that the 
image combination must be repeated several times to give the desired displays or to produce 
useful analysis. 

The resolution of the images of these quantities is equal to that of the composite images. 
Further smoothing of the "nonlinear" images must be done on the input linear images, 
and then the appropriate combination recalculated. Useful displays of these quantities are 
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difficult to generate because of the large errors and the rapid changes of the quantities 
between resolution elements. For complicated features, one-dimensional displays like that 
shown in Figure 14-3 can be very useful. 

Other special analysis techniques associated with a set of spectral line images (a set 
of images at equal frequency intervals) are covered in Lecture 12. These images are of¬ 
ten analyzed in order to determine the velocity characteristics of galaxies. Many of these 
techniques are useful for other types of image sets. 

Angular quantities are particularly nasty because of the 180° ambiguity of angles. 
Calculation of rotation measures and magnetic field orientations must be done carefully to 
remove such ambiguities. 

5.   SELECTED IMAGE ANALYSIS TOPICS 

In this section I have chosen a potpourri of topics which are important for the analysis 
of images, especially those obtained from VLA observations. This list is not exhaustive— 
much of the discussion is experimental and is meant to foster further debate. 

5.1. Problems associated with noise-dominated images. 
Often, even though an image is dominated by noise, parameter values or detection limits 

of possible weak features may be useful. First, plot a histogram of the number distribution 
of the intensity (AIPS task IMEAN) to determine whether the distribution is compatible 
with the expected noise. Such a distribution from the VLA is shown in Figure 14-5a. For 
the VLA, the noise caused by the receivers should be normally distributed with mean near 
zero. Because I have plotted the logarithm of the number, the shape of the distribution 
is parabolic. The highest positive and negative intensities should be about four times the 
r.m.s. of the distribution. An extended positive tail may be produced by faint sources. If 
the negative tail is also extended, this is an indication of an additional error component. Of 
course, the r.m.s. of the intensity distribution should be consistent with the observational 
parameters (see Lecture 10). The error distribution for derived nonlinear parameters is not 
Gaussian in general. For images of the total polarized distribution and for those from most 
total-power telescope systems, the noise distribution is Rayleigh (see Figure 14-5b). In this 
case, the presence of many weak sources, along with large systematic errors, produces an 
extended positive tail in the number distribution. 

Parameter estimation of a discrete feature whose peak is greater than four times the 
image r.m.s. can be handled using the techniques of Section 2. For weaker features, many 
model fitting techniques may give a significantly biased solution because of the presence 
of the noise. Also, noise-dominated images are likely to have undergone little in the way 
of sophisticated processing, like 'CLEAN'ing and self-calibration, so that the point spread 
function may not have a shape at all resembling that of a Gaussian, but, instead, be of a 
rather more complicated shape (associated with the aperture sampling). 

The following procedure is suggested for determining the intensity, or an intensity limit, 
at a particular position in an image. For weak features, it is not advisable to determine the 
size of the feature directly. Use the same analysis used in the illustration for Figure 14-4. 
The box area should cover the width of the point spread function between its zeros. Deter¬ 
mine the integrated intensity, F, at the desired position. Then, determine the integrated 
intensity in several control regions which surround the position. Use these control regions 
to define a bias, C, and a scatter AC An estimate of the integrated intensity, F', at the 
desired position is given by 

„/ _ f F — C ± AC,       for noise symmetric about 0, M4-7^ 
"~ \ y/F2 — C2, for noise asynunetric about 0. *        ' 
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To establish the intensity scale, integrate the point spread function over the same area. 
This summation is then the integrated intensity which corresponds to one unit. 

A conservative method of determining the size of a weak feature is to repeat the above 
analysis on a smoothed version of the image. If the integrated intensity of the feature 
increases significantly, then an approximate size can be estimated from the ratio of the 
intensity at the two resolutions. 

5.2. Image bias problems. 
Images often have a bias level which varies smoothly over the image field. In aperture 

synthesis images, these biases are produced by the lack of measured low spatial frequency 
Fourier components. For distinguishing and analyzing discrete features, most of the effects 
of the bias can be removed by solving for a zero bias, and perhaps for a linear slope under the 
feature. However, it is difficult to separate the bias variations from very extended features. 
This is a particularly nasty problem when the extended feature changes considerably over 
a set of images, because the shape of the bias depends on the amplitudes of the missing 
Fourier components—which in turn depend on the properties of the extended feature. Some 
improvement can be made in the deconvolution process by including a zero-spacing flux 
density estimate (see Lecture 8). 

Further decrease in the bias problem can be obtained in two ways. The most straight¬ 
forward method is to use the same array, but at lower resolution. Assuming a similar 
instrumental configuration in other regards, a simple combination of the data, together 
with re-imaging, will produce much better-quality images. Additional observations at lower 
resolution—with another array or with a filled-aperture telescope—will also work, but there 
are several complications. For example, the sensitivity of each instrument over the image 
field may differ between the telescope systems. Correction for this effect must be made 
before the visibility data are combined or before the images are combined. Further dis¬ 
cussions concerning the practical problems of combining filled-aperture data with synthesis 
array data appears elsewhere (e.g., Bajaja and van Albada 1979). 

5.3. Image intensity scale. 
There are two intensity scaling calibrations: the peak image intensity associated with 

a point source in the sky, and the integrated image intensity associated with the resolution 
of the instrument. The first calibration is discussed in Lecture 4. The scaling factor is 
the ratio of the intrinsic strength of an observed point source to its measured intensity. 
For synthesis arrays, the visibility amplitude of the point source is used as the measured 
intensity. For optical images, the peak intensity on the image of a star is used. If many 
calibration stars are in the image field of view, the nonlinearities of the intensity scale can 
also be determined. 

If a feature in the sky has an integrated flux density of Fa and an area of A9, then its 
mean peak intensity is P9 = Fa/AB. However, the measured peak intensity, Pi, in the image 
will depend on the resolution and on the detailed structure of the point spread function. 
The relationship between P, and P» is important, and it represents the second intensity 
scaling problem. 

If the point spread function is very nearly Gaussian shaped, or at least well-behaved 
(monotonically decreasing with distance from the center, with no negative intensities), one 
can measure the weighted area of the point spread function by integrating its intensity in a 
region of nonzero response. Call this area Ap. The relationship of Pa to Pi is then 
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Figure 14—11. Some characteristics of the point spread function corresponding to a VLA image. (Light) 
The north-south intensity distribution of the point spread function. (Bold curve) The dependence of Ap 
with radial distance from the image center. 

The point spread functions associated with the instrumental response are not usually well- 
behaved. An example is shown in Figure 14-6. The point spread function in the north-south 
direction has a long negative sidelobe with subsequent ripples, at the 5 to 10% level. The 
area of the point spread function, Ap, within the specified radius reaches a maximum just 
after the zero and decreases slowly, and even becomes negative. Any simple normalization 
of the type given in the above Equation is difficult if the feature is larger than the size at 
which the point spread function area begins to decrease. 

One remedy is to try to reconvolve the image with a more desirable point spread 
function, by 'CLEAN'ing or by means of other techniques. This can be done on images 
which are noise-dominated, but it is very expensive in computing time. Another method 
is to smooth the image heavily enough that the feature is in fact not much larger than 
the point spread function. Finally, it is possible to calibrate Pa and P,- as functions of the 
feature size, by using known models in the sky and determining their peak intensities on 
the image. 

5.4. Motion of features. 
Determination of the relative motion of discrete features in different images (corre¬ 

sponding, say, to different epochs of observation) is limited in accuracy by the resolution of 
the images and the signal-to-noise ratio. If the resolution is R and the signal-to-noise ratio 
at the peak of each of the features is S, then the sensitivity to a displacement is approxi¬ 
mately R/2S. This assumes that there are no registration errors between the two images. 
These can be minimized by suitable calibration of the data. If the images contain other 
features, then registration can be accomplished by attempting to superimpose all of the fea¬ 
tures and ignoring those which are obvious outliers. This is equivalent to the optical image 
comparison technique of blinking. Accurate parameters can be derived by model fitting the 
positions of the features on each image and then taking the appropriate differences. 
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15.   Data Display: 
Searching for New Avenues in Image Analysis 

ARNOLD ROTS 

1.   INTRODUCTION 

Display of data is an immensely important area in data processing, since it functions 
as the prime interface between the user and his data as the latter are being processed. 
Yet, most people are relatively unfamiliar with its potential, usually because the necessary 
manpower is not available to implement sophisticated software for display devices, so that 
most of the capabilities remain hidden for those working on data analysis software as well 
as for the users. For instance, the IIS image display systems used in GIPSY1 and AIPS 
are quite powerful, not only in rendering very flexible image display, but also in performing 
certain simple image analysis functions. Full use of those capabilities would make data 
processing with these systems easier for the users, while it also could reduce part of the 
burden on the host computer. In neither system, however, are those capabilities fully 
realized; the IIS systems are basically used as frame buffers for the TV monitors, with 
rudimentary slope-and-intercept transfer function control. Also, from users' responses to 
more advanced features available in only one of these systems, it has become clear that 
users deem such features essential only after they have gained experience with them. This 
is true for sophisticated display techniques as well as for image analysis functions which 
provide interactive "quick-and-dirty" preview of equivalent functions available in the host 
computer; when done in the host they take longer and require more resources, thereby often 
precluding extensive experimentation. 

Of particular concern is the processing of three-dimensional data, where users have 
so far been forced to interpret their observations from displays that are essentially mere 
modifications of designs made for the two-dimensional case. Some research has been done 
in astronomy on display of three-dimensional data. This has only scratched the surface so 
far, although it has revealed some enticing vistas. 

These are the matters I would like to address in this Lecture, in the hope to raise 
people's awareness of the opportunities that are available right now and the possibilities 
that may become feasible through a concerted effort in research, design, and hard coding 
work. One should not imagine that the display tools come for free. It will need more 
manpower than traditionally has been invested in this area; but it will be warranted by the 
enhanced power of the data analysis system as a whole. 

In terms of hardware and applications there are two types of data display: graphics 
(line drawing) and image (gray-scale) display. Both may be in monochrome or in color. In 
the next Section I will try to define the objectives for the design of display systems. Then, 
in the following two Sections I shall deal with the two display device types. Finally, there 
will be a discussion of off-line support functions and a concluding Section. 

1 GIPSY is an acronym for Groningen Image Processing System, a computer package used in the Netherlands 
for reduction of Westerbork Synthesis Radio Telescope (WSRT) data. — Eds. 
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2.   OBJECTIVES FOR DATA DISPLAY 

The data reduction and analysis process consists of a string of reduction and analysis 
functions applied to the data. At each point in this sequence the astronomer has to decide 
on subsequent processing, based on his assessment of the data and his own objectives. He 
also wants to understand his data. The main objectives of data display are to facilitate this 
by giving the astronomer an instant overview of the contents of his data, as well as enabling 
him to lift out details. These functions should be performed fast, interactively, and under 
easy control of the user. 

This may not be the most complete definition of data display objectives, but it is 
certainly a valid one and, in my opinion, quite adequate in the context of this Lecture. 

The objectives may also sound rather trivial. One should be aware of the implications, 
however. "Instant overview of the contents of the data" means considerably more than just 
"a picture of the data"; it requires precisely such a display that the full contents can be 
grasped instantaneously, which is by no means a trivial requirement. Also implied is a good 
deal of capability to "play" with the data. Ideally, only "good" intermediate results should 
be calculated and stored by the host computer. Tools to determine the correct parameters 
and processes to achieve this should be provided, at least in part, by the display system. In 
some cases flexible display is sufficient to make a sound decision; in other cases one needs 
interactive "quick-and-dirty" versions of analysis functions present in the display device for 
preview. 

Easy control of display functions similarly has far-reaching consequences: language— 
and thus interaction through a character keyboard—is a poor medium to control displays. 
Like theatre lighting systems, displays are much more easily controlled by analog devices 
such as switches, knobs, slides, and buttons. 

3. IMAGE DISPLAY 

For aperture synthesis observations there are three types of data to be displayed, each 
with its own specific requirements: visibility data, two-dimensional images, and three- 
dimensional images (predominantly spectral line data). There are two elements in the 
application of display devices to the user's data: the pure display function which tries 
to translate as many bits as possible into a comprehensible image, and image analysis 
which allows the user to manipulate the bits interactively in order to gain an even better 
understanding. It will be clear that the distinction between the two is not always sharp. 
Finally there is some specialized hardware to be considered that is extremely helpful for the 
enhancement, the efficiency, and the ease of use of display systems. 

3.1. Visibility data. 
Aperture synthesis visibility data consist of complex numbers as a function of two 

coordinates: baseline and time, or u and v. Image display of these data forms a powerful 
tool in editing and calibration of the observations since discordant data values are easily 
recognizable when arranged in such a way that large-scale patterns are to be expected. 
Depending on the nature of the observations and the deficiencies to be detected, either 
baseline-time or (u, v) display may be preferable. 

For detection of bad receiver behavior, for instance, a baseline-time display is the most 
revealing. Care should be taken that the baselines are arranged such that patterns caused by 
source structure can easily be recognized. This probably means for the VLA that intra-arm 
baselines for each arm should be grouped together, while inter-arm baselines need careful 
sequencing. 
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The most generally useful way to represent complex quantities is through an intensity- 
hue display (see also Sec. 3.3.5); here amplitude is represented by the intensity of the pixel, 
phase by the color (hue). A cyclic color scheme (blue-cyan-green-yellow-red-magenta-blue) 
is most appropriate for this purpose since then there will be no discontinuity at phases of 
±180° or 0o,360o. The display system should allow the user to independently vary the 
transfer functions for amplitude and phase in order to suit the particular range of values 
he is interested in at any one moment. This is an important requirement that not only 
determines the versatility and usefulness of this display, but also restricts the choice of 
acceptable models of image display machines since most models are incapable of supporting 
this feature. 

Interactive support functions should include: dynamic amplitude, phase and antenna 
pair display for pixels selected under cursor control; and flagging (editing) of pixels under 
cursor control. 

3.2. 2-D images. 
Two-dimensional images are the traditional realm of image display systems. We assume 

that we are dealing with astronomical images containing some variable (e.g., brightness 
distribution) as a function of two coordinates—either two spatial coordinates, or one spatial 
coordinate and velocity. In this Section we shall restrict ourselves to the techniques that 
optimize the display of such a single image. 

Image sizes will vary considerably, most commonly from 64 x 64 to 2048 x 2048. Image 
storage for at least 1024 x 1024 should be provided. TV monitors that can display a 
pixel grid of this size are available, although they are not (yet) common. One also ought 
to consider whether anything is to be gained by switching to this size monitor from the 
standard 512 x 512 displays, considering the amount of detail the eye can take in. 

Some display systems (e.g., Vicom) will allow optimal use of memory space because 
they are capable of handling arbitrary image sizes which are not tied to fixed positions in 
memory. 

S.B.I. Zoom and pan. Zoom and pan are very essential features, both for lifting out details 
and for accurate positioning of the cursor (down to the pixel level). Most systems provide 
zoom factors of 1, 2, 4, and 8; zooming is usually accomplished by pixel replication. Ideally, 
one would want any integer zoom factor, which some systems provide, a negative zoom (to 
display 1024 x 1024 images on a 512 x 512 screen), which is extremely rare, and some sort 
of interpolation instead of pixel replication, which is not available in hardware. In general, 
however, these wish list items either are non-essential niceties or can be emulated in other 
ways. 

If the monitor screen is no bigger than 512 x 512 one wants at least a roam feature 
that allows interactive roaming through a 1024 x 1024 image. 

Some systems have nasty definitions built into them. The IIS, for instance, has a very 
inconvenient definition of the zoom center. 

8.2.2. Color schemes. Although a gray scale representation is often quite adequate and 
usually provides more dynamic range than most color schemes, pseudo-color is a useful 
option to have. Schemes presently in use include spectral colors and a variety of discrete 
(contrasting) color palettes. The latter options are often referred to as color contours and 
include the capability to compress or stretch (recycle) the colors which is especially useful 
for optical data. 

There definitely is a need for multiple color schemes; choice of a particular scheme 
depends on the data, the user's taste, and the user's physiology (such as partial color¬ 
blindness). 
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It is highly desirable to be able to decouple the definition of the color scheme from 
the transfer function (see Sec. 3.2.3). This requires at least two stages of look-up tables, as 
IIS provides. Some other manufacturers provide this capability with a special color table, 
which is less flexible. 

S.2.S. Transfer functions. Transfer functions form the heart of image display, in a sense. 
The question is how to transform the range of intensities present in an image—or, the part 
of that range that the user is currently interested in—in such a way that the maximum 
amount of information can be perceived by the human eye. There are two parts to solving 
this problem. First, a transformation has to be performed on the image intensities as they 
are kept on a storage device, to compress them into 8 bits; this is usually not a problem 
when the dynamic range of the image is less than about a factor of 100. Then, the 8 bit 
values in the display device have to be transformed into intensities on the monitor. On 
the whole, the approaches to both transformations are similar, although the requirements 
at any given moment may be different; e.g., the user may wish to load as much of the 
image intensity range into the display memory as possible in order to look at a number of 
sub-ranges in detail. 

There are two classes of requirements for the transfer functions. One is to use the 
available viewing (or display memory) dynamic range as efficiently as possible for the entire 
range of intensities. How this is done depends on the data. For images that are buried in 
the noise, for instance, a straight linear transfer function (1:1) may be used, while high- 
dynamic range images (with relatively few points near the high end of the intensity range) 
usually profit from a logarithmic or a histogram-equalized transfer function. Histogram 
equalization is a particularly useful and powerful method that allocates the available output 
intensities as efficiently as possible by distributing them over the input intensities on the 
basis of the distribution of those input intensities. If the image device is equipped with a 
16 bit mode and a histogram generation option, the bulk of the work for this technique 
can be done on the display device which significantly unburdens the host by halving the 
number of required I/O operations on the image. Whether used in loading the image or 
in displaying it, histogram equalization has the effect of maximizing the amount of detail 
one can see in a high dynamic range image, thus enabling the user to grasp as much of 
the contents of an image as possible from one picture. It is useful to have several options 
available for the equalizing algorithm since not all images can be handled the same way. 
Another important feature is the possibility to interactively vary the range in the histogram 
to which the equalization algorithm is being applied. 

The second class is to lift out part of the input intensity range to look at it in great 
detail; it means concentrating the bulk of the output intensity range on a more or less small 
part of the input range. Traditionally, this often has been done by slope-and-intercept 
transfer functions. They have the advantage that they are very easy to control interactively 
since there are only two input parameters with functions that are easily understood by the 
user. However, they are also rather crude and do not allow designating a small portion of 
the output range to the remainder of the input range. Two-kink/three-segment transfer 
functions are far superior in that respect, but not perfect yet and control is more involved. 
It should be possible, though, to develop a family of transfer functions that is better than 
both of the previous ones in either respect. 

Often, the quality of a picture can be improved even more by combining the use of 
sophisticated transfer functions with two-dimensional filtering functions. These will be 
discussed in Section 3.3.6. 
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3.3. Image analysis. 
Modern image display devices usually incorporate a certain amount of processing ca¬ 

pability that allows the user to perform a number of different basic operations on entire, 
or parts of, images in a very short time (typically one refresh cycle per operation). By 
stringing several basic operations together more sophisticated processes can be performed. 
There are two advantages to making use of these facilities: doing them in the image display 
device relieves the host computer from these tasks and the display machines can perform 
them much faster (essentially in an array processor fashion) with instant display, making it 
feasible to do it interactively. The disadvantage is that all operations are performed with 
limited accuracy (8 bits), although in certain cases one may be able to use 16 bit options, 
provided there is enough refresh memory. There are five areas of application: 

• The case where a quick-and-dirty operation is sufficient for the user's purpose. An 
example is when the user wants to see the difference between two images and a 
limited accuracy subtraction in 8 bits is enough to show what he wants to see. 
Intensity-hue display essentially also falls in this category. 

• Enhanced image display such as histogram equalization, intensity-hue display and 
the use of two-dimensional filtering for display purposes. 

• The case where the user wants to handle the data interactively in order to make 
decisions on further processing. An example in this category is using a two- 
dimensional smoothing implemented in the display device (fast, but with limited 
accuracy) in order to determine the optimal parameters for a proper smoothing 
on the original data. 

• Image statistics. Image display devices that have blotch and histogram functions 
offer the capability of performing image statistics (average, sum, r.m.s., median, 
histogram, etc.) of selected areas of an image almost instantaneously and usually 
with enough accuracy. The retrieval of single pixel intensity values is a special 
case of this. 

• Definition of image segments, regions of interest, or blotches. These can be used 
for blanking or differential treatment either in further processing or for display 
functions. 

In the following I shall briefly describe some analysis tools, not according to the appli¬ 
cations outlined above, but rather according to the techniques used. 

5.5.1. Image segments. Defining different segments in an image is often needed for a 
variety of applications: outlining the area in which one believes the source is contained or, 
instead, defining an area in which one believes there to be no radiation, for such purposes 
as "Clean boxes", spectral line windowing, image statistics, and different application of 
transfer functions. The most natural way to define these areas is by drawing polygons in 
the image itself as it appears on the TV monitor, with the aid of a pointing device (light pen, 
tablet, track ball) and outlining them in a graphics overlay plane. This is especially powerful 
if the image display device offers the capability of distinguishing between the "blanked" and 
"non-blanked" regions in performing statistics and arithmetic and logical operations. 

5.5.2. Image statistics. Statistics of selected areas in an image provide essential information 
on the quality of the data and form an indispensable supplement to the image itself. The 
statistics include: average, median, sum, standard deviation, and histograms of intensity 
distributions. If the image display device is equipped with a histogram generator which 
can operate on the entire image, in the region of interest (see Sec. 3.3.1) or outside that 
region, the statistics can be obtained very fast and usually with enough accuracy. Increased 
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accuracy can be obtained by reading the image again from disk or by working in higher 
precision arithmetic, if it is available. 

Histograms are also important for fast processing of histogram equalization algorithms 
(see Sec. 3.2.3). 

S.S.S. Comparison of images. In judging the results of image processing techniques the user 
often wants to compare two images. The technique that has a long tradition in astronomy 
for this purpose is the blinking of the two images. This can easily be accomplished in a 
display device by loading the images into different image planes and then switching the 
monitor at some rate, interactively controlled by the user, between the two images. This 
requires the two images to have very similar appearance which can be done by fiddling with 
the transfer functions while both are shown in a split screen mode. 

Another technique is to put both images on in split screen mode and give the user 
interactive control over the position of the split, so that he can move it back and forth 
over the area of interest. Although it depends on the personal preference of the user, this 
technique is on the whole more effective than blinking. 

Finally, subtracting the two images may also provide a very effective means of com¬ 
parison. This can be done by subtracting the original images in the host computer and 
displaying the difference in the display device, or by performing the subtraction in the 
display device itself, which is infinitely faster but has limited accuracy (see Sec. 3.3.4). 

S.8.4' Arithmetic operations. Arithmetic operations between images are very common. 
Adding (or averaging) two images and subtracting two images from each other (either 
for comparison or subtracting the continuum from spectral line data) are obvious, but 
multiplication and division also occur. Image display devices can perform such operations 
very fast, by using an Arithmetic and Logical Unit in conjunction with a Feedback Unit, 
and/or the Look Up Tables. When two image planes are switched on, their contents (as 
modified by the Look Up Table) are added. Addition can be achieved by applying two 
linear transfer functions. Subtraction, by a positive and a negative linear transfer function. 
Multiplication and division can be accomplished by applying logarithmic transfer functions 
to the individual images and an exponential transfer function to the sum; this, by the way, 
requires separate Look Up Tables for each image plane, as well as for the sum (see also 
Sec. 3.3.5). 

Having these functions available in the display device is useful for a quick-and-dirty 
preview and for cases where the limited accuracy is acceptable and the result does not have 
to be kept. 

S.S.S. Intensity-hue display. Intensity-hue display forms an excellent tool for situations 
where the user wants to view two parameters simultaneously in two-dimensional space, es¬ 
pecially when one of them carries intensity information and implies a credibility criterion 
for the other. Examples are: column density and velocity (spectral line), percentage po¬ 
larization and polarization angle, amplitude and phase (visibility data), total intensity and 
percentage polarization, continuum flux density and optical depth, and flux density and 
spectral index. The former of the parameters in these pairs controls the intensity of the 
image, the latter the color (hue). 

It will be clear that human beings in general think in terms of intensity, hue, and 
saturation (often the last two are combined into the household term "color"), rather than 
prime color mixes. Although there is nothing particularly difficult in making image display 
devices follow this natural trend, oddly enough, the industry is still in the Middle Ages 
where the architecture of the devices (with one exception) is dictated by the (TV monitor) 
hardware; henceforth, the programmer has to think in Red, Green, and Blue. Unfortunately, 
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since image display machine designers seem to be so far removed from reality, in most of 
these machines it turns out to be impossible to emulate intensity and hue display. IIS is 
one of the very few that can do it, for the same reason why it can multiply two images: it 
has three separate Look Up Tables for each image plane as well as for the red, green, and 
blue sums. 

One should be aware that the range of fully saturated colors generally used in intensity- 
hue display does not offer a large dynamic range to the eye. It is therefore mandatory that 
the transfer functions mapping the pixel intensities into screen intensity and color can be 
controlled interactively and independently by the user. The choice of colors deserves some 
consideration and depends on the data being displayed. Angular units (phase, polarization 
angle) usually benefit from a cyclic color scheme, since they are cyclic themselves (see 
Sec. 3.1). For velocity, the jargon (redshift/blueshift) suggests a spectral color sequence, 
while for the other parameters either a spectral sequence, or a sequence going from "dark" 
to "light" colors is the most appropriate. 

It should be emphasized that intensity-hue display is primarily an analysis tool which 
enables the user to recognize or discount certain features in his data quickly. When looking 
at the two parameter images separately, he might have missed this interpretation, or only 
arrived at it with considerably more effort. 

S.S.S. 2-D convolutions. Two-dimensional convolutions (or filtering) have two basic ap¬ 
plications in image analysis: for changing the image resolution (smoothing) and for image 
enhancement. The user may want to smooth (degrade the resolution of) his image in order 
to increase the signal-to-noise ratio for weak extended features, to make a strongly elliptical 
"beam" rounder, or to bring his image at the same resolution as other data for comparison; 
this last case may involve observations at different frequencies or observations made with 
another instrument. Two-dimensional filtering for image enhancement purposes usually in¬ 
volves combining original and/or smoothed and/or edge-enhanced images. It is interesting 
to see that these two applications can functionally be lumped together. They are both 
essentially image enhancement operations: one enhances the image through a low-pass fil¬ 
ter bringing out extended features buried in the noise, the other through a high-pass filter 
accentuating the small scale details. Some examples of filtering are shown in Figures 15-1 
and 15-2. 

Although convolutions are conceptually simple operations, they do require a fair 
amount of resources when done in the host computer and can, in that mode, not be done 
at interactive speeds. Image display devices with an ALU/Feedback option can perform 
the basic operations needed for convolutions (multiplication, translation, and addition of 
entire images) at very high speed (burst speeds of 15 million operations per second) and 
have the added advantage that the result is immediately available in the display device for 
viewing. Admittedly, the precision is limited since one usually deals with 8-bit images, but 
in general 16 bits can be used for accumulation and possibly even for the entire operation 
if enough memory is available. 

Even so, the result of such a limited precision convolution may be able to tell the user 
what he wants to know, or at least give him the information needed on optimal parameter 
choice to initiate a "proper" convolution operation in the host. Experience has shown that 
users, due to the lack of interactive capability of this sort, tend to experiment very little 
with convolution parameters, even though obvious improvements could be made. Rough 
timing estimates provide the reason for this: starting a convolution operation in the host 
and displaying the image on the monitor will typically take at least 3 to 5 minutes of real 
time, while the image display device can perform the same task in less than 15 seconds. 

The field of two-dimensional filtering for image enhancement has hardly been explored 
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Figure 15—1. Original and filtered images of Cygnus A: (a) original; (b) low-pass filtering (smoothing); 
(c) high-pass filtering (sharpening); (d) edge-enhancement combined with the original. The filtering was 
done inside the IIS. 

in radio astronomy, although users are increasingly becoming aware of the usefulness of 
high quality image display. It is not quite clear at the moment whether final quality display 
involving filtering can be handled with the limited precision of image display devices— 
although it may—, but it certainly would be useful to provide the option as part of the 
standard interactive image enhancement tools available during the data analysis process. 
An experimental program, MFILTR, doing this kind of two-dimensional filtering has been 
implemented on the PDP-11/44 computer DISPLY (recently replaced by a VAX-11/750 
computer) and its IIS image display device at the VLA site. Figures 15-1 and 15-2 were 
produced by MFILTR. 

3.4. 3-D images. 
An especially massive display and data interpretation problem in radio astronomy is 

posed by aperture synthesis spectral line observations. In this case the user ends up with a 
three-dimensional image where the coordinate axes are formed by two spatial coordinates on 
the sky together with a frequency (or Doppler velocity) coordinate. For the interpretation 
of such data it is imperative that the user have a means of forming at least a mental picture 
of the brightness distribution in all three dimensions simultaneously; a clear understanding 
of the three-dimensional structure and continuity of the object (s) is necessary for intelligent 
analysis of the data. So far, this mental picture has usually been built up from a large 
number of displays of two-dimensional cross-cuts through the data cube, but obviously that 
assembly process could be made much faster and much more efficient if the data could be 
displayed in three dimensions directly. The following Sections will deal with some attempts 
at implementing such display tools. From this introduction it will be clear that the main 
objective is to provide tools for use during the analysis process, not the generation of fancy 
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Figure 15-2. Original and filtered images of Cassiopeia A. The 2-D filters are the same as in Pig. 15-1. 

final presentation displays. 

8.4.I. 2-D representations. Because of the nature and geometry of common display mate¬ 
rials (paper, TV monitor screens) two-dimensional representations will remain important. 
But in addition there is the fact that the three-dimensional displays that we can presently 
conceive of are not easily quantifiable. Hence, there is a need for two-dimensional displays, 
both as a substitute and for work copies to look at quantitative detail after the user has 
gained a three-dimensional understanding of the total contents of the data. 

A mosaic of two-dimensional cross-cuts is very useful for the latter purpose. One may 
think here of contour plots in the spatial coordinates, one at each observed velocity, or in 
velocity and one spatial coordinate along parallel lines. It is in general useful if the display 
program can automatically compose such displays in a mosaic directly (like, for instance, 
the AIPS task KONTR). 

Another application of a stack of two-dimensional (gray-scale) images, covering the 
entire cube, is to put them into a time sequence (animation) and to "travel" throughout 
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the cube in time. An example of such a program is the AIPS verb TVMOVIE. This 
technique is capable of aiding in the detection of three-dimensional continuity in a rather 
powerful way. Its drawbacks are that it requires the user to mentally accumulate what he 
sees over time in order to build up the three-dimensional picture in his mind, and that 
the display cannot be captured in a hardcopy to be studied at leisure. However, the latter 
disadvantage may be overcome by recording the scene on video tape and playing it over and 
over again on a cheap viewing station. The main problem in creating these displays is fast 
loading of the individual frames so that a realistic animation effect can be achieved; normal 
loading of the data from disk into the image display device is far too slow. There are three 
possible solutions. First, one can load each frame and transfer it to video tape individually. 
This requires a video recorder with editing capability (in order not to loose the sync) and 
is rather tedious since the whole process has to be repeated for every loop one wants to 
record. Secondly, each frame can be loaded and transferred to a specialized image storage 
device, from where the sequence can be retrieved at high speed (and, if so desired, recorded 
on video tape in real time); examples of such a device are the video disk used with GIPSY 
in Groningen and the image storage device being developed by NRAO. Finally, one can 
use the image display device itself, preloading all frames in sections of the refresh memories 
and displaying them in rapid sequence. An image display device like VICOM is completely 
flexible in its allocation of refresh memory and allows this type of operation easily. In a 
device like an IIS one can display a zoomed image and rapidly change the zoom center; 
naturally, the individual frames are then restricted to 512 x 512, 256 x 256, 128 x 128, or 
64 x 64. In using this technique one obviously has to contend with a trade-off between the 
size of the individual frames and the number of frames in the time sequence, the product 
being limited by the amount of available refresh memory. But on the other hand, it provides 
much faster and easier access to time sequences than the other two methods and is therefore 
a useful (quick-and-dirty) option, even when any of the others are available. 

There is one more application of two-dimensional displays to three-dimensional data: 
the use of false color. If one has a series of two-dimensional images at different velocities, 
each velocity could be assigned a slightly different color in, say, a spectral sequence. Al¬ 
though powerful for some data, there are severe drawbacks; it is especially tedious to change 
the color transfer function (requiring a complete rebuild of the image, reading through all 
the data again). In practice, the display is usually limited to an image built from a two- 
parameter representation of the profile (the intensity as a function of velocity at each spatial 
pixel): zeroth and first moment. One can then let the former image control the intensity, 
the latter the hue, while it is possible to vary the transfer functions of both images (like 
in the AIPS verb TVHUEINT, developed by Jim Torson). See Section 3.3.5 for details. A 
disadvantage is obviously that one has lost all information on the exact shape of the profiles 
and that the human eye does not have a tremendous resolution along the saturated colors 
of the spectral sequence. 

8.4.2. S-D solids. What one ideally would like to do is put the contents of a data cube 
in space and view it from various angles. To do this one has to make a three-dimensional 
object out of the data, or a 3-D solid surface. Such an object can be constructed by 
wrapping a surface through the cube at a particular threshold intensity: everything inside 
the surface has a higher intensity than the threshold, everything outside a lower intensity. 
Basically this is the true three-dimensional equivalent of a two-dimensional contour plot 
with a single contour level. This three-dimensional solid surface object can then be painted 
on the TV monitor screen as seen from any viewing position, including ambient light, direct 
lighting, perspective, and depth cueing (diminishing intensity at larger distances). For an 
example, see Figure 15-3. In principle one could also add other features, like surface texture, 
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Figure 15—S. 3-D solid surface representation of HI observations of M81. The "short axis* is velocity; 
the main warp represents the rotation of the galaxy. Two stereo pairs are shown. The top one is "crossed": 
if one crosses one's eyes so that the right eye sees the left image and vice-versa, one may well be able to 
perceive the stereo effect without special equipment. The bottom pur is "parallel" and may be'viewed in 
a similar fashion (but left image to left eye, right to right) or through a stereoscope. 

reflectivity, true shading, and even transparency, but such sophistications do in general add 
so much overhead that they are not really warranted. 

Increasing the threshold value would have the effect of peeling the onion skins off, 
getting closer and closer to the heart of the object. An objects can be cut open, in which 
case it may be advantageous to color-code the intensities seen in its bowels. It is useful to 
add a colored back drop in order to be able to discriminate between dark (shaded) parts 
on the object and holes in it. 

Even though this is one of the better techniques to show three-dimensional structure, 
there are drawbacks inherent in these displays. The problem is that when we see a (two- 
dimensional) picture of a familiar three-dimensional object—such as a house, a chair, an 
animal—we can in our minds reconstruct the three-dimensional structure because of the 
familiarity: we have walked around these objects and we know how they are put together. 
This is not true for most astronomical objects, especially not in the strange (right ascension, 
declination, line-of-sight velocity) phase space.   The images discussed in this Section do 
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therefore not convey enough information to enable one to understand the exact three- 
dimensional shape of the objects or to even decide (in the case of several unconnected 
structures) what is in front and what is in the back. Solutions to this problem are discussed 
in the next Sections. 

8.4.8. Stereoscopic images. An obvious technique to turn one's attention to for the display 
of three-dimensional data is that of stereoscopic images. There are two ways of displaying 
the data and two techniques for viewing them. 

The first mode of display is just to stack the images along the third axis in two pic¬ 
tures, with an offset depending on the position along that axis. This essentially produces 
a transparent object. More experimentation is needed with this form of display, but one of 
the disadvantages is confusion between foreground and background features. 

The second mode is to produce a stereoscopic display of the three-dimensional solids 
discussed in the previous Section. This is done by generating two views with viewing angles 
slightly different in azimuth; this difference should typically be in the range 5 to 15 degrees. 
Figure 15-3 shows the result. 

The best way to view a stereo-pair is through a stereoscope. For this purpose the two 
images can be put on the TV monitor and hard copies can be made which are then placed 
in the stereoscope; if necessary, the images may be reduced on a copying machine. 

A fast way of viewing stereo-pairs is the use of anaglyphs: one image is put on the TV 
monitor in red, the other in green and the result is viewed through red-and-green "stereo- 
glasses". In positive, the right hand image is red, in negative it is green. Care has to be 
taken that the images do not "cross" too much in the back; they may have to be slightly 
offset in horizontal direction. In general, the TV screen phosphors are well matched to the 
lenses in these glasses. This mode of viewing is also useful for audience presentations where 
the use of stereoscopes is technically impossible. A more satisfactory technique is to use 
polarizers instead of red-and-green, but this involves more sophisticated machinery. For 
audience presentations, two projectors (each with the image for one eye) have to be used 
with orthogonal polarizers in front of the lens. One has to project onto a non-depolarizing 
screen and the audience has to be equipped with corresponding polarizing glasses; usually, 
linear polarizers (at 45 and 135 degrees) are being used, but circular polarization has great 
advantages because it makes the mounting of the polarizers less critical and allows more 
tilting of the viewers' heads. On a TV monitor something similar can be done. Stereo- 
graphics Corporation will sell a complete system (including the monitor) for about $20,000, 
but it may be possible to do something simpler: one fills the odd lines of the image with 
one view and the even ones with the other; a circular polarizer and a variable retarder 
are placed in front of the screen; the variable retarder either lets light through unchanged 
or changes the sense of the polarization and is triggered by the vertical retrace; the user, 
finally, is equipped with circularly polarized glasses. 

One thing one has to be aware of, however, is that the effectiveness of these techniques 
is highly subjective: some people simply do not have stereopsis—possibly because of some 
physiological defect—, some people are very good at it, and most people can "sort of see 
it", but could be good at it with some practice. Similarly, positive stereo-pairs work better 
for some people, while others prefer negatives; this may also depend on the objects, and 
may in particular be different for gray-scale and graphics images. 

Finally, there are some three-dimensional imaging devices on the market now; one of 
these works with a vibrating mirror. However, it appears that the amount of data that such 
devices can handle is, at least at the moment, insufficient for our purposes. 
8.4.4- Animation. By far the most effective way to show the three-dimensional structure 
of objects is to move them; for instance, by rotating the 3-D solids described in Section 
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3.4.2. Unfortunately, this is not always easy. For one thing, one has to construct a fairly 
large number of frames; one needs intervals no larger than 5 degrees and preferably half 
that. Then, the animation has to be effected; this can be done in four ways: using the 
zoom-and-pan of the image display device, using an image storage device with a high data 
rate to the display device, or making an actual animation movie, on film or video tape. 

The zoom-and-pan option has been described extensively in Section 3.4.1. One should 
keep in mind, though, that the limited number of frames that can be displayed is probably 
a rather severe restriction for this application, since one is likely to deal with frames no 
smaller than 256 x 256. Nevertheless, it may be sufficient for a back and forth "rocking" of 
the object which may be satisfactory. 

The image storage device will be dealt with in Section 3.5.3. It may be useful to point 
out here that to obtain a smooth animation (which this application requires) one needs 
to run at frame speeds of at least 10 Hz, which may not be achievable with digital image 
storage devices. 

If one rejects the options above, one is left with making an animation movie, for 
which, incidentally, an image storage device still comes in handy. The problems involved 
in recording on video tape will be discussed in Section 3.5.4. The recording of animation 
movies on film is something we do have some experience with. Ideally, one would like to 
generate these on a high quality film recorder, such as a Dicomed film recorder. At the same 
time, though, one would like to use 16-mm film because processing, editing, and projection 
facilities are usually readily available. This can be done adequately on a Dicomed Model 
D-48 recorder; on a Model D-47, such as we have, it is not feasible. Alternatively, one 
can shoot a movie directly from a TV monitor screen. This requires some control software 
and equipment and one has to be aware that it must be done in single frame mode with 
exposure times of at least 1 second. This means that movie production, although not 
difficult, is a lengthy process—of the order of half a minute to one minute of recording time 
per second of screen time. Although the medium itself (film) is obviously more expensive 
than video—at about $10 per minute, original or copy—the equipment is cheap now that 
everybody is switching to video: used 16-mm cameras can be had for a few hundred dollars. 
Nevertheless, because of the hassle of set-up and processing, it does not lend itself easily for 
quick interactive work. At the VLA we have just been lucky to have 1-3 day turn-around 
available. 

A new possibility that has recently emerged is the development at the University of 
Pennsylvania Hospital of a 3-D Solids machine that will provide the user with interactive 
control over the viewing of a three-dimensional solid surface (see Sec. 3.5.5), thus enabling 
real time animation. 

8.45. Holograms. While thinking about display of three-dimensional data, one inevitably 
turns one's thoughts to holograms. It would especially be useful if production of white light 
holograms were easy and could be automated. However, the state of the art is currently 
not such that holograms are a practical medium for display in astronomy. 

3.5. Specialized hardware. 
There are some pieces of specialized hardware that are eminently suited to make life 

easier in interactive image display. They should be considered integral parts of the image 
display stations since they allow the user to realize the full capabilities of image display 
devices. 

8.5.1. Control panel. Controlling the functions of an image display is, in the mind of the 
user, essentially an analog operation. The use of a keyboard for interaction with the image 
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is experienced as an extremely inconvenient intrusion of this cumbersome device. Manufac¬ 
turers of display devices have realized this—to a certain extent—and provided trackballs, 
mice, light pens, tablets, push buttons, etc. They may be used to move cursors around 
and control various functions, like zoom, split screens, transfer functions, etc. Nevertheless, 
one has to resort to menus and multiple button definitions (not to mention multiple cursor 
definitions) in order to cover all control functions. And even then the system will at the 
very least be cumbersome to use, and probably confusing. 

It therefore makes more sense to put the control of the image display device almost 
entirely on a hardware panel that looks analog to the user. The following Sections could be 
envisaged to be part of this panel. A module that controls which image planes are switched 
on. A number of transfer function modules that control transfer functions through rotating 
knobs or slides, with push button selection of the image planes they control. A zoom 
module. An image plane cum split screen control (including positioning of the split). A 
blink module with control of the planes involved, and of the blink rate. A graphics plane 
control module. A color scheme control module. And any others one may fancy. Such a 
control panel not only gives one easy—and easily understandable—control of the display, 
but it also provides an instantaneous status display. Basically, all this falls in the realm 
of ergonomics, and care should be taken that things are "right": the organization of the 
panel, the "feel" of the knobs, the slant of the panel, as well as placement of the monitor 
and lighting. 

In principle the control panel could communicate with the image display device through 
the host, but it would make life easier if the panel could communicate with the device 
directly; this would also take a burden off the host. It would be necessary to build a small 
processor into the control panel. 

If the display device cursor is used for any functions, it is helpful for the user to 
adopt different cursor colors to distinguish between these functions and to store text and/ 
or numeric information in the cursor array (assuming that the display device has such a 
feature). The advantage of the latter technique is that this information is not zoomed with 
the rest of the image (as it would be when displayed through the graphics planes of IIS 
Model 70 machines) and that the information is displayed right at the center of the user's 
focus of attention. These techniques have been employed in GIPSY and in the program 
MFILTR (see Sec. 3.3.6). 

8.5.2. Hardcopy. The capability of obtaining hard copies of the screen is a tool the user 
cannot do without. There are two types of hard copies, each with its own purpose and 
requirements. 

The first will mainly be used for reference and as work copies. The main requirements 
here are: fast generation (less than a minute), reasonable size (at least 8x8 inches), and a 
material that can be written on. Black-and-white is sufficient for these purposes, and one 
does not need a tremendous dynamic range in gray scale intensity. The Honeywell hardcopy 
devices used at the VLA site are an excellent illustration of the kind of thing needed in this 
respect. 

The second need for hardcopy is for pictures that can be shown to others to present 
the data. High quality in dynamic range, color, accuracy, and geometry is required here. 
Two forms of hardcopy are needed: slides (transparencies) and prints. Movie capability 
(film and/or video) could be added. Accurate film recorders and easy-to-use software are 
needed, as well as photographic facilities. The latter can in principle be fairly simple, but it 
probably would make sense to combine them with other, more sophisticated photographic 
needs such as producing overlays. Turn-around time can be longer (up to a few days). 
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S.S.S. Digital image storage. Experience has shown that there is a very important need 
for a capability for storage of images. There are two categories: just storing an image that 
has been fine-tuned for later retrieval (for comparison, display, or recording) and storing 
a sequence of images that can be run off as a time sequence. This latter function comes 
about because conventional loading of images is not fast enough to produce a realistic time 
sequence. The requirements for an image storage device are: fast loading (in both direc¬ 
tions), flexible control, capacity of several hundred images, archival facility, and, preferably, 
a digital format. 

Fast loading enables realistic time sequences and avoids irritation at having to wait for 
the device to do its job. Flexible control (of especially the time sequences) can be effected 
through the control panel described in Section 3.5.1. Digital format will allow the user 
to fiddle with the image after retrieval and makes the images compatible with any other 
images loaded from the host; this includes the capability (if adequate header information 
is stored in the device) of retrieving individual pixel intensity information. It also should 
produce a higher quality image. Archival storage, for instance by being able to dump or 
load the image storage device to or from cassette tape, enables users to pick up again at a 
later session without being bothered by intervening users; it also allows the user to build 
up a library of time sequences. 

Such a device does assume, of course, that the image display device can be "dual 
ported"—i.e., that it can, in some way, be loaded from the host as well as from an external 
device. This requirement is not strictly necessary for the control panel, but does make 
things easier and faster for it; if the capability is there, it does make sense to integrate the 
storage device and the control panel. 

8.5.4. Video recording. The image display device puts images on a TV monitor—so what 
would be more logical than to record these images on video tape for later display and/or 
the generation of time sequences? Unfortunately, things are not that simple. 

To generate time sequences, frame by frame, requires a video tape format with frame 
encoding. The most likely candidate is U-matic 0.75 inch tape, not the most popular VHS 
0.5 inch tape format. This is true for any sequence which is not recorded in one shot and 
where one does want to avoid irritating flicker. To be able to view such recordings on the 
garden variety VCRs then requires a copying capability to VHS tape. 

The signal coming out of display devices is R-G-B-sync (four cables). In order to enable 
the user to feed this into a VCR one has to turn it into composite video, which is not a big 
deal, but still a $3500 box. 

Our TV monitors display 512 lines. Standard (American NTSC) TV only displays 480 
lines. So one will loose the bottom 32 lines, or one-sixteenth of the image. Our European 
colleagues are better off: they only get a black band underneath the image. 

Our TV monitors run in "underscan" mode: to achieve a 1:1 aspect ratio, the TV beam 
only makes a partial horizontal scan. When displayed on a regular TV set, the image will be 
distorted—stretched in the horizontal direction by a factor 1.33. Our European colleagues 
are even worse off. Of course, it should be possible to squeeze the image horizontally 
to achieve a satisfactory aspect ratio, but to my knowledge boxes performing just that 
service are not available commercially; they are available as part of sophisticated (and 
expensive) studio equipment that will do much more than we will ever need. Alternatively, 
the squeezing could be done in software, before the images are loaded, but that is not really 
satisfactory either, since it violates the rule "what you see is what you get". 

As one can see, there are some problems with video recording. They can be solved, 
but it costs money (about $10,000 to $20,000). Movie making (on 16 mm film) is actually 
cheaper as far as equipment is concerned.  Nevertheless, I think the capability should be 
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developed. In the first place, it is in principle capable of producing canned displays with a 
very short turn-around time. Secondly, if we can record display sequences on video tape, 
the user can be provided with a cheap ($1000) work station to view his data ad nauseam 
without having to hog the image display device itself, its TV monitor, a host terminal, and, 
possibly, the image storage device and the control panel. 

5.5.5. 3-D solids machine. The Medical Imaging Section of the Department of Radiology at 
the University of Pennsylvania Hospital has recently developed a Voxel Processor. Basically, 
it is a memory that can hold a cube of intensities with specially configured processors that 
calculate and load an image of a three-dimensional solid surface through that cube. The 
user has dynamic control over the viewing parameters (angle, perspective, clipping), as well 
as the threshold intensity. The current prototype can handle 64 X 64 x 64 cubes and generate 
frames at 15 Hz. A 256 x 256 x 256 Voxel Processor is under development. Such a device 
would be extremely helpful for the display and interpretation of three-dimensional data. 

4. GRAPHICS DISPLAY 

The realm of graphics display is vastly different from that of image display. This is not 
only expressed in the definition, but also, more importantly, in the commercial availability 
of products. In graphics we are dealing with geometrical objects (points, line segments, 
polygons, etc., most often translated into vectors), which may or may not have attributes 
such as color and intensity. Notwithstanding the vectorial nature of graphics display, much 
of it is displayed on raster devices today. In image display the data consist of actual intensi¬ 
ties, measured on some regular sampling grid in space. Image display is more demanding in 
sophistication, I/O rates, and memory, while its application is confined to a relatively small 
number of specialized fields. Graphics, on the other hand, can be dealt with at a much lower 
level of sophistication and resources (although in the upper ranges it can certainly compete 
with image display in these respects), and has permeated virtually every facet of society, 
most importantly the business community. Since business has perceived graphics display as 
an important tool for increased productivity and effectiveness in nearly every type of work 
(public relations, promotion, management, production, process control, etc.) there has been 
a great incentive (as well as the financial resources) to develop an enormous spectrum of 
commercially available graphics hardware and software, at a reasonable price. This does, 
of course, mean that much of what is available—actually much of what gets most of the 
attention—is of little use in astronomy: pie charts, bar charts, over-sophisticated lay-outs, 
which all seem to have become the trademark of successful business. 

The use of commercial software is very rare in astronomy, for various reasons. The 
astronomical community has traditionally had needs that either exceeded the capabilities'of 
such software or were not covered by it; capital funds were often limited, whereas manpower 
was available; and the tradition of doing things ourselves has proven very strong. As a result, 
a situation has developed where it is accepted to spend money on hardware and even on 
software where it concerns things like operating systems and compilers, but where it is 
considered a waste to buy other commercial software because "we can do it much cheaper 
ourselves". However, it may be wise to consider the practice of using bought software 
by the business community a little more serious than just to assume that they lack the 
expertise to do it themselves. The reasons are three-fold: commercial software usually 
provides very flexible software tools at a price that is lower than the manpower cost of 
in-house production; the (often considerable) burden of maintenance is put on the software 
supplier; and commercial packages provide hardware independence, with regard to the host 
as well as the peripherals used. 
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Graphics software is probably the field where astronomy can benefit most from the 
use of commercial software packages, for the reasons outlined above. The only experience 
we have is with DI-3000, a product of Precision Visuals, Inc. This experience shows that 
commercial packages can provide very powerful, flexible software tools that greatly increase 
programmer production, are easy to use, have excellent documentation, and provide device 
independence. Usually with no extra effort a higher quality display is produced than one 
would otherwise bother to go to, while also flexibility for the user is increased. As far as 
cost is concerned, it should be kept in mind that software providers often offer significant 
educational discounts. 

4.1. 2-D displays. 
There are three types of two-dimensional graphics displays in use in astronomy: contour 

plots, graphs of various kinds, and interactive graphics in conjunction with (mostly) image 
display. This last type of display (drawing lines, boxes, polygons, or other types of regions 
of interest) is never used on its own, but only as part of another graphics or image display. 

Similarly, there are three forms of output: non-permanent (on CRT or TV monitor), 
disposable permanent (i.e., work copies), and publication quality. The purposes and appli¬ 
cations are self-evident, although it may be useful to mention the possibility of overlaying 
contour plots on images. Also, the three output media show a trial-and-error path toward 
final data display in the order given above. Ideally, the user should be able to get the same 
piece of graphics on different media by the flip of a switch. 

CRT graphics display is rather poorly developed in astronomy. It has never really got 
beyond the Tektronics 4012. Attention should be given to the capabilities of more modern 
graphics terminals and the use of color. 

In the field of work-copy devices, for a long time the choice has been Versatec-like 
devices—which are extremely messy. Laser printers are beginning to replace them; however, 
they have one disadvantage over the Versatecs: the size of the plot has a firm and rather 
small upper limit. 

Publication quality, although attainable on a Versatec, is still most easily produced 
on a good old-fashioned pen plotter. With the advent of plotters with built-in micro¬ 
processor these devices have become faster and more flexible, taking much of a burden off 
the host. The improvements include publication quality character fonts. Great assets are 
the availability of different color pens (indispensable for the contouring of velocity fields; 
facilitating contouring of complicated regions; allowing overlaying of different plots) and 
pens with different thicknesses (for publication). One has to be aware, though, that pen 
plotters, by their nature, require a slightly different style of programming (see Sec. 4.3). 

There are a few special needs for the contour plots that we usually deal with. One is 
that the contouring algorithm has to be able to deal with undefined points in an otherwise 
regular grid (for velocity fields, optical depths, dispersions, spectral index, etc.). Many 
algorithms either do not allow for this or are based on randomly sampled data; neither 
is acceptable. Another is that arbitrary sizes must be allowed; if necessary, it should be 
possible to assemble large plots from long strips. Yet another need is the production of 
contour plot mosaics for spectral line observations. Finally, we need the capability to 
overlay other information on the plots: star positions, polarization vectors. 

Ruled surface plots deserve special mention. There are two applications: to display 
two-dimensional data (e.g., an image) as a stack of one-dimensional cross-sectional profiles, 
which is especially sensitive to gradients, instead of or in addition to a contour plot; and to 
display a collection of truly one-dimensional profiles (e.g., amplitude as a function of time 
for a number of baselines), which is very sensitive to "odd" points. 
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Figure 16-4.   A 3-D wire frame contour representation of HI observations of M81.   This is the exact 
graphics equivalent of Fig. 15-3; the arrangement is identical. 

There is one more type of graphics that needs attention: plotting a number of related 
parameters on a two-dimensional grid. An example of this is the display of the parameters 
of multiple Gaussian components to spectral profiles. Ulrich Schwarz has developed a 
satisfactory scheme for this case. 

4.2. 3-D displays. 
There are two applications for three-dimensional graphics displays in radio astronomy: 

three-dimensional contour plots of spectral line data, and graphic display of visibility data. 
The former constitutes a substitute for as well as an extension of the three-dimensional 
solids discussed in Section 3.4.2 and needs no further clarification; an example is shown in 
Figure 15-4. Graphic display of visibility data forms an extension of the image displays 
discussed in Section 3.1, as well as of the graphs mentioned in the previous Section, and 
will be expanded upon below. 

Three-dimensional graphics devices have been commercially available for a long time; 
Evans and Sutherland are probably the best known manufacturers. These devices allow 
real-time rotation, translation, hither- and yon-clipping, depth cueing, perspective, and 
zooming. Especially the motion cues introduced by real-time rotation are very powerful 
in conveying three-dimensional structural information. In addition, they will allow some 
form of stereoscopic display in conjunction with the other operations. Polygon fill has 
become available since manufacturers started switching to raster monitors and may, to 
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some extent, emulate 3-D solid surfaces. Because of all these features and capabilities, the 
three-dimensional graphics devices are very powerful tools in exploring multi-dimensional 
data. TVaditionally, these machines have been very expensive (well above $50,000), but 
in recent years much cheaper devices doing essentially the same thing have come on the 
market, like the IBM 5080. 

For the graphics display of visibility data, the 3-D graphics devices facilitate displaying 
amplitude or phase along the z-axis, while u and v lie along the x- and y-axes, as well as 
representing complex visibility as a true vector as a function of either baseline and time 
or u and v. It is true, of course, that any view of such a representation can be displayed 
on a 2-D device, but the dynamic changing of the viewing single greatly facilitates quick 
understanding of trends and patterns (e.g., the twisting of phase). Jim Torson made a 
demonstration program that simulates the effect on the VLA PDP-11/40 with the aid of 
an array processor. A similar display mode, lacking the dynamic capabilities, is in use for 
MERLIN data and supports the usefulness of these representations. 

4.3. Device independence. 
The great variety of output devices has been a blessing and a curse in the graphics 

world. It has led to a large degree of flexibility in display choices, but at the same time 
to an even greater inflexibility in application of software, due to large amounts of device 
dependent code. With the proliferation of graphics and graphics software into every aspect 
of modern life (including those areas where there are large amounts of money), however, 
the impetus to standardize and introduce a large degree of device independence has become 
strong enough to achieve some results. The standards battle between CORE and GKS has 
been decided in favor of the latter. Three-dimensionality is still lacking in GKS, but will 
probably be brought in through the PHIGS extension. GKS also has, in principle, some 
image display elements, but it would, in my opinion, be unwise to rely on those; they are 
currently inadequate and it is doubtful whether they would ever become satisfactory. 

The aim of the graphics standard is to achieve device independence. By defining the 
standard, the interface to the output graphics device has been defined; therefore, once a 
driver has been written for a particular device that adheres to this standard, the device is 
available to all software that complies with the same standard. The use of such a graphics 
standard per se is not that easy. However, by using a graphics package that interfaces with 
the standard, one can achieve considerable gains: 

• The same code can be used for a number of output devices, i.e., the user can, in 
real time, choose the device that is most appropriate for his current needs (e.g., 
CRT or hard-copy). 

• The quality of the display can be matched to the device and purpose of the output 
(e.g., quick-and-dirty or publication quality). 

• Increased programmer productivity (this depends on the quality of the package 
used). 

• Device independence from a management point of view: decisions on acquisition 
or replacement of graphics display devices do not have to be made anymore taking 
into consideration the match between a particular device and existing code. Also, 
mixing smart and dumb devices is not a consideration anymore since good device 
drivers will take advantage of all the capabilities of particular devices and simulate 
the rest in software. 

The use of a commercial graphics package (discussed in the introduction to Sec. 4) 
facilitates the ease of programming and ensures the availability of device drivers adhering 
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to the standard; for the time being, device manufacturers cannot be relied on to provide 
the latter. 

All in all, device independence is a wonderful thing. However, having said that, we also 
have to sound a warning. Device independence does introduce inherent inefficiencies: in 
writing code for a particular device one can take the peculiarities of the device into account 
and tailor the software to run as efficiently as possible. In using device independent code 
one has to pay in decreased performance as far as efficiency is concerned. In general, 
the advantages will outweigh the disadvantages, but in certain cases the result will be 
unsatisfactory. For instance, in writing a contouring program one has the choice between 
scanning the image line-by-line and following the contours. The former requires less memory, 
is simpler, and will run faster. In addition, it is the natural way to do it for dot-printing 
devices. But it is totally unacceptable for pen plotters: not only will it result in very 
slow plotting with a lot of unnecessary pen movements, but the appearance of the plot 
will be very bad as well, because of all the little discontinuities where individual contour 
segments join. Use of the latter technique is mandatory for pen plotters. Therefore, some 
considerations of the characteristics of the device actually used will still have to enter into 
the code. 

5. WORKING ENVIRONMENT AND SUPPORT FUNCTIONS 

It goes without saying that in order to take full advantage of the potential that data 
display techniques hold, the work environment and support functions offered to the users 
must be thought out rather carefully. One can have the most sophisticated display software, 
but it is not going to profit the user if the TV monitors are mediocre, or if they have to be 
viewed under cramped or otherwise uncomfortable conditions, or if there is no hard copy 
available, or if the most beautiful images can be recorded but there is no way to process 
the film; one can add to this list ad libitum. 

5.1. Work stations. 
There are three requirements for organizing work stations: they should be pleasant to 

work at, there should be a spectrum of different types of work stations tailored to users' 
needs, and there should be enough of them. 

The first requirement involves such things as: enough space to move around, pleasant 
temperature, low noise level, enough desk space, good lighting, and general ergonometric 
considerations. All controls should be in easy reach and placed at the right height and 
angle. Chairs should be comfortable and not interfere with the work. TV monitors should 
be placed at the right distance, height, and angle. Lighting should be adequate for desk 
and monitor viewing, and be adjustable. 

Not all work stations have to be the same. Efficient use of resources dictates that the 
user can choose a work station that fits his needs for a particular session, but no more than 
those needs. A proper mix should be established of very sophisticated image display work 
stations with adequate graphics facilities, sophisticated graphics display work stations with 
simple image display facilities, and simple image display work stations (on-line as well as 
off-line, possibly just viewing stations). In addition, regular alphanumeric terminals (e.g., 
for preparation of batch oriented jobs) should be available. In general, rather simple hard 
copy output will be adequate for the work stations. High quality hard copy devices (plotter, 
image recorder) should be present, but at a central location; not only does one need only 
a few (or just one) of each, but operations usually run smoother when they are under the 
care of a central operator. 

Finally, there should be enough of these work stations. This implies that a proper 
mix, as outlined in the previous paragraph, is maintained. It also means minimizing the 
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frustration level of the users. Hence, there should be enough stations to keep all users at a 
given time busy at an acceptable level, but not so many that the systems become clogged 
and responses sluggish. 

5.2. Image recording facilities. 
There are probably three types of needs for high quality recording of images: slides 

for presentations, pictures for publications, and public relations work (posters, etc.). All 
three warrant the use of a high precision image recorder. The requirements are: recording 
areas of at least 4096 x 4096 pixels, high geometric accuracy, high linearity in intensity for 
at least 8 bits, good color rendition, and flexibility in film size uses. Experience has shown 
that the different needs have slightly different requirements for the type of film used and 
that the usage of the recording facility depends on how easy it is for a given user to get his 
slide or print made and how quickly he can get it. For these reasons the facility should be 
able to routinely handle 35 mm roll film and 4x5 inch sheet film, in color slide film, B/W 
negative, B/W reversal, and color negative film with no more than 24 hours turn-around 
time; in addition, a 16 mm film capability would be very desirable. 

Obviously, there are other applications for image recorders. One might conceive of 
creating an alternative output path for graphics display through them. As a matter of fact, 
some graphics packages can provide a driver for a device like the Dicomed film recorder. 

5.3. Photo/graphics facilities. 
As indicated in the previous Section already, fast turn-around for images recorded on 

film is indispensable. This not only applies to the processing of the film but also to the 
capability of producing high quality prints. The same is true for the handling of high quality 
graphics work. The use of a film recorder for graphics display has been mentioned. Also 
needed are a high precision pen plotter and drafting services, as well as the photographic 
facilities to process their results. 

In addition, astronomy requires some specialized photographic facilities: reproduction 
of optical material and the production of overlays. 

Altogether, this calls for a well-equipped and well-manned photolab that can take care 
of all photo processing needs on time scales of one day to one week and a drafting/graphics 
department. Part of the photo work would be the routine processing of computer-generated 
outputs. 

6. CONCLUSION AND RECOMMENDATIONS 

We conclude that judicious use of sophisticated data display hardware and techniques 
can make life a lot easier for the user, and at the same time unburden the computing 
resources. This is achieved by providing interactive display and analysis functions that are 
aimed at providing the user with powerful tools for a better understanding of the contents 
of his data, by moving the execution of those functions to the display devices. By doing 
this one not only shifts the compute power needed for the experimentation out of the host 
computers, but also enables the user to make well-founded decisions on how to proceed with 
the data processing, resulting in less unnecessary processing and a faster reduction process 
for the user. It does require, however, an investment in display hardware, software, and 
research. 

As for the actual image display devices, we recommend that machines be used with 
capabilities comparable to those of the IIS Models 70 and 75, but preferably with 1024 x 1024 
pixel resolution, and with adequate amounts of refresh memory. The capabilities should 
at least include multiple image refresh memories with 8 bits each, the double lookup table 
architecture, 16 bit mode, and ALU/Feedback unit. 
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A variety of graphics devices should be available. Each work station should have a 
graphics CRT and access to a high quality hard copy device. One work station with a 
sophisticated three-dimensional graphics device would be extremely useful. To make usage 
of the various devices transparent to the user and the programmer, as well as to provide 
flexibility in management, it is strongly recommended that a good graphics package be 
adopted that adheres to an international graphics standard and that provides drivers for as 
large a number of devices as possible. 

Display devices can very profitably be supplemented by special purpose hardware, but 
only in those cases where the desired features cannot be achieved in any other way. 

Hard copy capability is very important. Each work station should have access to instant 
hard copy devices, for images and graphics. A central facility should provide high quality 
hard copy for both, with good procedures and support to make these available to the user 
in a reasonable time. 

Appropriate attention should be paid to the working environment and the ergonomics 
of the work stations. This includes designing controls that make using the displays natural 
and easy for the user. There should be a proper variety of types of work stations, reflecting 
the varying needs of different users as well as of the various stages of data reduction and 
analysis. 

Display of three-dimensional images can be made far more effective than the current 
ones are. A strong research effort in this direction could yield considerable gains. 

Finally, no system is better than its support. One is not going to improve matters 
without an adequate level of and balance between the three support branches: software, 
hardware, and services. The first two have been discussed above. The third determines 
whether the user can actually achieve lasting use of the results of his toils; it is hard to 
overspecify photo/graphics services for a facility where image display plays a central role. 
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ALAN H.  BRIDLE 

1.   INTRODUCTION 

This Lecture discusses the choice of parameters for VLA continuum observing based 
on a mixture of astronomical and instrumental criteria. It suggests an orderly way in which 
to use the material of Lectures 2, 4, 5, 6, 7, 8, and 9 to choose critical parameters when 
planning and executing VLA observations. It also suggests strategies for avoiding some 
of the pathological image defects that were emphasized in previous lectures. Unlike most 
of the other lectures in this series, this one is explicitly oriented toward specifics of VLA 
continuum observing, though the general principles apply to observations made with other 
synthesis arrays. 

Figure 16-1 shows a decision tree for preparing VLA continuum observations; Sections 
2 to 6 of this Lecture detail the various levels of this tree. Note that some system parameters 
(e.g., sensitivities) that affect these decisions will improve with time as a result of hardware 
upgrades, etc. NRAO publishes a VLA Observational Status Report that summarizes rele¬ 
vant system parameters at least once per year. You should check the most recent copy of 
this Report when planning a VLA proposal. 

Sections 7 to 9 of this Lecture discuss calibration strategy, on-line observing strategy, 
and the observing proposal itself. 

2.   CHOICE OF ARRAY CONFIGURATION AND OBSERVING FREQUENCY 

2.1. Resolution 0HPBW—How much is enough? 
An image made from untapered uniformly-weighted > 4 hour tracks in a standard VLA 

configuration at positive decimations where foreshortening of the array is unimportant has 
a synthesized beam B with a half-power beamwidth given approximately by 

0HPBW = 1''25 x ^5 x SMS"-1, (16-1) 
I/Q 

where PQ is the observing frequency in MHz and n = 1,2,3, or 4 for the A, B, C, or D 
configurations respectively. 

The mtntmum resolution (i.e., maximum value of IHPBW) appropriate for the obser¬ 
vations will be determined by the need to separate pr resolve important features of the 
structure in the region to be imaged. For observations of extended emission, the moxtmum 
resolution (minimum 0HPBW) that is appropriate should also be considered, by estimating 
the total integration time tint needed to achieve the required brightness sensitivity. There is 
no point observing extended emission using such a small beamwidth 0HPBW that the inter¬ 
esting features of the source are dose to or below the r.m.s. noise A/m on the final images. 
To make sure that this does not happen, you must consider the apparent brightness (flux 
density per synthesized beam area) that you expect such features to have at the resolution 
you will use for your final images. 

Recall from Lecture 6 that a point source with flux density 5 Jy images with an 
apparent brightness of S Jy per synthesized beam area regardless of the area Q, of the 
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Figure 16-1. Factors Entering Into VLA Observing Strategy—A Suggested Decision TVee. 

synthesized beam. It follows that, at a given frequency, all VLA configurations are equally 
sensitive to a given point source (apart from the effects of confusion and phase stability). In 
contrast, as described in Lecture 6, the apparent brightness of an extended emission region 
in a synthesized image depends on the region's detailed structure, on how well the visibility 
function V(u, v) is sampled by the observations, and on the weighting and tapering functions 
Dk, and 7* applied to the data at the imaging stage (Lecture 5, Section 2.2; and Lecture 
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6). When deciding on an observing strategy, it is usually sufficient however to assume that: 

(a) an extended region with uniform true brightness / Jy per arcsec2 will be imaged 
with an apparent brightness a* ICla Jy per synthesized beam area, and 

(b) the final synthesized beam will be a Gaussian 'CLEAN' beam, so that its area in 
square arcsec can be calculated approximately as n8 « 1.130102 arcsec2, where 6i 
and $2 are the major and minor half-power widths of the Gaussian in arcsec. 

If the r.m.s. noise on the image is A/m Jy per synthesized beam, the signal-to-noise ratio of 
such extended emission on the image will be ~ Iils/AIm, which increases as the synthesized 
beam area fts. Ensure that you do not observe with such small values of ft8 that interesting 
extended structure is undetectable, given the total integration time tint available and your 
choice of the IF bandwidth At/ (see Sections 3 and 4 below). 

For example, consider a smooth two-dimensional emission region 30" across with a peak 
apparent brightness /n8 of 1 mJy per beam area on an untapered VLA 20 cm image made 
with the B configuration (resolution « 4'/2). It will have a peak apparent brightness of 
only 0.093 mJy per beam area on an untapered 20 cm image made with the same hour angle 
coverage and u-v weighting in the A configuration (resolution « I'.'Z). It could be detected 
at the 10<r level in about 16 min of integration at 50 MHz bandwidth in the B configuration 
(using the sensitivity data given in Table 16-1), but a 10a detection in the A configuration 
using the same bandwidth would require about 31 hours of on-source integration! When 
studying extended emission, it is therefore extremely important not to use a configuration 
giving a smaller beam area n8 than is strictly necessary. 

Note also that the effects of spectral index and resolution combine to make extended 
steep-spectrum emission much harder to detect in a given VLA configuration at the higher 
frequencies. For example, suppose that an extended emission region has a peak intensity of 
1 mJy per 'CLEAN* beam area in the A configuration at 20 cm—a 10a detection would be 
made in 16 minutes at 20 cm. If the region has a i/-1 spectrum, the peak intensity in the 
A configuration at 6 cm would be 0.027 mJy per 'CLEAN' beam area and a lOo* detection 
at this frequency would require 160 hours of integration. The choice of observing frequency 
is therefore critical when trying to detect steep-spectrum extended emission using a given 
VLA configuration. 

For sources with compact flat-spectrum components and extended steep-spectrum emis¬ 
sion, the dynamic range needed to image the extended structure increases rapidly with in¬ 
creasing frequency. Suppose that the extended emission referred to in the previous example 
surrounded a 5 mJy point source with a i/0 spectrum. The dynamic range required for 10a 
detection of the extended structure would be 50:1 in the A configuration at 20 cm. This 
is easy to obtain. The dynamic range required in the A configuration at 6 cm would be 
1850:1, a non-trivial target without self-calibration. 

You should also avoid unnecessarily high resolution in detection experiments at high 
frequencies. While the theoretical sensitivity to a point source is independent of the array 
configuration (apart from the effects of confusion), the phase stability, and hence the ability 
to integrate coherently between calibrations, will be poorer on longer baselines (see Lecture 
4, Section 4.4). The phase stability will be highly dependent on the state of atmosphere over 
the array (the "weather"), so one cannot predict the severity of this effect in advance—but 
it is clear, for example, that the A configuration is rarely a wise choice for 1.3 cm point 
source detection experiments. 

There are circumstances however when enhanced resolution improves the ability to 
detect interesting features in a source—for example, when searching for pointlike "hot 
spots" or linear "jets" in more diffuse emission such as large scale "lobes". While the flux 
density per synthesized beam of two-dimensional emission is roughly proportional to the 
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beam area fla, that of linear emission is proportional to the beam width 0HPBW, and that 
of a point source is independent of beam size. These dependencies allow compact structure 
that is embedded in, or confused with, more extended emission to be recognized most easily 
on high-resolution images. 

These competing factors affecting the choice of resolution cannot be estimated reliably 
in advance if the source structure is unknown or poorly known. If you are not sure what to 
expect your source to look like, the safest strategy is to guess on the side of low resolution 
in an initial observation. A preliminary low resolution image may tell you the source's total 
angular extent and could also warn you of any surrounding emission. This information 
would allow you to optimize the observing parameters for a more time-consuming high 
resolution study. It is also easier to justify reobserving a detected emission region at higher 
resolution than it is to justify reobserving at lower resolution what appeared to be empty 
sky! 

2.2. Choice of frequency I/Q at given resolution 0HPBW« 

The choice of observing frequency at a given resolution will be determined by astro¬ 
nomical criteria. A high frequency might be chosen for polarimetry because Faraday effects 
decrease with increasing frequency: degrees of linear polarization are generally higher at 
higher frequencies and electric vectors lie closer to their intrinsic position angles. The spec¬ 
tral index of the emission being studied also influences the choice—optically thick thermal 
emission may be easier to detect at 2 cm than 6 cm despite the noisier system at 2 cm, 
whereas transparent synchrotron sources will be easiest to detect at a given resolution at 
20 cm. 

Returning to Equation 16-1, note that the scaling factor between "adjacent" VLA 
configurations (e.g., B and C) is 3.285. This factor is close to the ratios between the 
default VLA frequencies at 20 cm and 6 cm and between those at 6 cm and 2 cm. The 
VLA therefore has similar resolutions at 20 cm in the A configuration, at 6 cm in the B 
configuration, and at 2 cm in the C configuration. (Such rough three-frequency scalings 
also apply for the B, C, and D configurations, of course.) These scalings make the VLA a 
powerful tool for studies of the frequency-dependence of the properties of extended emission. 
"Scaled-configuration" VLA observations can be used to produce maps of spectral index, 
Faraday rotation or depolarization properties of extended sources that are relatively free 
from uncertainties stemming from differing resolutions at the different frequencies. 

Note that use of the "scaled configurations" optimizes your chances of measuring 
frequency-dependent properties of a source accurately, but does not by itself guarantee 
success. Further careful planning, and post hoc examination of the visibility data, are 
also important. For example, the hour-angle ranges of "scaled-configuration" observations 
should be matched at the different frequencies. Also, even scaled configurations may sample 
parts of the visibility function of a source with differing sensitivities at different frequencies 
if the source structure changes radically over the frequency range of interest. This may 
happen if there are large spectral index gradients across the source in either its total or 
its polarized emission. Care must also be exercised when interpreting the final images if 
the databases at the two frequencies are differently affected by missing antennas or by bad 
data. In such cases, the reliability of inter-frequency comparisons may still depend on how 
well the deconvolution algorithm (Lecture 7) can interpolate in the u-v plane. 

Finally, do not forget that the VLA continuum system allows you to observe at two 
independent sky frequencies within each "band"—this capability can be used to increase 
sensitivity, to fill in the u-v plane more densely by crude "bandwidth synthesis" (see Lecture 
8, Section 1.1) or to study spectral or Faraday depth changes in your source across a "band" 
(the latter being especially worthwhile in practice at the VLA's L Band—1340 to 1730 MHz). 
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2.3. More than one configuration? 
The above was concerned primarily with observations in the standard (A, B, C, D) 

configurations of the VLA, but other options are available. You may need to combine 
observations made in more than one VLA configuration if your observations require a range 
of baselines that exceeds the range provided by a standard configuration. The next step 
in planning your observations therefore involves thinking about 0LAS> the largest angular 
scale of structure that you must sample well to produce an astrophysically useful final 
image. 0LAS will he the angular diameter of the most extended structure that you need 
to reconstruct accurately in the final image—usually the diameter of the most extended 
component of astrophysical interest in your source. (Do not confuse it with 0max, the 
required field of view, which is discussed below—when observing a source 10" in extent in 
the presence of a point confusing source 1' away, you would set 0LAS = 10", not 0LAS = 1'.) 

As the ratio of the longest to the shortest baseline in a standard configuration of 
the VLA is about 40:1, each standard configuration can be used to image reliably up to 
0LAS » 4O0HPBW where 0HPBW is given by Equation 16-1 at the specified frequency. If the 
values of 0LAS and IHPBW needed for your experiment do not both fall between IHPBW and 
4O0HPBW calculated from Equation 16-1 for a given standard configuration and frequency, 
you should consider taking data in more than one VLA configuration. Obviously, any 
observation requiring 0LAS/0HPBW > 40:1 falls in this category, but so do some with 
^LAS/^HPBW < 40:1; for example, your optimum IHPBW might fall mid-way between two 
resolutions given by allowed values of n and UQ in Equation 16-1. 

For example, Figures 16-2 and 16-3 show the u-v coverage of the VLA at +60° dec¬ 
lination for 12 hours observing in the A configuration, and for 6 hours of A configuration 
observing combined with 6 hours in the C configuration. The "hole" at the center of the 
u-v coverage in Figure 16-2 is well filled by mixing data from the A and C configurations. 
You should consider mixing standard-configuration observations for any sources for which 
0LAS/0HPBW will be significantly > 40:1. The total integration times to be spent observ¬ 
ing in the different configurations should however be computed separately, as in Section 
4 below; for most projects you will not need as long a total integration time in the more 
compact configurations as you will in the more scattered ones. 

2.4 Hybrid configurations. 
"Hybrid" configurations are those that become available during reconfiguration peri¬ 

ods, when the arms of the VLA may be of different length, or may have a non-standard 
assortment of long and short baselines. Some hybrid configurations provide wider ranges of 
u-v spacing than can a standard configuration (thus giving sensitivity to a wider range of 
angular scales). Some can assist self-calibration of data from a compact configuration by 
providing it with some unusually long spacings. 

Hybrid configurations with long North arms are now regularly scheduled at the VLA. 
They are useful if you want to image regions south of S ta —15°, where the north-south 
extent of the u-v coverage of the standard configurations is seriously foreshortened by pro¬ 
jection. Figure 16-4 shows the u-v coverage for the B configuration at —40° declination, 
compared with that of a hybrid configuration in which the East and West arms are in the 
B configuration while the North arm is in the A configuration. The spacings obtained from 
the longer North arm fill in a region around the v axis that is left empty by the standard B 
configuration. This A/B hybrid would be available for a brief period about every sixteen 
months, during a reconfiguration from A to B. The other such hybrids (B/C and C/D) 
are also scheduled between the appropriate reconfigurations. 

Perley (1981b) examined whether other hybrid VLA configurations could usefully ex¬ 
tend the ratio of maximum to minimum baselines in synoptic observations with the VLA. 
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Figure 16-2. u-v coverage for £ = +60° in the A configuration (12-hour tracks). 
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Figure 16-3.   u-v coverage obtained by combining 6 hours of A configuration data with 6 hours of C 
configuration data at 6 = +60°. Note the superior coverage of the inner u-v plane, relative to Fig. 16-2. 
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Figure 16-4. u-v coverage at 6 = —40° with (a) ftop^ the VLA East and West arms in B configuration 
and the North arm in A configuration, and (b) (bottom) the entire VLA in B configuration. 

In general, you get better u-v coverage by mixing data from two different standard configu¬ 
rations than you do from the same total time spent in any hybrid configuration, so no other 
hybrid configurations are regularly scheduled. 

2.5. Sub-arrays. 
"Sub-arrays" are nonstandard configurations obtained by dividing the VLA into as 

many as three smaller arrays that are then devoted to different observing programs at the 
same time. The use of sub-arrays is generally not as efficient as time-sharing the entire VLA, 
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however. The number of interferometer pairs in a sub-array is N(N — l)/2 where N is the 
number of antennas in the sub-array. Sub-arrays with 13 and 14 antennas therefore have 78 
and 91 interferometers respectively, whereas a 27-antenna standard configuration has 351. 
An hour of observing in which two such sub-arrays each perform different tasks therefore 
produces 169 interferometer-hours of data. In contrast, two half-hours of observing, with the 
full VLA devoted to each task in turn, produce 351 interferometer-hours of data. Dedicating 
two roughly equal sub-arrays to different tasks thus reduces the amount of information 
gathered by a factor of about two, compared with time-sharing the whole VLA between 
the two tasks. This loss of information will manifest itself in poorer sensitivity and u-v 
sampling in the sub-array data. The use of sub-arrays is therefore generally undesirable 
unless your program calls for strictly simultaneous observations of strong sources at several 
frequencies (e.g., instantaneous spectra of rapid variables) or for observations of a large 
number of compact sources with only modest demands on sensitivity and dynamic range in 
each image (e.g., astrometry of strong sources). 

2.6. Interference and the detailed choice of frequency I/Q. 

External interfering signals are partially rejected by interferometers because only the 
component of the signals that (a) varies at the sidereal fringe rate, and (b) correlates 
with the correct delay, will affect the output (strong interference may also degrade the 
noise performance). This rejection is better at the longer baselines, so the VLA's A and 
B configurations are less susceptible to external interfering signals than are its C and 
D configurations. (Delay rejection is not usually significant for narrow-band interfering 
signals). 

Interference is rarely detected or suspected at C, U or K Bands ("6 cm", "2 cm" or 
"1.3 cm"). It is however a factor in choosing a continuum observing frequency within the 
VLA L Band (1340 to 1730 MHz), particularly when using non-standard frequencies (e.g., 
when seeking to observe at the opposite edges of the band to determine Faraday rotation 
parameters)1. Frequency allocations in the L band include aeronautical radio navigation, 
meteorological aids, and fixed and mobile use. Many of the possible external interfering 
signals are time variable, so freedom from external interference can never be guaranteed 
anywhere at L Band outside the protected radio astronomy bands. (Note that use of 
the protected band at 1400 to 1427 MHz may itself be undesirable for some continuum 
observations, owing to the contribution of galactic neutral hydrogen line emission to the 
system temperature in this band). 

There is also self-generated interference throughout L Band at the VLA, mainly at the 
harmonics of 50 MHz; this internal interference should be below the noise in any continuum 
image made with an IF bandwidth Ai/ > 6.25 MHz, but may be a serious problem for 
spectral-line programs. 

Before using a non-standard L Band frequency, consult with VLA scientific staff (par¬ 
ticularly Pat Crane, the VLA frequency co-ordinator) for advice and lore based on recent 
observers' experiences. 

3.   FIELD OF VIEW RESTRICTIONS 

Once you have settled on the resolution IHPBW and observing frequency I/Q for your 
program, the next level on the decision tree (Fig. 16-1) is the choice of IF bandwidth Au 
and averaging time ra. These must be made consistent with the field of view requirements of 

'Spectral line observers do not, of course, have the same freedom to choose the center frequencies and 
bandwidths for their projects, so L band interference may determine whether a given spectral line experiment 
is possible. 
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Figure 16-5. The ratio of radial to asimuthal beamwidth, resulting from finite IF bandwidth Ae, plotted 
as a function of the dimensionless parameter fi. 9 is the angular distance of the feature from the phase 
center, in the same units as the beamwidth IHPBW* 

your program. The next step is therefore to consider the radius 0max (from the center of the 
field of view) over which you require the data to be minimally distorted by the bandwidth 
smearing and time-average smearing effects discussed in Lectures 2 and 8. 

3.1. IF bandwidth Au. 
The choice of the IF bandwidth for VLA continuum observations is most important, as 

an unsuitable choice may lead (a) to irrecoverable distortion of the image if the bandwidth 
is too great, or (b) to loss of sensitivity if it is too small. As discussed in Lectures 2 and 
8, observations made with finite bandwidth suffer both radial smearing and reduction in 
amplitude of the point source response away from the delay tracking center. These effects 
are discussed in detail by Perley (1981a), and their magnitudes are also graphed in Figures 
16-5 and 16-6. 

The first step in choosing the IF bandwidth for your observations is to ask over what 
field radius 0max (arcsec) you require either the radial smearing to be less than n% or the 
reduction in amplitude of a point source to be less than m%, due to finite IF bandwidth. 
Then enter Figure 16-5 at ordinate 1 + n/100, or Figure 16-6 at ordinate 1 — m/100, and 
read the corresponding value of the normalized parameter ft from the abscissa. Call this 
value /?max- Then compute the maximum allowable IF bandwidth Aum9X (MHz) consistent 
with these constraints from the relation 

Ai/max = 
^max^O^HPBW (16-2) 
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Central Intensity Loss Due To Finite Bandwidth (Ai/) 

HPBW 

Figure 16-11. The central intensity loss, due to finite IF bandwidth Ai/, plotted as a function of the 
dimensionless parameter fi. 0 is the angular distance of the feature from the phase center, in the same units 
as the beamwidth 0HPBW* 

where UQ is your observing frequency in MHz and 0HPBW is the half-power beamwidth in 
arcsec at which you expect to make your images. Unless you are prepared to relax your 
smearing/attenuation criterion slightly, select the closest VLA bandwidth that is narrower 
than the computed value Aumax. If you are prepared to relax it, choose the closest wider 
bandwidth. 

For example, suppose you are prepared to tolerate an amplitude loss of 10% for a 
point source at 45" from the image center in an A configuration observation at 1465 MHz. 
Entering Figure 16-6 at I/IQ = 0.9 gives 0max = 0.8, from which Aumtx = 0.8 x 1465 x 
1 "25/45" = 32 MHz. You would then either choose Au = 25 MHz, or relax the criterion 
and use Au = 50 MHz. 

Your choice of 9max may be determined by the need to image an extended struc¬ 
ture with minimal distortion, or by the need to include a strong confusing source in the 
minimally-distorted field of view. The latter need arises because you may wish to subtract 
or 'CLEAN' a confusing source's sidelobes from the region of interest. The value of 0max 

will always be greater than, or about equal to, the value of 0LAS used earlier when selecting 
the configuration. In general, choose the delay and pointing center to minimize the required 
0max for your observations. When using a wide field to include a confusing source, consider 
displacing the delay center away from the "target" source towards the confusing source. 
This will avoid the use of unnecessarily narrow bandwidths (and thus of unnecessarily low 
sensitivity). If the field is dominated by a strong point source (more than ten times brighter 
than other structure), this source should be placed near the delay center and image center 
whenever high dynamic range is required. This strategy will minimize the total distortion 
of the image resulting from bandwidth, pointing, averaging time and u-v truncation effects 
involving the strong source (see Clark 1981). 

For point source detection experiments the above criteria will normally select the 50 
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MHz bandwidth, unless the search position is exceptionally inaccurate or the field is known 
to be highly confused. The 50 MHz bandwidth is also normally required at 2 cm and 1.3 
cm, because at these wavelengths the usable field of view is limited by the primary HPBW 
of the antennas for the narrower bandwidths, and because the system temperatures are 
greater than at 20 cm or 6 cm. 

When deciding on the value of 0max that is appropriate for an image of an extended 
source, also consider the detectability of the extended emission at the resolution you will 
be using for your images (see Sections 2 and 4). There is no point ensuring that extended 
structure is not smeared radially by the bandwidth effect if low signal-to-noise on the same 
structure introduces uncertainties larger than the bandwidth distortions. As the signal-to- 
noise on extended emission itself depends on the choice of IF bandwidth, this calculation 
may need to be iterated until a suitable compromise is reached. 

Users of extremely narrow bandwidths should note that when observing in continuum 
mode the VLA bandwidths narrower than 6.25 MHz suffer large closure errors because the 
quadrature networks do not work well. If such narrow bandwidths are essential for your 
observations, consider observing with the spectral-line system, where these problems are 
avoided. Note however that the VLA spectral-line system does not support polarimetry at 
present. 

Spectral-line observers will normally choose their IF bandwidth from constraints other 
than those discussed above. For spectral-line imaging, bandwidth smearing is determined 
by the channel bandwidth, which will normally be set (to a small value) by determining the 
velocity resolution needed for the project, rather than by field of view requirements. 

3.2. Visibility averaging time ra. 
The choice of the visibility averaging time ra for VLA observations is less critical than 

the choice of IF bandwidth Au, because the default 10-sec averaged visibilities (A and 
B configurations) and 30-sec averaged visibilities (C and D configurations) are preserved 
on the archive tape created by the VLA on-line system. If you change your mind about 
visibility averaging times, the off-line data base can be "refilled" from the archive tape with 
a changed value of ra. This is costly in CPU cycles, however, so should be avoided by 
choosing ra carefully when the off-line data base is first created. 

The effects of finite averaging time ra were discussed in Lecture 2 (Section 11) and in 
Lecture 8 (Section 1.2). As r0 is increased, phase winding of a feature at radius 0 from the 
phase center causes both a smearing of the synthesized beam and a loss of the averaged 
intensity for a point source. The effect is worst on a given baseline when the feature is 
moving perpendicularly to the fringes produced by that interferometer and is zero when the 
feature is moving parallel to the fringes. The magnitude of the effect therefore depends on 
hour angle and declination, as noted in Lecture 2. For a point source at the north celestial 
pole however, the average reduction in amplitude RA = I/Io varies as 

lo \60HPBW/ 

where u>c is the angular velocity of the Earth's rotation, I is the peak response to the source 
in the image, and IQ is the peak response in the absence of time-average smearing. 

For the case of a square bandpass and Gaussian tapering in the u-v plane, which is 
closest to the VLA case, and in the regime (0 < /? < 1) where the amplitude reduction 
produced by bandwidth smearing RB = I/Io < 0.8, the expression for bandwidth smearing 
(e.g., Lecture 8, Section 1.1) can be approximated by 

L ~ i _ £! - * _ 11  Al/0 
— wl-^ = l-^(     -"      )   . (16-4) 
Jo 5 5 \MHPBW/ 
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The averaging time T^V that produces the same intensity reduction for a source near the pole 
as does an IF bandwidth Au can therefore be approximated (for small intensity reductions) 
by 

6Ai/                       A Au 
T±V « -7= = 1.2 x 104 sec. (16-5) 

y/5x<jJeUo UQ 

Equation 16-5 gives a reasonable criterion for the moxtmum averaging time ra which should 
be used with a given IF bandwidth Au at observing frequency UQ. Notice that rA^ in 
Equation 16-5 does not depend on VLA configuration or on 0maxj owing to the first-order 
similarities between the bandwidth and time average smearing effects. 

Note that you may often have to exceed the value of T^V calculated from Equation 16-5 
because the shortest available averaging time is the 1.67 seconds (two IFs), or 6.67 seconds 
(four IFs) set by the VLA's on-line computers. Also, note that the TILLER' program used 
to transport VLA data from the on-line computers to the off-line system requires the same 
averaging time for the source and calibrator observations. If the calibrator observations are 
only a few minutes in duration (as is often the case at the lower frequencies), averaging 
times longer than 30 seconds may be undesirable simply because they permit only crude 
editing of the calibrator data. 

4. TOTAL INTEGRATION TIME tint 

Once you have determined the IF bandwidth Au from the field of view criteria, the 
next step in the decision tree (Fig. 16-1) is to estimate the total on-source integration time 
tint required for given sensitivity on your final image1. Here you will use the expression for 
the r.m.8. noise A/m on an image made with an AT-antenna array: 

AWAJ/V2*^^. («M0 

where n is the number of independent IFs contributed to the image per antenna (n = 2 for 
images of Stokes / from both left and right circular polarized channels at one sky frequency, 
or for images of P = \/Q2 + U* at one sky frequency), tint is in seconds, and Au is in 
MHz. In the numerator, Fw = 1.0 for natural weighting and ~ 1.5 for uniform weighting 
(see Lecture 6 for more details), while AS is the VLA single-interferometer sensitivity given 
in Table 6-3 of Lecture 6, namely 73 mJy at 92 cm, 28 mJy at 20 cm, 18 mJy at 6 cm, 52 
mJy at 2 cm, and 180 mJy at 1.3 cm. 

Table 16-1 gives the theoretical r.m.s. noise on / and P images made at the VLA with¬ 
out tapering using 27 antennas and the maximum interference-free continuum bandwidths, 
for integration times typical of snapshots and of more complete syntheses.  (Interference 

1 Spectral-line observers should make this calculation for their channel images setting Ai/ equal to the 
channel bandwidth. 
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Figure 16-7(a). Contour plot of a 20 cm A configuration snapshot of the source 0055+300, made from 3 
minutes of data at 50 MHs bandwidth. The contour levels are drawn at —2, 2, 4, 6, 8, 12, 20, 30, and 200 
mJy/beam. The contour around the peak shows the HPBW. Compare with Fig. 16-7(b). 

will normally restrict observations at 92 cm to a 3 MHz bandwidth). 

Table 16-1. 
R.m.s. Noise on Images Made with 27 VLA Antennas* 

Band Designation: 

Band Width Au (MHz) 
r.m.s. noise in 5-min 
snapshot     (mJy/beam) 
r.m.s. noise in 12-hr 
integration (mJy/beam) 

92 cm 20 cm 6 cm 2 cm 1.3 cm 
P L C U K 

2.0 

0.16 

0.19 

0.016 

0.12 0.36 

0.010       0.030 

1.24 

0.103 
*For two IFs and natural weighting.   For uniform weighting, multiply all 
entries by 1.5 (for a first approximation).  

The sensitivity required for your observation will be determined by (a) the significance 
level you require for a detection in order to achieve your astronomical goals, and (b) whether 
the interesting emission is extended (see Section 2.1 above). If you are interested in po¬ 
larimetry of the sources, calculate the sensitivity required for the polarization measurements 
first—this will normally drive the choice of total integration time for the experiment. 

If the first estimate of tint is significantly greater than 12 hours, consider carefully 
whether your choices of frequency and configuration are optimal. You may wish to re-enter 
the decision tree (Figure 16-1) with different starting parameters before considering the 
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proposal planning further.  If the total integration time required is more than 4 hours, a 
full hour angle track is probably desirable. 

If you estimate tint < 4 hours, your observing strategy should be determined by the 
need for dynamic range and by the availability of other sources to merge with the program. 
The u-v tracks on different VLA baselines begin to overlap after about 4 hours of observing. 
If you require high dynamic range, or wish to image an extended structure, with less than 
4 hours integration time it is therefore best to fill in the u-v plane as uniformly as possible 
throughout a 4-hour range of hour angle around meridian transit. This can usually be done 
satisfactorily by distributing the observing over several short (e.g., ~ 10-minute) scans 
spaced equally through this 4-hour range. Note however that the dynamic range achieved 
in a given observation is sensitive to atmospheric and ionospheric conditions, to the elevation 
angle range of the observation, and to your calibration strategy (Section 7 below), as well 
as to the u-v coverage. 

If the total integration time required is much less than 1 hour, consider the use of 
"snapshot" mode (see the next Section). 

5.   USE OF THE VLA IN  "SNAPSHOT"  MODE 

The "Y" layout of the VLA produces an instantaneous synthesized beam with a re¬ 
spectable shape and sidelobe level. It is therefore possible to do interesting science with 
very brief observations if the sources to be studied are both bright and compact. Snapshot 
mode observing may be ideal for observers who wish to study statistical properties of large 
samples of sources (and also to overdose on synthesis image processing!). To illustrate the 
power of snapshot made, compare the two 20 cm A configuration images of the source 
0055+300 (NGC 315) shown as Figure 16-7(a) and 16-7(b). Contour map (a) is from a 3 
minute snapshot at 50 MHz bandwidth, and has a signal-to-noise of about 200:1. Contour 
map (b) is from a 9 hour synthesis at 25 MHz bandwidth. It has a signal-to-noise of about 
1500:1, limited by dynamic range. Apart from the obvious differences in signal-to-noise, 
the images show identical jet structures within 15" of the 0.4 Jy unresolved peak. 

In what follows, I consider a single "snapshot" to be an observation of about 1-5 
minutes' duration. Snapshots < 1 minute long involve some risk because much of the data 
for a source could be lost if the instrument took unusually long to settle down after a drive 
from the previous source. Even shorter snapshots may be appropriate if you want to image 
many (> 1000) fields that are near to one another on the sky (so that antenna drive times 
are also short) and it does not matter if the occasional observation is abbreviated or even 
lost. 

5.1. Limitations of "snapshot" mode. 

The clearest limitation of snapshot observing is sensitivity (see Table 16-1); it is suit¬ 
able only for bright sources. At 20 cm, the high sidelobe levels of beams synthesized from 
snapshots exacerbate the problems created by confusing sources, so snapshots of fields near 
the galactic plane using the more compact VLA configurations will frequently be dominated 
by sidelobe clutter from confusing sources rather than by the noise that is quantified in Ta¬ 
ble 16-1. These problems are less severe at 6 cm and shorter wavelengths, because of the 
smaller primary beam and the typical source spectrum (see Section 6 below). 

The second limitation of snapshot observing is the restricted angular size scale 0LAS 
over which the u-v coverage of a snapshot (e.g., Fig. 16-8) satisfies the sampling theorem and 
thus permits reconstruction of the correct sky brightness distribution. Table 16-2 codifies 

267 



Alan H. Bridle 

Figure 10-7 (b). Contour plot of a 20 cm A configuration synthesis of the source 0055+300, made from 
9 hours of data at 25 MHs bandwidth. The contour levels are drawn at —0.5, 0.5, 1, 1.5, 2, 3, 4, 5, 6, 7, 8, 
9, 10, 11, 12, 13, 15, and 200 mJy/beam. The contour around the peak shows the HPBW. Compare with 
Fig. 16-7(a). 

this limitation for the standard VLA configurations and frequencies. 

Table 16-2. 
Approximate Values of 0LAS for a Single Snapshot* 

A B C D 
92 cm 170" 9' 30# 70' 
20 cm 38" 2' 7' 15' 

6 cm 10" 36" 2' 5' 
2 cm 4" 10" 40" 90" 

1.3 cm 2" 7" 27" 60" 
*Larger structures can be imaged by combining a        1 

Polarization calibration may be difficult for short snapshot programs; it is not easy to 
verify the instrumental polarization calibration for a program whose total observing time is 
only a few hours, as this calibration requires at least three observations of a calibrator span¬ 
ning a change in parallactic angle x of Ax > 90° (see Lecture 4, Section 7.1). "Standard" 
instrumental polarization parameters may then have to be used—note that these are avail¬ 
able only for a few "standard" combinations of VLA observing frequencies and bandwidths 
(the default frequencies for 50 MHz bandwidths at 20cm, 6cm and 2cm, and the default 
frequencies for 25 MHz and 12.5 MHz bandwidths at 6cm). Position angle calibration may 
also be difficult if the standard polarization calibrators (discussed in Lecture 4) are not 
readily observable during the time allocated to a snapshot program. Snapshooters inter¬ 
ested in polarimetry should ensure that suitable polarization calibration is possible when 
designing their program, by giving attention to its LST range and the choice of observing 
frequencies and bandwidths. 
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Figure 10-8. The u-v plane coverage for an instantaneous sampling of data for a source at S = 30" 
H = 0 by the 27-antenna VLA. 

and 

Snapshots are most effective when the sources are observed within about 2 hours of the 
meridian. At larger hour angles, foreshortening of the array will lead to poorer sampling of 
the u-v plane, elliptical synthesized beams, etc. 

The time taken to calibrate a snapshot data set is determined mainly by the total 
observing time. Snapshot programs require the same calibration effort as simple synthesis 
programs of the same total duration. The image construction, deconvolution and display 
steps of snapshot observing can require large amounts of computer time and your time, 
however. As a snapshot image of a given source may be as large as a full synthesis image 
of the same source, snapshot programs also make heavy demands on disk storage. This 
can be especially true for snapshots made in the more compact configurations at 20 cm 
and 6 cm, which are particularly prone to degradation by sidelobe clutter from confusing 
sources (see Section 6 below). Snapshooters must therefore be prepared to coordinate their 
data reduction requirements with those of other users, and to adopt efficient reduction 
strategies, including backing up of inactive source and beam images and u-v data sets 
whenever possible. 

5.2. Multiple snapshots versus extended snapshots. 
The question often arises of whether (for example) an observation requiring 15 minutes 

of integration time is best made as one continuous 15 minute observation or by combining 
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the data from three separate 5 minute snapshots. Under some circumstances, a single 15 
minute observation may give better dynamic range, because ionospheric or tropospheric 
phase gradients in the form of "wedges" may calibrate out of a single short observation, 
leaving only a position shift. In contrast, three shorter observations that are more dispersed 
in time might encounter different wedges and therefore combine to give an image with poorer 
final dynamic range. If the total time taken to acquire the data is longer than the time 
scale for significant changes in the phase screen in front of the region of sky being imaged, 
the dynamic range of the result will be degraded unless self-calibration (Lecture 9) can be 
used. In these circumstances, a single observation may be preferable, as well as being easier 
to schedule. 

The advantages of combining data from several shorter snapshots are (a) greater pro¬ 
tection against total loss of the data for a given source through equipment failures or 
short-term bad weather, and (b) more even sampling of the u-v plane than in a single ex¬ 
tended snapshot. Multiple snapshots are particularly useful when observing at wavelengths 
of 18cm and longer in the C and D configurations, as they allow better imaging of confusing 
sources that may otherwise limit the achieved dynamic range (see Section 6 below). The 
single extended snapshot may however prove to be better for observations that must be 
made at low elevations, where phase "wedges" are more likely to arise, and in cases where 
self-calibration cannot be used. This may be particularly true for observations of weak or 
complex low-declination sources for which the total hour-angle coverage is anyway limited 
by the short time that a given source is above the horizon. 

6.   CONFUSION 

The number of extragalactic sources N per square arc minute of sky with flux densities 
greater than S mJy at 6 cm can be written approximately as 

N(> S) = 0.0325-lls (16-7) 

over the flux density range that is relevant for confusion calculations at the VLA (e.g., 
Ledden et a/. 1980). The corresponding expression at 20 cm is 

#(> S) = O.IOS'-0-9. (16-8) 

The analogs of these expressions for 2 cm and 1.3 cm are not known directly from measured 
source counts. They could be estimated from the 6 cm count in Equation 16-7 by scaling 
flux densities to 6 cm with an effective mean spectrum of ~ i/-0*6. 

Images made at 20 cm will therefore contain, on average, one extragalactic source of 
flux density 110 mJy closer to the field center than the 15' HWHM of the primary beam 
of the VLA antennas. The 6 cm primary beam (4? 5 HWHM) will similarly contain, on 
average, one extragalactic source of flux density 2 mJy, the 2 cm beam (If 85 HWHM) a 
source of < 0.1 mJy and the 1.3 cm beam (1' HWHM) a source of < 0.01 mJy. 

Individual pathological cases aside, confusion is thus unlikely to be a problem except 
at 20 cm and 6 cm in the VLA's more compact configurations. Confusion may have two 
effects on the interpretation of a synthesis image: 

(1) degradation of the r.m.s. fluctuation level on the image by sidelobes or by aliasing 
of confusing sources, and 

(2) identification of the wrong radio source as the target object in a detection experi¬ 
ment, or as part of the structure of an extended feature. 
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If you know you will be making observations near a bright confusing source, you may 
consider two strategies for reducing its effects on your final images. One is to plan to 
make wide-field images containing both the target source and the confusing source and 
subsequently to subtract or 'CLEAN' the confusing source and its sidelobes from the region 
containing the emission that is of interest. The ungridded subtraction technique1 (Lecture 
8, Section 1.3) helps this strategy considerably, as only the parts of the wide field that 
contain significant emission need to be computed and 'CLEAN'ed. This is probably the 
best technique if the angular separation of the confusing source from the region of interest 
is only one or two times the size of the field of view that you would otherwise have been 
interested in imaging. The confusing source may then be close enough that you do not 
require an unacceptably narrow bandwidth to include it in the minimally-distorted field 
around your target. If the confusing source is very strong you may want to displace the 
delay tracking center away from the target and towards the confusing source in order to 
minimize distortions of the response to the confusing source by bandwidth smearing and 
other effects. 

This problem is likely to be encountered particularly often by snapshooters using 
the compact configurations at 20 cm and 6 cm, because the sidelobes resulting from the 
"snowflake" pattern of u-v coverage in a snapshot (Fig. 16-8) extend widely across the 
images. Snapshooters should therefore plan to reduce their data using the ungridded sub¬ 
traction algorithm both because it permits imaging of multiple subfields and because it 
eliminates the effects of sidelobe aliasing. 

A second approach, suitable for more distant confusing sources, is to choose your IF 
bandwidth and delay tracking and pointing centers so that the response to the confusing 
source is adequately reduced by the combined effects of bandwidth smearing and of primary 
beam attenuation. Because the attenuation produced by bandwidth smearing increases with 
baseline length y/u2 + v2 (see Lectures 2 and 8), this attenuation does not filter confusing 
sources from the short-baseline data as effectively as it does from the long-baseline data. If 
a distant confusing source still dominates the data after attenuation by the primary beam, 
this approach may therefore leave wide-angle "ripple" in the final image. In such cases, the 
pointing center should be chosen to minimize the response to the confusion rather than to 
maximize the response to the target source. The most difficult case of all arises when the 
response to the confusing source is strong even after this stratagem has been adopted. Here, 
variable pointing errors and the rotation of the primary sidelobe pattern of the antennas 
on the sky (due to the VLA's altitude-azimuth antenna mounts) may make the confusing 
source appear to vary throughout a VLA observation; it is hard to make images of high 
dynamic range in this case (see also Lecture 8, Section 2.1). 

If the confusing source lies in the target field itself, nothing need be done at the time 
of the observations, as the source and its sidelobe pattern can be 'CLEAN'ed as part of the 
normal data reduction. In detection experiments, confusion may make the interpretation 
of a positive detection questionable if a source is detected near, but not at, the target 
position. In such cases the source count Equations (16-7 and 16-8) can be used to estimate 
the probability that the detected source occurs in the image by chance. 

7.   CALIBRATION STRATEGY 

Calibration sources should generally be chosen from the VLA Calibrator List main¬ 
tained at the site by the NRAO staff, unless you are sure that a calibrator candidate is 
unresolved in the VLA configuration to be used, and has a position measured in the VLA 

1 coded in NRAO's Astronomical Image Processing System as the program 'MX*. 
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reference system to better than 0.1 arcsec. The basic issues to be decided by the observer 
are: how often to calibrate, and how close the calibrators should be to the target sources. 
Your strategy will depend on whether you attempt to calibrate only the instrumental fluc¬ 
tuations of the VLA, or these fluctuations plus the gain and phase variations introduced by 
the ionosphere and troposphere (see Lecture 4 for details). 

7.1. Instrumental calibration. 
The instrumental calibration should (a) detect grossly malfunctioning antennas so that 

faults might be corrected while the observations are in progress, and (b) monitor the over¬ 
all amplitude and phase stability of the instrument sufficiently often that changes can be 
corrected for by interpolation throughout the run. Most instrumental fluctuations (apart 
from phase jumps) are slow, and observation of an unresolved strong calibrator every 20-60 
minutes will normally be adequate for instrumental monitoring. 

Bear in mind that if the instrumental calibration detects a phase jump, you may have 
to discard all the data between consecutive calibration observations for the antenna-IF in 
which the jump occurred, unless the source being imaged is strong enough that the precise 
time of the phase jump can be located in the source data. If the source is strong enough, 
you may need to edit the data only between the gain table entries immediately before and 
after the phase jump—once a phase jump is localized, the gain table entries before and 
after it can be calibrated separately (from the earlier and later calibration observations, 
respectively). Of course, you you may not need to edit phase jumps in the data for strong 
sources at all if you will later use self-calibration to image such sources. 

Calibrators for purely instrumental monitoring should be chosen primarily for their 
strength rather than for extreme closeness to the program source(s), particularly at 1.3 
cm, where the VLA has degraded sensitivity. The interval between calibrations may vary 
with the total length of the program; very short programs should look at a calibrator at the 
beginning and the end to reassure the observer that no drastic changes have occurred during 
the run. It is always worth beginning a run with an observation of a calibration source, so 
that you can sample the data using the on-line display and come to a quick assessment of 
phase stability over the longer baselines, etc. Calibration of the instrumental effects more 
rapidly than every 30 minutes should hardly ever be necessary at 20 cm or 6 cm. 

The length of time spent on each calibration scan should be enough to achieve a signal- 
to-noise (over the 26 baselines contributing to each antenna gain solution) commensurate 
with the required calibration accuracy. Never plan to calibrate for less than 2 minutes 
at a time, however, as shorter calibrator scans may be lost as a result of unusually long 
settle-down times, etc. Typical VLA observing programs spend from 5% to 10% of their 
time on calibration at the lower frequencies; more calibration may be needed at the higher 
frequencies where the calibration sources are weaker and therefore need to be observed for 
longer total integration times. 

7.2. Atmospheric calibration. 
It is more important, and also more difficult, to calibrate the amplitude and phase 

fluctuations resulting from changes in the propagation properties along the atmospheric 
path to the source. Unfortunately, no calibration based on observations of a reference 
source that is not in the same isoplanatic patch as the interesting source can be guaranteed 
to improve the data quality. This does not mean that attempts to calibrate atmospheric 
fluctuations using distant reference sources are a waste of time, but you must recognize that 
such calibration may or may not be successful. If the angular separation of the source and 
calibrator exceeds the scale size of the atmospheric cells responsible for the amplitude and 
phase variations, the fluctuations seen in the calibrator data may not be correlated with 
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those occurring in the source data. Corrections interpolated from the calibrator observations 
into the source data under these circumstances may then make the atmospheric amplitude 
and phase noise in the source data worse by a factor of « y/2. At the other extreme, if 
the source and calibrator are typically within the same isoplanatic patch, the fluctuations 
observed in the calibrator will faithfully track those occurring in the source. Amplitude 
and phase corrections interpolated into the source data from the calibrator data in time 
series may then greatly improve the quality of the final image. The basic problem is that 
the scale size of the isoplanatic patch for your source will vary from day to day and even 
from hour to hour (as a function of the "weather" and of the position of your source above 
the horizon). It is therefore difficult to judge how reliable amplitude and phase referencing 
from a distant calibrator may be before the observations begin. 

The most reliable method for removing atmospheric fluctuations from the data is to use 
self-calibration, if the source meets the basic criteria for use of this approach (as discussed 
in Lecture 9). This means in practice that the source must produce sufficient signal to noise 
in the typical fluctuation time scale for the atmospheric phase screen over the baselines that 
will be used for the self-calibration. 

External calibration is useful even when you know you will be able to self-calibrate your 
final images, for several reasons. External calibrators will provide flux-density and position 
scales for self-calibrated images (on which this information will otherwise generally be lost). 
Observations of the time scale of the phase fluctuations on an unresolved calibrator near 
your source can also be used to estimate the coherence time of the atmosphere while your 
observations were in progress. This will enable you to judge a suitable averaging time r,c for 
the self-calibration (Lecture 9, Section 5.3). Such observations may also tell you that some 
parts of your data were obtained under more stable atmospheric conditions than others; 
the "good" parts may then yield a good initial model of your source to help self-calibration 
of the whole data set converge quickly. 

It is fortunate that the class of source for which images of high dynamic range are most 
important is also the class for which self-calibration is most likely to work well—namely, 
sources with weak extended structures around bright small-diameter components, as dis¬ 
cussed in Lecture 11. There is however a range of flux densities and structural complexities 
over which self-calibration cannot be guaranteed to work in typical atmospheric coherence 
times, and for which external calibration is therefore still required. If you cannot, or do not 
wish to, rely on self-calibration to remove atmospheric effects from your data then you must 
choose your external calibrator(s) as close as possible to the source(s) you are observing, 
and hope that the amplitude and phase stability you observe on the calibrator scans meet 
the needs of your experiment. If the within-scan and scan-to-scan amplitude or phase fluc¬ 
tuations on a calibrator a few degrees from your source are small (less than 10% or 20°), it 
is unlikely that large fluctuations are occurring on your source. If you see large fluctuations 
on the calibrator, you are in trouble, which may or may not be mitigated by correcting the 
source data for the observed fluctuations. If you see slow drifts in the calibrator amplitude 
and phase, long-term ('BOXCAR') averaging of these and interpolating them as corrections 
into the source data should improve the output images. If you see rapid fluctuations, local 
point-to-point ('2POINT') interpolation of these may make matters better or make them 
worse. You then have little choice but to try making images from your data with both 
long-term averaging and with local interpolation of phase corrections from the calibrator 
data, to see empirically which approach gives better final images (using the final dynamic 
range, r.m.8. noise level, and/or any prior knowledge of the source properties to make this 
judgement). 

Deletion of data from some or all baselines during periods of unusually bad phase 
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stability will usually improve the quality of images made by external calibration. If you 
cannot use self-calibration, imaging with a reduced amount of data of better amplitude 
and phase stability can give better results than imaging with a large amount of poor data, 
because the actual synthesized beam will be closer to the theoretical "dirty" beam in the 
former case. This allows deconvolution algorithms to do a better job, increasing the dynamic 
range of your final images. Note that tapering the final images is a way of down-weighting 
the data from the longer baselines where phase stability is poorer. Be ready to sacrifice 
resolution in favor of forming the theoretical beam more closely if the phase stability is 
poor, when your astronomical goals can still be met at lower resolution. 

Significant atmospheric amplitude and phase fluctuations can occur on time scales of 
minutes, even at wavelengths of 6 cm and longer. At times of solar activity, ionospheric 
fluctuations will dominate at 18 cm and longer—they can also be rapid on the long baselines 
but are generally less troublesome near the minima of the sunspot cycle. It is completely 
impractical to adopt a calibrator/source/calibrator cycle that will guarantee following the 
fastest fluctuations of either kind. Calibration every 20 minutes or so will often follow the 
longer-term atmospheric fluctuations at 20 cm and 6 cm, especially in the more compact 
VLA configurations. Calibration every 10 minutes or so is safer at 2 cm and 1.3 cm, 
especially if the external calibrator is not too far from the source being imaged. Keep in 
mind however that no external referencing, no matter how rapid, can be guaranteed to 
remove atmospheric fluctuations from the source data, and that time spent driving to and 
observing calibrators is time deleted from integration on your target source. You must 
decide for yourself how to play this particular roulette game during a given run. 

Observers doing detection experiments will require such high dynamic range (and hence 
high phase stability) as observers imaging complex emission regions. (The loss of gain due 
to poor phase stability in a detection experiment can be estimated during the data reduction 
by calibrating with a > 2 hour 'BOXCAR' interpolation in the gain table, then imaging a 
calibrator source and determining its apparent flux density.) 

The calibration done to monitor atmospheric fluctuations will, of course, calibrate the 
instrumental fluctuations also. 

Finally, note the significance of the choice of the gain table interval for the VLA off¬ 
line data base created by the 'FILLER' program if you will not self-calibrate your data. 
The off-line gain table interval (which you specify to the array operator at the time of the 
observations) sets the minimum time scale of instrumental or atmospheric fluctuations that 
can be corrected by an external calibration. (Self-calibration algorithms construct their 
own gain tables based on the integration time r,c specified for the gain determination). The 
VLA default gain table interval of 10 minutes is adequate for a stable array and atmosphere, 
but shorter intervals are often appropriate if you will rely on external calibration. 

7.3. Flux-density calibration. 
If the LST range of your observing run permits, you should observe 3C 286 for a few 

minutes at each of the frequencies at which you have made source observations, as 3C 286 is 
the flux-density standard to which all VLA measurements are ultimately referred. Failing 
this, you should observe 3C48 or consult with VLA staff about recent determinations of the 
amplitude gains of the antennas from other observations before finalizing your observing 
program. Do not simply take the most recent flux density for an arbitrary calibrator from 
the VLA Calibrator List, as most of these small-diameter sources are highly variable. The 
flux densities recorded in the VLA Calibrator List will rarely be sufficiently current to be 
useful in determining the absolute flux density scale for your observations; use them only 
to estimate the integration times needed to achieve the desired gain accuracy from your 
calibrator scans. 
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7.4. Polarization calibration. 
This was previously discussed in Section 7 of Lecture 4, so only a brief recapitulation 

is given here. 
To calibrate the instrumental polarizations, you should observe one unresolved source, 

whether polarized or not, at least three times. These observations should be distributed 
so they cover a range in parallactic angle x of Ax > 90°, to separate any polarization of 
the calibrator from the required instrumental terms (see Lecture 4). Programs involving 
long (> 4 hr) syntheses of single sources will normally be able to derive the instrumental 
polarization calibration from the observations of the external synthesis calibrator. When 
determining the integration time for the instrumental polarization calibration, bear in mind 
that the leakage terms (the D's of Lecture 4) whose relative amplitudes and phases are to 
be determined will normally produce polarized intensities that are only a few percent of 
the flux density of the calibrator. The instrumental polarization calibration should be done 
at each frequency for which polarimetry is required. The most efficient way to do this is 
to cycle through the frequencies used for the source observations each time the array is 
pointing at the chosen calibrator. 

If the instrumental polarization calibration is omitted (e.g., because the observing ses¬ 
sion is too short, or the instrument misbehaved), you may be able to make the instrumental 
polarization corrections using the "standard" files of the necessary parameters that are 
maintained by the VLA staff. Note however that these are available only for a few com¬ 
binations of observing frequency and bandwidth (see Section 5.1 above for the details). If 
you do not obtain an instrumental calibration, your ability to determine small degrees of 
polarization, and to 'CLEAN' polarized extended structures properly will be limited1. 

To calibrate the polarization position angle scale, observe 3C286 or 3C138 at least once 
during your observing run at each relevant frequency. You will determine the apparent 
position angles of the linear polarization of these sources after you have finished observing 
and after calibrating the total intensity data. The difference between the apparent and 
the nominal values of these position angles values is corrected later in the data reduction 
by adjusting the phase difference between the left and right circular polarizations, using 
a procedure that is described in detail in the VLA Cookbook. It is advisable to alert the 
array operator to the presence of the calibration in your program, so that the observations 
of 3C286 or 3C138 can be extended or rescheduled if necessary to prevent losing them due 
to an equipment failure. Note that this calibration is essential if you wish to make any use 
of your polarization position angle data. 

At wavelengths of 18cm and longer, the position angle calibration may appear to be 
time variable because of fluctuations in the ionospheric Faraday rotation (Lecture 4, Sec¬ 
tion 7.3). If you will make use of the polarization position angle information at these long 
wavelengths, it is therefore a good idea to monitor one polarized calibrator tn the same part 
of the sky as your source(s) throughout your observing run, to check whether its apparent 
position angle changes significantly. If this further calibration shows that the ionospheric 
changes are less than about 20°, it will probably be satisfactory to interpolate the observed 
position angle changes as a function of time when adjusting the relative phase of the left and 
right circularly polarized channels. If larger changes are seen, it may be possible to com¬ 
pensate for them using an ionospheric model and measured critical frequencies (by running 
the VLA's 'FARAD' program once the relevant critical frequency data have been received 
at the VLA—often several months after the observing). Except when the rotation changes 

1 Antenna-to-antenna polarisation differences distort the polarisation images in ways that do not satisfy the 
convolution theorem. 
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are small (< 20°), the success of this repair cannot be guaranteed, however. The obser¬ 
vation of the polarized calibrator is best thought of as a "warning light" for the existence 
of ionospheric Faraday rotation problems, not necessarily as a means for correcting them. 
Applying FARAD's corrections to the data on this calibrator will also check whether they 
are indeed improving the angle calibration. Ionospheric effects will normally be negligible 
at 6 cm, 2 cm or 1.3 cm, so this calibration is not required at these wavelengths. 

8.   STORMY WEATHER AND WHAT TO DO ABOUT IT 

You can't tell the phase stability by looking out of the window. 
— attributed to B. G. Clark 

Some observing programs have frequency agility. When this is the case, on-site ob¬ 
servers may wish to adjust their observation files to take account of the weather prevailing 
during their observing program—this is a prime reason for being on-site when your obser¬ 
vations begin. The import of the above quote is that you have to observe to find out how 
good (or bad) the phase stability is. Clear blue skies do not guarantee good phase stabil¬ 
ity, particularly in spring and summer. Thunderstorms do however guarantee bad phase 
stability. 

If your proposal has frequency agility, it is a good idea to monitor the VLA on-line 
computer's amplitude-phase ("D10") display over a long baseline as your observations start. 
Look at the phase on a strong calibrator for a few minutes. Fluctuations of order a radian 
on a time scale of minutes are unmitigated bad news, and the only possible strategy is 
to move the observations to lower frequencies if this makes any astronomical sense. The 
converse is not true, however. Short-term (minute-by-minute) phase stability to within a 
few degrees does not guarantee that the observations will be of good quality for synthesis. 
This requires stability over the time scale of your calibration cycle (unless you are going 
to self-calibrate). You should therefore pay attention to the stability of the phase between 
adjacent scans of your calibrator, as well as to that within the scans, to assess whether you 
have the stability needed for synthesis. If the longer-term stability is marginal, i.e., of order 
30-40°, you might consider editing your observing file to achieve a faster calibration cycle. 
Users of 1.3 and 2 cm wavelengths might consider preparing several observing files with 
different calibration cycle times before the observations begin; this makes it easier to alter 
the strategy while they are in progress. 

Snapshots require phase stability only for the duration of the individual snapshot. 
Instabilities over the calibration cycle but not on the time scale of the snapshots themselves 
may lead to snapshot images with fair dynamic range but uncalibrated position shifts. 

In any case, the stability to be expected during a run is hard to assess in advance 
(unless it is very bad), and you must be prepared to observe for a while before making gross 
adjustments to your observing strategy. 

9.   THE OBSERVING PROPOSAL 

A few guidelines can be given for writing a VLA proposal to maximize its chances of 
being scheduled in the competition for observing time. Above all else, the project must 
be one whose scientific goals favorably impress the referees. A "highly-placed source who 
wishes to remain anonymous" notes that more concisely-written proposals are more likely 
to be received favorably by the referees, all else being equal. Before you begin writing a 
proposal, it is also worth checking whether any source you are interested in has previously 
been observed at the VLA—catalogs of the observed sources, with relevant instrumental 
parameters, can be obtained by writing to Teresa McBride at the VLA or by accessing 
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Figure 10—0. A sample of Item 18 from the standard VLA proposal cover sheet. 
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Figure 10-10. A histogram of durations of projects scheduled for VLA observations for the first two 
months of 1984, when the array was in the B configuration. 

the relevant disk files on the VLA DEC-10 computer. See the NRAO Newsletter of July 
1, 1985, p. 13, for details and for a brief description of NRAO policy regarding access to 
archived data sets. 

The proposal cover sheet should be filled out in as much detail as possible. Filling 
out item 18 on the cover sheet (Fig. 16-9) fully for each source, or for typical sources, will 
lead you to consider the issues discussed in this Lecture. Your entries here should show the 
proposal referees and the VLA scheduling committee that the proposal is well suited to the 
VLA configuration (s) you are requesting. 

The distribution of observing time allotted to successful proposals during the first two 
months of 1984, when the VLA was in the B configuration, is shown as a histogram in 
Figure 16-10. The median observing time scheduled is 7 hours, reflecting the large number 
of proposals for which less than full hour angle tracks are appropriate. Note however that 
some of the projects scheduled used more than 16 hours of observing time—well-justified 
long projects can successfully compete for time! 

Finally, submit your proposal to the NRAO Director in Charlottesville well before the 
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deadline given for your desired configuration(s). These deadlines and the VLA configura¬ 
tion schedule are published regularly in the NRAO Newsletter and in the AAS Newsletter. 
Proposals may be submitted between the deadline dates, and indeed NRAO encourages this 
for several reasons—(a) the pressure of proposals for a given configuration influences the 
length of time that the VLA is scheduled to spend in that configuration, (b) early submis¬ 
sion may give you a chance to reply to unfavorable referees' comments before the scheduling 
committee assigns time for the requested configuratioil(s), and (c) observers who submit 
early reduce the strain on the proposal processing system near the time of the deadline. 
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