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Cover illustration.

(Top) A computer-generated perspective drawing of a synthesis image
of the radio source 3C10, a galactic supernova remnant. This image
was obtained from VLA observations at 1381 MHz.

(Bottom) A perspective drawing of the visibility data from which this
image of 3C 10 was derived. The visibility data are samples of the inverse
Fourier transform of the distribution on the sky of the radio emission
from this object. (Only the visibility amplitude is represented in this

drawing.)
(These data were provided by Tim Cornwell.)
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PREFACE

1. The Purpose of the Course.

The NRAO Summer School on Synthesis Imaging held in Socorro from August 5th to
9th, 1985 was the second occasion on which NRAO staff prepared a series of lectures for
serious students of synthesis imaging and image processing. NRAO operates one of the
world’s most powerful synthesis telescopes—the Very Large Array (VLA)—and is building
another—the Very Long Baseline Array (VLBA). The main purpose of this course, like
that of its predecessor in 1982, was to inform potential users of these telescopes about the
principles on which synthesis instruments operate, about the subtleties of data acquisition,
calibration and processing associated with them, and about techniques for getting the best
results from them.

As such, it is aimed primarily at radio astronomers who are relative newcomers to the
field of synthesis imaging, e.g., beginning graduate students or those whose research has
hitherto not employed synthesis techniques. The subject matter is also of interest to people
outside the traditional radio astronomy community—to astronomers whose expertise is pri-
marily in observations at shorter wavelengths, to astrophysicists who wish to interpret the
data from synthesis telescopes, and to researchers employing Fourier methods or deconvolu-
tion techniques in other fields of imaging, such as physics, medicine or remote sensing. We
have therefore confined the detailed discussion of topics relating to NRAO’s instruments to
a few portions of the course, and have attempted to emphasize general principles wherever
possible.

Nevertheless, the lectures reflect the—close association of the lecturers with NRAO’s
instruments, especially with the VLA. We hope that readers will find this a generally bene-
ficial influence, as the VLA is an environment in which many boundaries of image processing
techniques in radio astronomy are being pushed back, and as many of you will be reading
these notes because you intend to use the VLA for your own research. Those of you with
broader interests will, we hope, find the VLA-specific sections of these lectures easy to
identify and to skip over, if you wish.

The lectures do not appear here exactly as given. These written versions were prepared
after the lecturers had reviewed comments from the course participants and from other
NRAO staff. Difficult points have been explained in greater detail, and additional material
that could not be covered within the time constraints of the live lectures has been added.
We have also standardized notation and rearranged material where we felt that this made
the course as a whole more coherent.

2. Subject matter.

The first lecture, by Barry Clark, develops the fundamental principles and equations of
synthesis imaging, with particular attention to the assumptions which underlie them. The
second, by Richard Thompson and the third, by Larry D’Addario, discuss the practical im-
plementations of instruments to image the radio sky based on these fundamental principles.
These lectures are written from the standpoint of the engineers who build the instruments,
and are essential reading for anyone wishing to understand how the design of a synthesis
array interacts with the quality and credibility of the data which are obtained from it. The
fourth lecture, by Carl Bignell and Rick Perley, reviews the many instrumental, atmospheric
and environmental effects that must be calibrated or compensated before the data from a
synthesis array are ready to be passed to the imaging procedures.
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The fifth lecture, by Dick Sramek and Fred Schwab, describes the primary computa-
tional steps involved in making an image from the data collected by a synthesis array. It
forms the basis for all of the subsequent discussions.

The sixth lecture, by Pat Crane and Peter Napier, examines the factors that affect the
sensitivity of synthesis images to various kinds of structure, with particular attention to the
calculations relevant for the VLA.

The next five lectures examine the imperfections of the “dirty” images made by the
straightforward techniques of Lecture 5, and discuss the battery of methods that radio
astronomers bring to bear on diagnosing and suppressing these imperfections. The seventh
lecture, by Tim Cornwell, reviews the strengths and weaknesses of deconvolution algorithms
currently in use in astronomy. The eighth, by Bill Cotton, describes procedures for dealing
with the problems faced when some of the simplifying assumptions made in Lecture 1 are
violated, and for reducing the computing requirements of some difficult imaging cases. The
ninth lecture, by Tim Cornwell, treats the powerful technique known as “self-calibration”
whereby data obtained from the source itself are used to calibrate its own image. The tenth
lecture, by Ron Ekers, describes some common image defects, how to recognize what causes
them, and how to eliminate or reduce them. The eleventh lecture, by Rick Perley, discusses
the techniques that are now available for extremely high-fidelity imaging in the presence of
initially corrupted data from synthesis arrays.

The next two lectures treat important special topics in radio interferometry. The
twelfth, by Jacqueline van Gorkom and Ron Ekers, discusses problems specific to spectral
line synthesis; the thirteenth, by Craig Walker, describes the special features of synthesis
imaging with arrays of antennas that are not physically connected—very long baseline
interferometry (VLBI).

The fourteenth and fifteenth lectures, by Ed Fomalont and Arnold Rots, treat different
aspects of image analysis; that is, the extraction of useful information from the final images
once they have been computed.

The sixteenth and final lecture, by Alan Bridle, describes an orderly approach to using
the information from the previous lectures when planning and executing observing programs
at the VLA.

3. Terminology and Notation.

Some of the terminology used in these lectures departs from the established traditions
of radio astronomy—in ways that we hope will reduce confusion for newcomers to this
field. The process of image construction in radio astronomy has been known for decades as
mapping, not imaging, as here. Generations of radio astronomers have regarded isophotal
maps (contour maps) as the prime display of their data, and have adopted the term map
because of the analogy with topographical mapping. In most other fields of research, the
distribution of intensities across a field of view is described as an image, however, and we
were persuaded to use the more common terminology throughout this course despite the
radio astronomy tradition.

The distinctions between images made by radio telescopes and by telescopes operating
at other wavelengths are minor compared with the impediment to understanding that comes
from using different terminology in different applications. We have therefore used “image”
in most places that “map” would occur normally in the radio astronomy literature, with a
few exceptions, e.g., when describing contour displays, or when discussing techniques such
as fringe rate mapping, which determine the layout of a source without imaging it.

We have also generally avoided the traditional term “aperture synthesis” for the imag-
ing technique, as most modern synthesis telescopes have no equivalent aperture. The com-
mon term “Earth rotation synthesis” also seems unnecessarily restrictive, as many of the
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principles described here can be employed without making use of Earth rotation to generate
the sampling pattern. We have therefore adopted the brief term “synthesis”, which may be
thought of as a shorthand for “Fourier synthesis”, throughout.

Finally, we found no a priori standard among the lecturers about the sign of the phase
term in the Fourier transform integral, or about the direction termed the “forward” or
the “inverse” Fourier transform. To make the course internally consistent (and so, we
hope, to minimize confusion), we converted the notation and language of all lectures to the
convention that was adopted initially by the majority. This defines the forward transform
direction as that with the positive sign of the phase, which in these notes is the transform
from the spatial frequency domain to the image domain. This convention is common in
mathematics texts, but the reader should note that it is the inverse of the convention
most commonly found in the engineering literature. The reader will therefore encounter
the opposite convention in some of the referenced literature, but we hope the internal
consistency of these lectures will avoid confusion.

4. Some NRAO Lore.

There are references to NRAO internal publications and to NRAO software throughout
this course. This is inevitable, given that many important topics covered by the Summer
School are not published in the regular literature or in textbooks. These references will
also be important further reading for those of you who eventually pursue an interest in
synthesis imaging to the point of making observations with the VLA or VLBA. Copies of
memoranda in the various VLA technical and scientific series are available on request from
Alison Patrick at NRAO, P.O. Box O, Socorro, NM 87801, USA.

The reader will also find frequent references to software in the ‘AIPS’ package. Thisis a
software system for calibration, imaging and analysis of astronomical data that is tailored to
the needs of synthesis imaging (though parts of it are much more general). ‘AIPS’ stands
for Astronomical Image Processing System, and both the software and documentation
describing it can be obtained on request from Nancy Wiener, NRAO, Edgemont Road,
Charlottesville, VA 22903-2475, USA.

RICHARD A. PERLEY

FREDERIC R. SCHWAB
ALAN H. BRIDLE
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OPENING REMARKS

I would like to welcome you to the Macey Center on the campus of the New Mexico
Institute of Technology in Socorro for our second summer course on Radio Astronomical
Imaging with Synthesis Telescopes.

Why have another course on “Synthesis Imaging”? Synthesis radio telescopes are play-
ing an increasingly important role in radio astronomy. The VLA has been in full operation
since 1981, two major new synthesis telescopes are under construction—the Australia Tele-
scope and the VLBA—and further synthesis telescopes are being planned (e.g., QUASAT
and NRAO'’s millimeter wavelength array). It is our intention to keep this discussion suffi-
ciently general to apply to any of these instruments, although almost all examples will be
taken from the VLA. Synthesis telescopes are unusually powerful and are very flexible, but
they are so different from the conventional telescopes which form images directly in their
focal planes that they may at first seem more difficult to understand. However, once the
underlying principles are clear you will be able to exploit their flexibility.

The VLA is a national facility. National observatories make it possible to concentrate
resources into single large instruments, but they also deprive many of you of the educational
experience of building and using your own telescope. One aim of this course is to try
to compensate for the imbalance between the very large number of users who have little
opportunity to obtain hands-on experience and the relatively small number of our staff who
often feel they get more hands-on experience than they need.

Especially in the area of image processing, there have been many new developments
which have not been included in any existing textbook or course material on radio astron-
omy. Examples are the enhancements of images through deconvolution algorithms such as
‘CLEAN’ and MEM, the removal of atmospheric blurring by the application of antenna-
based self-calibration, and the techniques used for the production and processing of spectral
line synthesis data. These topics will be covered during this course, and the lecture notes
will be made available to you.

This is also a rich field for cross-fertilization between disciplines. Many of you and
many of the users of the VLA are not radio astronomers, and as soon as you can penetrate
the barrier of the jargon of this subfield you will find that many of the underlying principles
apply in a wide range of situations. Obvious examples include: optical interferometry,
adaptive optics, and indirect imaging in medicine, radar, seismology and other fields.

The vast majority of observations made with the VLA use it as an analytic tool to
observe known phenomena and to make specific measurements relating to a hypothesis
about the object or class of objects under study. The information we cover in this course
will provide the background needed to plan for this type of observation. We will describe
techniques which will enable you to extract all the useful information in your data and to
get it into a form suitable for interpretation, and we will try to indicate how to do this in
a reasonable amount of time. Fundamental to an observational science is the quality of the
results produced. The NRAO engineering staff will do everything they can to make the
instrument work reliably, however it is the observers who are ultimately responsible for the
results which they publish. A basic knowledge of the instrument is important in order to
recognize erroneous results and to have confidence in the integrity of the final product.

It is well known that major discoveries, especially in radio astronomy, have been
driven by instrumental developments. The VLA represents such a major instrumental
development—with sensitivity, resolution, speed and sky coverage far greater than any pre-
vious radio telescope. New and exciting discoveries should be possible with such a telescope,
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but in order to be able to recognize the unexpected you must understand the instrument
well. The most likely reason for an unexpected result is an error of some kind. If you
throw out everything unusual, assuming it is erroneous, you may miss something impor-
tant. On the other hand, if you spend a great deal of time investigating every possible
error you will never get much done. With an understanding of the basic principles by which
these telescopes work you will be in a much better position to discriminate against errors
and to recognize the unexpected. In his book Cosmic Discovery (Basic Books, New York,
1981), Martin Harwit argues that national facilities are unlikely to make major discoveries.
Through courses such as these we hope to show that this need not be true.

RONALD D. EKERS



1. Introduction and Basic Theory

BARRY G. CLARK

1. INTRODUCTION

It is appropriate for this specialized workshop to start with a survey of the derivation
of the main principles of synthesis imaging, paying particular attention to the assumptions
that go into them. This is because an appreciable part of the workshop to follow will discuss
the problems which arise when these assumptions are violated under the conditions of the
observation the astronomer wants to make. At the same time, I will cast this introduction
into the terminology of modern optics, in an attempt to stay abreast of current fashions in
physics.

The fundamental reference for the basics of modern optics is the excellent textbook
Principles of Optics, by Born and Wolf; their Chapter X is especially relevant to this work-
shop. An excellent discussion of synthesis imaging, employing this modern terminology,
is given by J. L. Yen (1985) in Chapter 5 of Array Signal Processing (S. Haykin, ed.). A
broader view of radio telescopes, again from a viewpoint of Fourier optics, but taking a
somewhat historical perspective, is given in Radiotelescopes by Christiansen and Hégbom
(1985, Second Edition); their Chapter 7 discusses synthesis methods. The alternate view-
point on radio interferometers, from the perspective of the electrical engineers who originally
developed them, is explicated in Swenson and Mathur (1968).

2. FORM OF THE OBSERVED ELECTRIC FIELD

I will start with the most general formulation of the subject, and, one by one, introduce
the simplifying assumptions until reaching the simple, elegant theoretical basis that is, after
all, sufficient for much of radio interferometry. In the most general case, an astrophysical
phenomenon occurs at location R (the boldface symbols indicate vectors, in this case a
position vector). This phenomenon causes a time-variable electric field, which I will denote
as E(R,t). Then, Maxwell’s equations say that an electromagnetic wave will propagate away
from that point and will eventually arrive at a point where an astronomer may conveniently
observe it, say the point r.

It is inconvenient for a number of reasons to deal with general time-variable electric
fields. If we have a finite time interval of a varying field, we may express the magnitude
of the field as the real part of the sum of the Fourier series in which the only time-varying
functions are simple exponentials. Because of the linearity of Maxwell’s equations (in the
cases of astrophysical interest, anyway) we may deal with the coefficients of this Fourier
series, rather than with the general time-varying field. The coefficients of this Fourier series,
which I will call E,(R), are called the quasi-monochromatic components of the electric field
E(R,t). Note that the fields E, (R) are complex quantities, and it is useful to think of them
as such at all times. It leads to a more elegant formulation of the theories to consider this
complex nature to be physical reality rather than a mathematical convenience.

In what follows, I consider only a single quasi-monochromatic component, realizing that
the total response is the sum of the responses to all the components. In fact, the response
of an instrument can be made arbitrarily close to that of a single quasi-monochromatic
component, by inserting filters in the early, linear, parts of the instrument.
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The linearity property of Maxwell’s equations allows us to superpose the fields produced
at a test location by the various source points,

E.(r)= / [ P,(R,1)E,(R) dz dyd=. (1-1)

The integral is to be taken over all of space. The function P, (R,r) is called the propagator,
and describes how the electric field at R influences the electric field at r.

At this point, I begin to introduce the simplifying assumptions. The first assumption
may be considered to be merely pedagogical, in the sense that it is not really needed at
all, and is made only to avoid complicating the equations to the point that their physical
meaning is obscured. For the moment, I shall ignore the fact that electromagnetic radiation
is a vector phenomenon, and treat it as if it were simply a scalar field, measured at any
point by a scalar quantity E. That is to say, I shall ignore, for the moment, all polarization
phenomena. This enables the multiplication in Equation 1-1 to be regarded as ordinary
scalar multiplication, and the propagator P to be an ordinary scalar function (not a tensor
function as a complete derivation would have it).

The second simplifying assumption is that the sources of interest to astronomers are
a long way away. The practical implication of this is that we have to give up all hope of
describing the structure of the emitting regions in the third dimension, in depth. All we
may measure is the “surface brightness” of the emitting phenomenon. One convenient way
of expressing this assumption is to replace the field strength E at the source with the field
strength at a convenient point distant from both us and from any source of radiation. We
may conceive of a “celestial sphere”, a very large sphere of radius |R|, within which there
is no additional radiation, and all that we may learn about the distribution of the source of
the fields is the distribution of the electric field on the surface of this sphere, which I will
call £, (R).

The third simplifying assumption is that the space within the “celestial sphere” is
empty. For this case, Huygens’ Principle tells us that the propagator takes a particularly
simple form, and we can write

¢ cznvIR—rllc iRl o
B = [e@mTg——ds. (1-2

Here dS is the element of surface area on the celestial sphere.

Equation 1-2 is the general form of the quasi-monochromatic component of the electric
field at frequency v due to all sources of cosmic electromagnetic radiation. This is all we
have; we can measure only the properties of this field E,(r) to tell us about the nature of
things at large in the universe.

3. SPATIAL COHERENCE FUNCTION OF THE FIELD

Among the properties of E, (r) is the correlation of the field at two different locations.
The correlation of the field at points r; and rj is defined as the expectation of a product,
namely V,(r;,r;) = (E,(r1) E}(r2)). The raised asterisk indicates the complex conjugate.
We can then use Equation 1-2 to substitute for E,(r), writing the product of the integrals
as a double integral over two separate surface element dummy variables:

e3*wIR1—r1|/c g—2xiv|Rz—r3|/c
A dS,) (1-3)

V.(r1,r2) = <// EARIES (R) Ry — 11 [Ra — rq|
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The fourth simplifying assumption is that the radiation from astronomical objects is
not spatially coherent; i.e., that (£, (R1)&F(R;)) is zero for R; # Rjz. Exchanging the
expectation and the integrals in Equation 1-3 then gives:

w|R—r,|/c —2xiv|R—r3]/c

Ve = [(a@PRPSE T s )

Now write s for the unit vector R/|R| and I,(s) for the observed intensity |[R|%(|€,(s)|?).
The second assumption (the great distance to the sources and to the celestial sphere) can
then be used again to neglect the small terms of order |r/R|, and to replace the surface
element dS on the celestial sphere by |R|?df2, so that Equation 1-4 becomes:

Vo(r1,rs) m / I(s)e~ 2 iva(n-ral/e g (1-5)

Observe that Equation 1-5 depends only on the separation vector r; — rj of the two
points, not on their absolute locations r; and r;. Therefore, we can find out all we can
learn about the correlation properties of the radiation field by holding one observation
point fixed and moving the second around; we do not have to measure at all possible pairs
of points. This function V, of a single (vector) separation r; — r; is called the spatial
coherence function, or the spatial autocorrelation function, of the field E,(r). It is all we
have to measure.

An interferometer is a device for measuring this spatial coherence function.

4. THE BASIC FOURIER INVERSIONS OF SYNTHESIS IMAGING

A second interesting point about Equation 1-5 is that the equation is, within reason-
able, well-defined limits, invertible. The intensity distribution of the radiation as a function
of direction 8 can therefore be deduced in certain cases by measuring the spatial coherence
function V as a function of r; — r, and performing the inversion.

There are two special cases of a great deal of interest. In fact, it is usually argued that
any actual case is so close to one of these two special cases that the invertibility properties
(although not necessarily the effort required to perform the inversion) must be essentially
similar. Since there are two forms of interest, there are two alternate forms of our fifth (and
final) simplifying assumption.

4.1. Measurements confined to a plane.

First, we could choose to make our measurements only in a plane; that is, in some
favored coordinate system, the vector spacing of the separation variable in the coherence
function, conveniently measured in terms of the wavelength A = ¢/v, is ry —r3 = A(u,v,0).
In this same coordinate system, the components of the unit vector 8 are (I, m, 1 — 12 — m?).
Inserting these, and explicitly showing the form, in this coordinate system, of the element
of solid angle, we have

e—3xi(ul+vm)
V,,(u,v,w=0) = fz(zm)m

Equation 1-6 is, clearly, a Fourier transform relation between the spatial coherence
function V,(u,v,w = 0) (with separations expressed in wavelengths), and the modified
intensity I,(I,m)/v/1 — {2 — m? (with angles expressed as direction cosines). Now we are
home free. Mathematicians have devoted decades of work to telling us when we can invert
a Fourier transform, and how much information it requires.

(1-6)
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4.2. All sources in a small region of sky.

The alternate form of the fifth simplifying assumption is to consider the case where all
of the radiation comes from only a small portion of the celestial sphere. That is, to take
8 = 8¢ + 0, and neglect all terms in the squares of the components of o. In particular, the
statement that both s and s8¢ are unit vectors implies that

l=|s|=8-8=38p-8p
=80:'80+28p:-0+0-0
8142890,

i.e., 89 and o are perpendicular. If we again introduce a special coordinate system such
that sg = (0,0,1), then we have a slightly different offspring of Equation 1-5:

V!(u,v,w) = e~ / / I, (I, m)e 3 (u+om) gr g | (1-7)

Here, the components of the vector r; — r; have been denoted by (u, v, w). It is customary
to absorb the factor in front of the integral in Equation 1-7 into the left hand side, by
considering the quantity V, (u,v, w) = e3***V/(u,v, w), which we see is independent of w:

Vi(u,v) = / / I (l,m)e?=ituttom) g1 g | (1-8)

V.(u,v) is the coherence function relative to the direction 8o, which is called the phase
tracking center.
Since Equation 1-8 is a Fourier transform, we have in particular, the direct inversion

L(l,m)= / / V,(u,v)e? (#+vm) gy dy (1-9)

The relationship between the two different forms of the assumption used here and in
Section 4.1 can be seen from the symmetric role played in Equation 1-5 by the two vectors
s and r; — rz: the form used in Section 4.1 results from saying that the vectors r; — rj lie
in a plane; the form used here results from saying that the endpoints of the vectors s lie in
a plane.

4.3. Effect of discrete sampling.

In practice the spatial coherence function V' is not known everywhere but is sampled at
particular places on the u-v plane. The sampling can be described by a sampling function
S(u, v), which is zero where no data have been taken. One can then calculate a function

IP(1,m) = / / V. (u,v)S(u, v)e? i (#+om) gy gy . (1-10)

Radio astronomers often refer to IP(l,m) as the dirty image; its relation to the desired
intensity distribution I, (I, m) is (using the convolution theorem for Fourier transforms):

IP=1,+B, (1-11)
where the in-line asterisk denotes convolution and
B(l,m) = / / S(u,v)e? s +vm) gy dy (1-12)

is the synthesized beam or point spread function corresponding to the sampling function
S(u,v). Equation 1-11 says that ID is the true intensity distribution I convolved with the
synthesized beam B. Lecture 7 discusses methods for undoing this convolution.

4
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4.4. Effect of the element reception pattern.

An additional minor alteration must be made to the above for convenience in practical
calculation. In practice, the interferometer elements are not point probes which sense the
voltage at that point, but are elements of finite size, which have some sensitivity to the
direction of arrival of the radio radiation. That is, there is an additional factor within the
integral of Equation 1-2, and hence of Equations 1-4, 1-5, 1-6, 1-7 and 1-8, of A, (8) (the
primary beam or normalized reception pattern of the interferometer elements) describing
this sensitivity as a function of direction. For explicitness, Equation 1-8 is rewritten below,
with this factor included:

Vi(u,v) = / / A, (1, m) L (1, m)e 2 u+vm) g gy (1-13)

The V,(u, v) so defined is normally termed the complez visibility relative to the chosen phase
tracking center.

It is clear that dealing with the element directivity A, should be postponed to the
final step of deriving the sky intensity, and that then it should simply divide the derived
intensities (if all elements have the same reception pattern). This division will, however,
not only produce a better estimate of the actual intensities in this direction, but will also
increase the errors (of all types) in directions far from the center of the element primary
beam, where one is dividing by small numbers.

Although the factor A, looks like merely a nuisance, it is actually the reason that the
second form of the final assumption (used in Section 4.2) is so acceptable in many practical
cases—4A, (8) falls rapidly to zero except in the vicinity of some 8¢, the pointing center for
the array elements.

5. EXTENSIONS TO THE BASIC THEORY

Two simple extensions to this basic theory are worth mentioning at this point.

5.1. Spectroscopy.

First, consider the case of observing a spectral line. Here the appearance of the sky
may change quite rapidly as a function of frequency, and one would like to make synthesis
images at a large number of closely spaced frequencies. Clearly, one can do this by inserting
narrowband filters into the early, linear, parts of the interferometer, and simply repeat
the processing for each frequency, either seriatim or simultaneously. However, there is a
technically more attractive approach. With current technology, it is attractive to implement
the latter portions of the interferometer in digital hardware. In this technology, it is quite
inexpensive to add additional multipliers to calculate the correlation as a function of lag.
Admitting a range of quasi-monochromatic waves to the interferometer, we can write an
expression for the correlation as a function of lag, noting that for each quasi-monochromatic
wave, a lag is equivalent to a phase shift, i.e., a multiplication by a complex exponential

V(u,v,7)= / V(u,v,v)e?™ ™ dy. (1-14)

The above is clearly a Fourier transform, with complementary variables v and 7, and can
be inverted to extract the desired V' (u, v, ). Since, in this digital technology, one is dealing
with sampled data, I give the sampled form of the inversion below:

V(u,v,nAv) = EV(u, v,mAr)e 3rimnAvar (1-15)

5
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The fact that we are dealing with sampled data is of some interest, and we should stop and
inquire about how the Fourier sampling theorem is to be applied. Examining the above,
in its full complex form, we see that the replication interval is 1/Ar in frequency, so that
the band of frequencies must be limited, before sampling, to a total bandwidth of less than
this, to avoid loss of information in the sampling process.

This is different from the statement one usually encounters, in which a prefiltering to
1/2Ar is required to preserve the information in the sampling process for a signal (actually
it is usually stated, equivalently, as requiring a sampling interval of 1/2B, where B is the
prefilter bandwidth). This factor of two difference is due to the complex nature of the
quantities we have been dealing with—the V(u,v,v) are complex numbers, calculated by a
complex multiplication of the complex field quantities. Complex multipliers and complex
samplers require at least twice as many electronic components as devices that produce a
real number, and the resulting doubling of the hardware permits us to sample a factor of
two less often.

However, one can also develop this theory from the conventional viewpoint of dealing
with real numbers only. Here the 2B sample rate is required, and maintains all the infor-
mation in the signals. We can exchange this faster sampling rate for the double hardware
needed to produce the complex version of the signals. The real parts of the various V(u, v, v)
are derived from the part of the correlation function that is even about r = 0, and the odd
part supplies the imaginary part of V(u,v,v).

Finally, if one derives the spectrum in this manner, one can, clearly, convert back to the
single continuum channel at zero lag simply by summing the derived frequency-dependent
V. This process clearly results in a complex number, even though each measurement was
only a real number. The process of transforming a real function into a complex one by
Fourier transforming and then transforming back on half the interval is called a Hilbert
transform, and is an alternate method to implementing complex correlators.

5.2. Polarimetry.

Now, in a final remark, let me look back to Section 2, to the first simplifying assumption,
that of a scalar field. Actually, the electromagnetic field is a vector phenomenon, and
the polarization properties carry interesting physical information. For the case of noise
emission, one must be a bit careful about the definition of polarization. A monochromatic
wave is always completely polarized, in some particular elliptical polarization, in that a
single number describes the variation of the fields everywhere. For electromagnetic noise,
polarization is defined by a correlation process. One picks two orthogonal polarizations and
analyses the radiation of the quasi-monochromatic waves into the components in these two
polarizations. Then the polarization of the quasi-monochromatic wave is described by the
2 x 2 matrix of correlations between these two resolutions into orthogonal components. For
instance, if we pick right and left circular polarization as the two orthogonal modes, then

the matrix
(RR*) (RL*)
((LR*) (w)) (149)

describes the polarization. This can be related to more familiar descriptions of polarization.
For instance, the Stokes parameters have the intensity I, two linear polarization parameters
Q and U, and a circular polarization parameter V related to the above numbers in simple
(and more or less obvious) linear combinations:

(o5 9¥). -1
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The complex correlation functions on the celestial sphere are preserved in the spatial
coherence functions that interferometers measure. That is, one can derive, for instance,
the distribution of (RR*) on the sky by measuring the coherence function of R on the
ground, and so forth for the other components of the matrix in (1-16). Since the intensity
is the quantity in which one is always interested, one usually forms the sum of the R and
L coherence functions before transforming to the sky plane, which one can always do, since
the relations are linear. One can choose to do the same with the other Stokes parameters,
or one can calculate the transforms of the mutual coherence between R and L to find
the distribution of (RL*) on the sky, and later note that this is, in terms of the Stokes
parameters, @ + tU.
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2. The Interferometer in Practice

A. RICHARD THOMPSON

The theoretical basis of interferometry has been discussed in the previous Lecture,
and here we are concerned with some practical effects that modify the response. Other
discussions of the interferometer response can be found in Swenson and Mathur (1968),
Fomalont (1973), Fomalont and Wright (1974), Meeks (1976), and Christiansen and Hégbom
(1985); a detailed and extensive review is given by Thompson, Moran and Swenson (1986).
Synthesis arrays, which produce images by Fourier synthesis from measurements of complex
visibility, can be analyzed as ensembles of two-element interferometers. Many of the effects
can therefore be understood from a discussion of the properties of a two-element instrument.

1. RESPONSE OF AN INTERFEROMETER

A simplified block diagram of an interferometer is shown in Figure 2-1. The two
antennas point toward a distant radio source in a direction indicated by unit vector s. b
is the interferometer baseline, and the wavefront from the source reaches one antenna at a
time 7, later than the other. 7, is called the geometrical delay and is given by

,=b-8/c, (2-1)

where c is the speed of light. The signals from the antennas pass through amplifiers which
incorporate filters to select the required frequency band of width Av. The component in
which the signals are combined is the correlator, which is a voltage multiplier followed by a
time averaging (integrating) circuit. If the input waveforms to the correlator are V;(t) and
Va(t), the output is proportional to

Wi(9)va(2)) (2-2)

where the angular brackets denote a time average. We can represent the received signals
by Fourier components of the form V;(t) = vy cos2xv(t — 7,) and V3(t) = vz cos2xvt. The
output of the correlator is then

r(r;) = vyivacos2xvr,. (2-3)

74 varies slowly with time as the earth rotates, and the resulting oscillations of the cosine
term in Equation 2-3 represent the fringe pattern. We may assume that these oscillations
are sufficiently slow that the fringes are not significantly attenuated by the averaging (an
expression for the fringe frequency is given in Section 8). In contrast, the component at
frequency 2v generated in the multiplication is effectively filtered out. Note that the term
v1v2, which represents the fringe amplitude, is proportional to the received power.

We now express the interferometer output in terms of the radio brightness integrated
over the sky. Let I(8) represent the radio brightness in the direction of unit vector s at
frequency v. The brightness is also sometimes referred to as intensity and is measured in
Wm~2Hz~'sr~!. Note that I refers to the component of the radiation that is matched
to the polarization of the antennas, which we assume are identically polarized. The way in

9
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Figure 5-1. Simplified schematic diagram of a two-element interferometer.

which the antenna polarization is varied to explore the total radiation field is considered
in Lecture 4. The signal power received in bandwidth A» from the source element dfQ is
A(8)I(8)Av df2, where A(8) is the effective collecting area in direction s, which we assume
to be the same for each of the antennas. The resulting output from the correlator is
proportional to the received power and to the cosine fringe term. Thus, omitting constant
gain factors, we can represent the correlator output for the signal from solid angle df by

dr = A(s)I(s)AvdQcos2xvr,. (2—4)
In terms of the baseline and source position vectors we can write

r=Av / A(s)I(s) cos ™22 aqy. (2-5)
)

c
The integral in Equation 2-5 is taken over the entire surface S of the celestial sphere,
subtending 4« steradians, but in practice the integrand usually falls to very low values
outside a small angular field as a result of the antenna beamwidth, the finite dimensions
of the radio source, and other effects which restrict the field of view (see Sections 10 and
11, and Lecture 8). We assume that the bandwidth Av is sufficiently small that variation

of A and I with v can be ignored. Two further assumptions have been made in deriving
Equation 2-5. First, the source must be in the far field of the interferometer so that the

10
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Rl

Figure 2-2. Position vectors used in deriving the interferometer response to a source. The source is
represented by the contours of radio brightness I(s) on the sky.

incoming wavefronts can be considered to be plane. With the longest spacings and shortest
wavelengths commonly in use, this condition may not be met by some objects within the
solar system. Second, the assumption that the responses from different points in the source
can be added independently is implicit in the integration over angle in Equation 2-5. This
requires that the source be spatially incoherent—i.e., that signal components emanating
from different points on the source be uncorrelated.

When taking observations to make an interferometric image of a radio source, it is
usual to specify a nominal source position on which the synthesized field of view is to be
centered. We represent this position by the vector 8p, as shown in Figure 2-2, and write
8 = 8¢9 + 0. From Equation 2-5 we then obtain

r=Avoos (222220} [ 4(0)1(0) s 222 an

(2-6)
—Avsin (2’Wb so) / A(o)I(0) sin —— 2xvb. adﬂ
The complex visibility of the source is defined as
Vet = / A(0) I(0)e= 3>l an (2-7)
s

where A(o) = A(0)/Ao is the normalized antenna reception pattern, Ay being the response
at the beam center. We are considering the case in which the antennas track the source,
and the system therefore responds to the modified brightness distribution 4(¢)I(0). By
separating the real and imaginary parts of V' in Equation 2—7 we obtain

Ao|V|cosdy = fs A(0)I(e) cos (2—"‘%3-) i, (2-8)

Ao|V|sin gy = — /s A(0)I(0) sin (2—”1:’—1) an. (2-9)

1
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Figure 2-8. Idealised rectangular response of the receiving system.
Substitution of Equations 2-8 and 2-9 into Equation 2-6 gives

r= ApAu|V]|cos (@’cli‘l - ¢v) . (2-10)

In the interpretation of interferometer measurements the usual procedure is to measure the
amplitude and phase of the fringe pattern as represented by the cosine term in Equation
2-10, and then derive the amplitude and phase of V' by appropriate calibration. The
brightness distribution of the source is obtained from the visibility data by inversion of the
transformation in Equation 2-7.

2. EFFECT OF BANDWIDTH IN A TWO-ELEMENT INTERFEROMETER

Since the frequency of the cosine fringe term in Equation 2-10 is proportional to the
observing frequency v, observing with a finite bandwidth Aw results, in effect, in the combi-
nation of fringe patterns with a corresponding range of fringe frequencies. For the response
with an infinitesimal bandwidth dv we can write, from Equations 2-1 and 2-10,

dr = Ag|V|cos (2xvry — ¢v) dv. (2-11)

Then for a rectangular frequency passband, as shown in Figure 2-3, the interferometer
response is
vo+Av/2

r = Aq|V]| cos (2xwr, — ¢v) dv
l’o—Al’/’
sin xAvr,
= AolVIAV-?E;—’COS(leof’ - ¢V) ) (2—12)

where v, is the center frequency of the observing passband. Thus in the system that we
are considering the fringes are modulated by a sinc-function envelope, sometimes referred
to as the bandwidth pattern. The full fringe amplitude is only observed when the source is
in a direction normal to the baseline so that 7, = 0. The range of r, for which the fringe
amplitude is within, say, 1% of the maximum value can be obtained by writing

sin xAvr, ~

oq_ (mArr)?

~hvr, e > 09, (2-13)

which yields |Avr,| < 0.078, where the approximation in Equation 2-13 is valid for
|sAvry] < 1. The angular range of r, within this limit depends upon the length and
orientation of the baseline: for example, with Ay = 50 MHz and |b| = 1 km, the response
falls by 1% when the angle 8 in Figure 2-1 is 2 arcmin. In order to observe a source over a
wide range of hour-angle, it is necessary to include within the system a computer-controlled
delay to compensate for 7,.

12
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Figure 2—4. Simplified schematic diagram of an interferometer system incorporating frequency conversion
and an instrumental time delay to compensate for 7,.

3. DELAY TRACKING AND FREQUENCY CONVERSION

A block diagram of an interferometer system that includes an instrumental compensat-
ing delay is shown in Figure 2-4. Frequency conversion of the incoming signals at frequency
vrr with a local oscillator at frequency u1,0 is also included. Practical receiving systems
incorporate frequency conversion because it is technically more convenient to perform such
functions as amplification, filtering, delaying, and cross-correlating of the signals at an inter-
mediate frequency that is lower than vpy and remains fixed when the observing frequency
is changed. The signals at the frequencies vry and v10 are combined in a mixer which
contains a non-linear element (often a diode) in which combinations of the two frequencies
are formed. The intermediate frequency vyr is related to the mixer input frequencies by

VRF = VLo X ur. (2-14)

Thus the mixer input is in two frequency bands, as shown in Figure 2-5: these are referred
to as the upper and lower sidebands and correspond to the + and — signs in Equation 2-14
respectively. For observations at frequencies up to a few tens of gigahertz the signal from
each antenna is usually first applied to a low-noise amplifier to obtain high sensitivity, and
then passed through a filter that transmits only one of the two sidebands to the mixer.
The response of such a single-sideband system can be obtained by considering the phase
changes ¢; and ¢, imposed upon the signals received by antennas 1 and 2 before reaching
the correlator inputs. For the upper sideband case we have

¢l = 2”VRFTg = 2"(”1.0 + VIF)rg ’

(2-15)
¢2 = 2xvirTi + $L0,
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Figure 2-5. Relationship of RF, IF, and LO frequencies.

where ¢10 is the difference in the phase of the local oscillator signal at the two mixers,
and 7; is the instrumental delay that compensates for 7,. The upper-sideband response of
the interferometer is obtained by replacing the argument of the cosine function in Equation

2-10 by ¢1 — ¢2 — ¢v:

ry = AgAv|V|cos[2x(vLo1, + IFAT) — ¢v — dL0] - (2-16)
Here At = 1y — 7; is the tracking error of the compensating delay r;. Note that the output
fringe oscillations, which result from the time variation of 7,, in this case depend upon the
local oscillator frequency vio rather than the observing frequency at the antenna as in
Equation 2-10. For the case in which the lower sideband is the one that is accepted by the
receiving system we have:

$1 = —27x(vLo — VIF)Ty,

2-17
2 = 2x01FT; — dLO, ( )

whence

r; = AoAv|V|cos[2x(vLory — MIFAT) — dv — dL0] . (2-18)
Here the differences in the signs of the various terms compared with those in Equations
2-15 occur because in lower sideband conversion a change in phase of the RF signal causes
a phase change of opposite sign in the IF signal. The phase of the local oscillator also enters
with a different sign in the two cases.

At frequencies approaching 100 GHz and higher, it is difficult to make low-noise am-
plifiers to place ahead of the mixers, and the greatest sensitivity is obtained by connecting
the antenna directly to the mixer input without a filter to select only one sideband. The
result is a double-sideband system, and the response is obtained from the sum of Equations
2-16 and 2-18:

rd = ry + 11 = 2AvAg|V | cos(2xvL07y — v — ¢L0) cos(2x1FAT) . (2-19)
Note that the delay-tracking error A7 here appears in a separate cosine term that modu-
lates the amplitude rather than the phase of the cosine fringe term. As a result, the double-
sideband system requires more critical adjustment of the instrumental delay to maintain
the visibility amplitude than does the single-sideband system. Other disadvantages of the
double-sideband system include greater vulnerability to interference, and complication of
spectral line observations since the spectra of the two sidebands are superimposed. Sep-
aration of the sideband responses after correlation of the signals by a technique involving
periodic insertion of x /2 phase shifts in the local oscillator is used in some instruments: for
a more detailed discussion see Thompson, Moran and Swenson (1986).
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Pigure 2-6. Complex correlator system. The quadrature network introduces a x/2 phase shift: a signal
of the form cos 2xrt at its input becomes cos(2xvt — x/2) at the output.

4. FRINGE ROTATION AND COMPLEX CORRELATORS

The output from the correlator represented by Equation 2-16, 2-18 or 2-19 is fed to
a computer which performs some form of optimal analysis to determine the amplitude and
phase of the fringe oscillations. The fringe visibility V' can then be obtained by calibration
of the instrumental parameters. This calibration usually involves observation of one or
more sources with known positions, flux densities, and angular dimensions. For an array
such as the VLA, the frequencies of the fringe oscillations can exceed 150 Hz for the longest
antenna spacings, and in VLBI the fringe frequency can exceed 100 kHz. To preserve
the fringe information it is necessary to sample the correlator output at least twice per
fringe period. Thus the data rate to the computer can be very much higher than that
necessary to follow the changes in the visibility V', for which values at intervals of order
one second are likely to be adequate. However, by inserting progressively varying phase
shifts in the local oscillator signals it is possible to slow down the fringe oscillations, and
reduce the computation required. Thus in Equations 2-16, 2-18 and 2-19, if we vary ¢.0 so
that (2xvL07y — $L0) remains constant, the correlator output will vary only as a result of
changes in V and slow drifts in the instrumental parameters. This procedure, in which ¢10
is usually controlled by the same computer that regulates the delay tracking, is variously
referred to as fringe rotation or fringe stopping.

After fringe stopping, the output of the correlator in Figure 2—4 is a slowly varying
voltage (a constant voltage for the case of a point source at the phase reference position).
This voltage does not provide a measure of the amplitude and phase of the fringes. To
measure the complex fringe amplitude in this case, a scheme using two correlators, as
shown in Figure 2-6 can be used. For each antenna pair a second correlator with a x/2
phase shift in one input is added. The response of the second correlator can be obtained by
replacing ¢; in Equations 2-15 and 2-17 by ¢; — x/2. Then in Equations 2-16, 2-18 and
2-19 the cosine term containing 7, becomes a sine, with no change in the argument. The
two outputs in Figure 2-6 can thus be regarded as measuring the real and imaginary parts
of the complex fringe amplitude, or complex visibility. Such a scheme is usually referred to
as a complez correlator. In addition to allowing the visibility to be measured with zero fringe
frequency, the complex correlator provides an improvement of v/2 in signal-to-noise ratio
over a single correlator, since the noise fluctuations at the two outputs are uncorrelated.
See Lecture 6 for an analysis of signal-to-noise ratios.
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Figure 2-7. The (u,v,w) and (I,m,n) coordinate systems used to express the interferometer baselines
and the source brightness distribution, respectively.

5. PHASE SWITCHING

Phase switching is a technique that is included in many interferometer systems to
eliminate errors in the form of constant or slowly varying offsets in the correlator outputs.
Such errors can result from misadjustment of the correlator circuitry, cross coupling between
the signals at the correlator inputs, and various other effects. They can be very effectively
reduced by periodically reversing the sign of the multiplier output in the correlator before
the data are averaged. To prevent the loss of the wanted output from the radio source,
the phase of the signal at one antenna of the interferometer pair is synchronously reversed
by switching an extra half-wavelength of transmission line into the signal path, or, more
commonly, reversing the phase of a local oscillator signal. Reversing the phase of the signal
at one antenna has the effect of reversing the sign of the wanted correlator output, and this
reversal cancels the reversal applied at the correlator output. In practice, the frequency of
the switching is of the order of 10 or 100 Hz. This technique, known as phase switching,
was first introduced by Ryle (1952) as a means of implementing the multiplicative action
of a correlator using a power-linear diode detector. For a description of a more recent
application of phase switching see Granlund, Thompson and Clark (1978).
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Figure 2-8. As the earth rotates, the baseline vector b, which represents the spacing of the two antennas,
traces out a circular locus in a plane normal to the direction of declination (§) equal to 90°. If the antennas
are in an east—west line on the earth, then the vector b is normal to the rotation axis.

6. COORDINATE SYSTEMS FOR IMAGING

The practical application of Equation 2-7 requires the introduction of a coordinate
system, and the one that is usually chosen is shown in Figure 2-7. The baseline vector has
components (u,v,w) where w points in the direction of interest, i.e., towards a position
8o that becomes the center of the synthesized map. Note that u and v are measured in
wavelengths at the center frequency vy, and in directions towards the east and north respec-
tively. Positions on the sky are defined in ! and m, which are direction cosines measured
with respect to the u and v axes. A map in the I-m plane represents a projection of the ce-
lestial sphere onto a tangent plane at the I-m origin. Distances in [ and m are proportional
to the sines of the angles measured from the origin, which is a convenient practical system.
In these coordinates the parameters used in the derivation of the interferometer response
in terms of visibility (Eqs. 2-6 and 2-7) become

yb's:ul+vm+wn, Vbc.sozw,

dldm dldm
d dl= — = ———. 2-20
a n Vv1—-13 - m? ( )

Thus in the coordinates of Figure 2-7, Equation 2-7 becomes

o0 - -]
V(u, v, w) = / / A(’, m)I(” m)e—zti [ul+vm+w v l—l’-mﬁ—l)] __m__ ,
—o00 J—00 V1-1?-m?

(2-21)

where the integrand is taken to be zero for 12 + m? > 1. Note that we express the complex

visibility as a function of (u, v, w), since these are the coordinates that represent the positions

of the antennas with respect to the nominal direction of the source, 8. The visibility is

also a function of the brightness distribution AI.

To simplify the inversion of Equation 2-21, by means of which I(l, m) is obtained from
the visibility, it is desirable to reduce this equation to the form of a two-dimensional Fourier
transform. This form occurs when w = 0, and the conditions required can be understood
by considering the way in which the earth’s rotation carries the antennas through space. It
should be evident from Figure 2-8 that the rotation causes the tip of the baseline vector to
trace out a circle concentric with the earth’s rotation axis. The rising and setting of a point
on the sky usually limit the range over which V' can be measured to an arc of the circle.
In general, for a two-dimensional array of antennas on the surface of the earth, the circular
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Equatorial Plane

Figure 3-9. Celestial hemisphere showing the projection of a source at (ao, o) onto the tangent plane at
the pole. The spacing-vector loci are for an array with east~west baselines, and lie in a plane parallel to
the earth’s equator. The direction of the w-axis is here chosen to be that of the pole (§ = 90°).

loci resulting from the different baselines have different diameters and lie in different planes.
However, for the particular case of an array of antennas in an east-west line on the earth’s
surface the components of the baseline vector parallel to the earth’s axis are zero, and the
baseline-vector loci are coplanar. Then, if we choose the w-axis to lie in the direction of the
celestial pole, so that w = 0, Equation 2-21 becomes

V(u,v) = /w /oo A(l,m)I(l m)e"""'(“""""‘)——él—@—-——. (2-22)
’ —00d—oco H ’ r__—_—’l — lz — mz
This equation is a two-dimensional Fourier transform, the inverse of which is
A(” m)I(I’m) —- *° * 2xi(ul+um)
\/—i_TZ—__f;F = N V(“, 0)6 walw ™) dudv. (2—23)

Equation 2-23 can be applied to all parts of the hemisphere shown in Figure 2-9. Usually
we want to map a small area of the sky defined by the antenna beams. If this is centered on
right ascension ag and declination &y, we can choose the direction of the v-axis as in Figure
2-9 so that [ is small within the region of interest and is closely equal to angular distance
on the sky. However, m remains the sine of the angular distance measured from the pole,
i.e., m = cos §, and the scale of the map is compressed in the m direction by a factor sin 8.
The coordinate transformation

=1,

m' = (m — cos 8)/sin by, (2-24)
results in a map in (I’,m’) in which the origin is at (ag, ), and the scale factor in the m’
direction is correct at that point. However, there is still a progressive change in scale in the
m’ direction across a map. This can be ignored in small field maps, and in large field maps
the data, which are usually computed for points at uniform increments in / and m, can be
interpolated into a more desirable coordinate system (Rots 1974).
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Figure 2-10. Comparison of the w-component and the antenna spacing when the direction of the source
is close to that of the baseline.
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It is clear from Figure 2-9 that for an east—west array the projected spacings of the
antenna pairs become seriously foreshortened in the v direction for the observations at
low declinations. In that part of the sky it is necessary to use baselines with a significant
component parallel to the earth’s axis, i.e., non- east—west baselines. Thus for a two-
dimensional array of antennas the baseline vectors do not remain coplanar in (u,v,w)
space. A system of three coordinates is required to accommodate the spacing vectors,
and we return to Equation 2-21. The usual way in which Equation 2-21 is used for non-
east—west baselines depends upon |!| and |m| being small enough that we can write

(\/1-—!3—m’—l)wz—%(lz+m3)wz0. (2-25)

Then Equation 2-21 becomes
[ -] [ -] .
V(u,v) = / / A(l, m)I(l,m)e= 3 <(ut+vm) gl g | (2-26)
—o0 J —00

For |l| and |m| small, i.e., small field imaging, the dependence of the visibility upon w is
very small and can be omitted. From Equation 2-26 we can write

AL, m)I(,m) = / V(u, v) e 5+om) gy dy . (2-27)

For arrays in which the baselines do not remain coplanar as the earth rotates, the
approximation in Equation 2-25 results in a phase error of x({? + m?)w for radiation from
the point (I,m). Note that the condition for the approximation in Equation 2-25 to be
valid is |x({2 + m?)w| < 1, not just I? + m? < 1. Unless special procedures are used, this
condition places a limit on the size of the source that can be mapped without distortion.
The limit can be roughly estimated as follows: For any pair of antennas the maximum
value of w occurs when the source under observation is at a low angle of elevation and an
azimuth close to that of the baseline, as shown in Figure 2-10. Under such circumstances
w is approximately equal to b/), the baseline length measured in wavelengths. Thus for
an array of antennas for which the half-power width of the synthesized beam is fyppw, we
can write

1 bmax
fuppw A
where by ax is the longest baseline. If 0 is the width of the synthesized field, the maximum
phase error is about

& Wmax » (2-28)

%03
—_— 2-29
40ppBW ( )
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Figure 2-11. Coordinate system for specification of baseline parameters. X is the direction of the meridian
at the celestial equator, Y is toward the east, and Z toward the north celestial pole.

Since this is the maztmum phase error, we can possibly allow it to be as high as 0.1 radian
without introducing serious errors in the image, from which we obtain

1
Op < 3V0urBw, (2-30)

where the two angles are measured in radians. Then, for example, if fgyppw = 1", 0p < 2'5.
For fields of greater width than allowed by Equation 2-30 there are ways of avoiding or
ameliorating the distortion introduced by the phase errors—see Lecture 8.

7. ANTENNA SPACINGS AND (u,v,w) COMPONENTS

In two-element interferometers it is sometimes convenient to specify the baseline vector
in terms of its length and the hour-angle and declination of the baseline direction on the
northern celestial hemisphere; see, for example, Rowson (1963). When a greater number
of antennas are involved it is more convenient to specify the antenna positions relative to
some reference point measured in a Cartesian coordinate system. For example, a system
with axes pointing towards hour-angle h and declination § equal to (h = 0,5 = 0) for X,
(h= -62,6 =0) for Y, and (§ = 90°) for Z may be used as in Figure 2-11. Then if Ly,
Ly, and Lz are the corresponding coordinate differences for two antennas, the baseline
components (u, v, w) are given by

u 1 sin Hy cos Hy 0 Lx
vl=x1|" sinfgcos Hy sindgsin Hy cosdy Ly |, (2-31)
w cos §p cos Hy —cosdgsin Hy sin o Lz

where Hy and §p are the hour-angle and declination of the phase reference position, and
A is the wavelength corresponding to the center frequency of the receiving system. By
eliminating Ho from the expressions for u and v we obtain the equation of an ellipse in the

u-v plane: )
2, [v—(Lz/A)cosbo\" _ L3+ L}
u? + ( ) = =X5-%. (2-32)
Thus as the interferometer observes a point on the celestial sphere, the rotation of the earth
causes the u and v components of the baseline to trace out an elliptical locus. This ellipse
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Figure 2-12. Elliptical loci representing the projection of the baseline vector onto the u-v plane as a
source is tracked across the sky. The lower curve corresponds to a reversal of the direction of the baseline
vector, and represents the points for which the visibility is the complex conjugate of that measured on the
upper curve. The axial ratio of the ellipses is equal to sin §o. For an east—west baseline Lg = 0, and a single
ellipse is centered on the u-v origin.

is simply the projection onto the u-v plane of the circular locus traced out by the tip of the
baseline vector, as shown earlier in Figure 2-8. Since I(l,m) is real, V(—u, —v) = V*(u,v),
and at any instant the correlator output provides a measure of the visibility at two points
in the u-v plane, as in Figure 2-12. For an array of antennas the ensemble of elliptical
loci is known as the transfer function, W(u,v), which is a function of the declination of the
observation as well as of the antenna spacings. The transfer function indicates the values
of u and v at which the visibility function is sampled. Since the visibility function for a
point source at the /-m origin is a constant in u and v, the Fourier transform of the transfer
function indicates the response to a point source, i.e., the synthesized beam. In designing
arrays the principal aim is to obtain transfer functions that cover the u-v plane as widely
and as uniformly as possible. The term transfer function was introduced from an analogy
with electrical filter theory. An interferometer responds to structure on the sky with spatial
frequency u cycles per radian in the [ direction and v cycles per radian in the m direction.
The transfer function of an array therefore indicates its response as a spatial frequency
filter.

8. ASTRONOMICAL DATA FROM INTERFEROMETER OBSERVATIONS

In synthesis mapping an interferometer or array is used to provide values of the com-
plex visibility as a function of u and v, from which a brightness distribution can be derived.
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For this purpose the visibility measurements should be fairly uniformly distributed over the
u-v plane, from the origin to some outer boundary that determines the angular resolution.
The design of synthesis arrays, which we discuss below, is based largely upon these consid-
erations. If, however, we wish to measure the positions of a series of unresolved sources, the
principal consideration is the ability to interpolate the measured visibility phase between
one baseline and another, and uniformity of coverage is less important. This consideration
also applies to measurements used to monitor universal time, polar motion and geodynamic
variation in antenna positions.

In addition to the measurement of complex visibility, two other characteristics of the
interferometer output can be used to determine astronomical data. These are principally
of importance in VLBI, in which it is usually not possible to calibrate the interferometer
fringe phase. The first is the bandwidth pattern in Equation 2-12, which can be used to
measure 7,. This is accomplished by finding the value of the instrumental delay 7; that
maximizes the fringe amplitude. A wide receiver bandwidth, or a series of narrow bands at
different frequencies, is used to minimize the width of the response as a function of r; and
thereby increase the accuracy. For a source at position (Ho, 8p), 7, is equal to w/vp where
w is given by Equation 2-31. The second characteristic that can be measured is the fringe
frequency. Since the relative phase of the signal at the two antennas changes by 2x when w
changes by one (wavelength), the fringe frequency is equal to dw/dt, which can be obtained
from Equation 2-31 by differentiation. A useful expression for the fringe frequency vp is

dw
V== —w.ucosf, (2-33)
where w, = dHp/dt is the angular rotation velocity of the earth. Thus vr goes through zero
on the v-axis of the u-v plane. Note that a single observation of w and dw/dt is sufficient
to determine the position of a source if the interferometer baseline is known.

9. DESIGN OF SYNTHESIS ARRAYS

In an array of n, antennas, a total of 1ns(n, — 1) pair combinations can be formed.
The signal from each antenna is then divided in n, — 1 ways and fed to a system of corre-
lators. The rate at which visibility measurements can be made, relative to that for a single
interferometer, is approximately proportional to n2. Note that since the signals are ampli-
fied before splitting there is no loss in sensitivity, as may occur in instruments for infrared
or shorter wavelengths. The primary concern in designing the configuration of antennas is
to obtain coverage of the u-v plane (i.e., sampling of the visibility function) as uniformly
and efficiently as possible over a range determined by the required angular resolution.

A commonly used configuration of antennas for synthesis mapping is an east—west
linear array. If the various pair combinations of the antennas encompass a series of spacings
which increase by a constant increment, the transfer function consists of a series of ellipses
centered on the u-v origin with a constant increment in the major axes. The axial ratios of
the ellipses are equal to sin 6y, as in Figure 2-12, which largely determines the axial ratio of
the synthesized beam. Thus, for angular distances greater than about 30° from the celestial
equator, east—west linear arrays are satisfactory for two-dimensional imaging. Some basic
considerations of linear configurations of antennas are illustrated in Figure 2-13. In a simple,
uniformly-spaced array as in (a) the longest spacing is n, — 1 times the unit spacing. The
shorter spacings occur more than once and are highly redundant. Figure 2-13(b) shows a
non-redundant arrangement of four antennas designed by Arsac (1955). For more than four
antennas there is always some redundancy, as in the example by Bracewell (1966; see also
Bracewell et al. 1973) in Figure 2-13(c). Other examples of minimum-redundancy arrays
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Figure 2—-13. Examples of several types of linear arrays of antennas. (a) Uniform-spacing array, (b) non-
redundant array (Arsac 1955), (¢) minimum-redundancy array (Bracewell 1966), (d) minimum-redundancy
array (Moffet 1968), and (e) array with movable element represented by the open circle.

are described by Moffet (1968), and an example with eight antennas for which the longest
spacing is 23 times the unit spacing is shown in Figure 2-13(d). Only a few such arrays
have been constructed for radio astronomy, and configurations with a number of movable
antennas, which offer greater flexibility, are generally preferred.

Figure 2-13(d) shows an arrangement of four fixed antennas and one movable one.
By repeating an observation for each position of the movable antenna, as indicated by
the crosses, it is possible to include all baselines up to the overall length of the array,
with intervals equal to the increments in the position of the movable antenna. Although
several days are required to complete an observation, a large number of baselines can be
covered using a relatively small number of antennas, and highly detailed images obtained.
A number of notable instruments make use of this principle: these include the One-Mile
and Five-Kilometer arrays at Cambridge (Ryle 1962, 1972) and the Westerbork Synthesis
Radio Telescope (Hogbom and Brouw 1974). For observations at low declinations, two-
dimensional configurations of antennas are generally required to obtain adequate resolution
in both right ascension and declination. The design of two-dimensional arrays is more of an
empirical matter than that of one-dimensional arrays, since there are no known solutions
similar to those based on variability of location of small numbers of antennas or on minimum-
redundancy. The main concern is to obtain adequate coverage of the u-v plane, whilst using
a fairly simple geometrical configuration for reasons of economy. These considerations are
well illustrated by the design of the VLA (Thompson et al. 1980; Napier, Thompson and
Ekers 1983). The antenna configuration and examples of the transfer function for the VLA
are shown in Figure 2-14. In the configuration in Figure 2-14a the distance from the
center of the array of the nth antenna on each arm, counting outwards from the center, is
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proportional to n!-716. With this power-law design, no two spacings on any arm are equal.
The array is rotated through 5° from the position of north-south symmetry to avoid exact
east—west baselines, which would otherwise occur between antennas on the two southern
arms. At declination 0° the u-v components for all east—west baselines become coincident
with the u-axis. Thus the power-law spacing and the rotation are features of the VLA
design that reduce redundancy in the coverage of the u-v plane.

The same considerations of uniformity of sampling in the u-v plane also apply to
arrays for imaging by VLBI. The main practical difference is that since the antennas are
not directly interconnected, except by telephone lines for monitor and control purposes,
there is no advantage to any particular geometric pattern. Thus, after the u-v coverage,
the main concern is the choice of sites for freedom from interference, low water vapor in the
atmosphere, convenience for service, etc. The proposed locations for antennas in the Very
Long Baseline Array (VLBA), and examples of transfer functions, are shown in Figure 2-15.
The effect of the addition of an antenna in low earth orbit to an array like the VLBA is
shown in Figure 2-16. The orbital motion fills out and extends the coverage very effectively.
For even longer spacings, it would be possible to use two or more antennas in higher orbits,
with periods differing by about 10%, to give a wide distribution of spacings (Preston et al.
1983).

10. THE EFFECT OF BANDWIDTH IN RADIO IMAGES

We have seen in Section 2 that the effect of a finite receiving bandwidth Av is to
modulate the fringes with an envelope function of width inversely proportional to Ay, and
that as a result we must insert an instrumental delay 7; to compensate for the geometrical
delay r,. This compensation is exact only for radiation from the center of the synthesized
field, which is usually chosen as the delay tracking point. Variation of 7, over the field
causes a radial blurring of the image (see, e.g., Thompson and D’Addario 1982), as will now
be described.

In observing continuum radiation we are interested in the mean brightness over the
bandwidth Aw, and the visibility data are processed as though they were all observed at
the center frequency vg indicated in Figure 2-17a. In particular, the spatial frequency
coordinates in the u-v plane are calculated for the band center. Let these be (ug,vo) for
frequency v and (u,v) for another frequency v within the receiving band. Since u and v
represent projected antenna spacings measured in wavelengths, we can write

(w0, v0) = (%u, %v) . (2-34)

Now consider the visibility that corresponds to a small band of frequencies centered on »
as in Figure 2-17a. This band contributes a component of brightness I to the synthesized
image which is related to the corresponding visibility by

V(u,v) = I(l,m), (2-35)

where the symbol = indicates that the two functions constitute a Fourier transform pair,
and we have here omitted the functions A(l,m) and 1/4/1 — {2 — m2 which are usually close
to unity. Note that the processes of correlation and Fourier transformation are linear, and
that they allow us to consider the synthesized image as the sum of a series of contributions
from different parts of the frequency passband. In the derivation of the radio image we
assign to V values ug and vo which are the true values multiplied by vo/v (Eq. 2-34). The
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§:0° Snapshot at Zenith

(b)

Figure 2-14. (a) The configuration of the 27 antennas of the VLA. (b) The transfer functions for four
declinations with observing durations of +4® for § = 0° and 45°, +3® for § = —30°, and £5™ for the
snapshot. From Napier, Thompson and Ekers (1983).
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(b)

Figure 2-15. (a) Locations of the ten antennas of the VLBA, as shown by the closed circles. (b) The
corresponding transfer functions for four declinations. From Walker (1984).
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Figure 2-16. Examples of the u-v coverage obtained using a VLBI array similar to that of Figure 2-15a
and one additional antenna in low earth orbit. From Preston et al. (1983).

effect in the image can be obtained from the similarity theorem of Fourier transforms (e.g.,
Bracewell 1978), using which we can write

2
v, ) (2 (22 §
|4 (70, 70) L (Vo) I (Vol’ Vom) . (2 36)

The coordinates of the brightness function are multiplied by the reciprocal of the factor
by which the visibility coordinates are multiplied, and a factor (v/vo)? appears in the
amplitude to conserve the total integrated brightness. One can envision the effect in the
synthesis procedure, in which the data over the full receiving bandwidth Av are combined
together, as the averaging of a series of images of the same sky brightness distribution, each
with a slightly different scale factor and aligned at the {-m origin. The range of variation of
the scale factor is equal to the variation of v /v over the receiving bandwidth. The result of
such averaging is clearly to introduce a radial smearing into the brightness distribution, as
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Figure 2-17. (a) Idealised rectangular response showing center frequency »o and a narrow band at
frequency ». (b) The radial smearing of a point source at (I1,m1) in the synthesized image.

shown in Figure 2-17b. The angular extent of the smearing at a radial distance /{2 + m?
from the origin is approximately equal to %T" 13 + m?, and the effect becomes important
at distances for which the smearing is comparable with the synthesized beamwidth.

An alternative method of imaging with a wide bandwidth is by using a multi-channel
receiving system, in which the passband is divided into n frequency channels of width
Av/n. Separate correlators are used for each frequency channel, so the visibility values
for each one can be associated with the values of u and v corresponding to the center
frequency of the channel. Such systems are also used for spectral line observations. In the
u-v plane, the elliptical track that represents the projected spacing for any pair of antennas
is replaced by a series of n parallel tracks. In effect, the overall transfer function is the sum
of n single-channel functions, each scaled in u and v in proportion to the corresponding
center frequency of the receiving channel. The sum of the corresponding images shows
no radial smearing (we assume that the smearing corresponding to the channel bandwidth
Av/n is negligible), but since the angular scale of the synthesized beam (point spread
function) varies from one channel to the next, the effect of averaging the beam profiles is to
suppress unwanted sidelobes. Thus the use of a multi-channel system is a desirable technique
in broadband image synthesis, but in practice is restricted by the increase in computing
required to accommodate n times as many visibility data as in the corresponding continuum
observation.
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Figure 2-18. (a) Consecutive time intervals of duration 74 over which the visibility is averaged. (b)
Circular loci in the u-v plane which result from the continuous observation of a source close to the celestial
pole. In a time interval r,, the baseline vectors which generate the loci move through an angle w,7a.

11. THE EFFECT OF VISIBILITY AVERAGING

The time averaging of the visibility data at the correlator results in another form of
smearing of the image. The data from each correlator are separated into consecutive time
intervals of length 7,, as shown in Figure 2-18a, and only the average value for each interval
is retained. In the subsequent processing the averaged visibility samples are assigned (u, v)
values corresponding to the mid-points of the averaging intervals, although the observed
data extend over a range +7,/2 relative to each such instant. The effect in the synthesized
image can be most easily explained for an observation of a source at the celestial pole. The
u-~v plane is then normal to the earth’s axis, and the transfer function consists of a series
of circles, concentric about the u-v origin, as in Figure 2-18b. Each circle is generated by
a spacing vector rotating with angular velocity w, equal to that of the earth. Thus a time
offset r in the assignment of (u, v) values results in a rotation of the visibility function about
the u-v origin through an angle w.r. In the Fourier transformation, such a rotation results
in an equal rotation of the image. Thus the effect of the time averaging can be envisioned
as an averaging of a series of images that are aligned at the I-m origin, but have angular
offsets distributed over a range tw.7,/2. At a point (I, m) the extent of the smearing is
approximately w,7,VI? + m? . The direction of the smearing is orthogonal to that resulting
from the bandwidth effect, and the two effects are of equal magnitude if Av /vy = w,r,.

For a source at a lower declination the curves in the transfer function become ellipses,
and are centered at the u-v origin only for east—west baselines. In this latter case the
expansion of the v-axis by a factor cosec § restores the circularity, so in an image plane
in which the m-axis (north-south) is compressed by a factor sin §, the effect is again one
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of circumferential smearing. In the general case of a non-polar source and non- east—west
baselines, the effect of time averaging cannot be described in terms of a rotational smearing,
but the magnitude of the distortion is similar to that in the simpler case described above.
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3. Cross Correlators

LARRY R. D’ADDARIO

1. INTRODUCTION

This Lecture will describe the operation of the central correlator of a synthesis telescope.
I shall be more concerned here with details of the hardware than the earlier Lecturers
have been. In modern telescopes, major portions of the correlators—including delay lines,
multipliers, and integrators—are implemented digitally; this is done for very good reasons,
but it leads to results which are significantly different from what one would predict by
analyzing a continuous-time, analog model. For this reason, I will concentrate on the digital
implementation of correlators and pay considerable attention to the process of digitizing
the signals from the antennas.

In addition, I will describe how a synthesis telescope can be used for spectroscopy; that
is, how a correlator can provide visibility measurements as a function of frequency over the
receiver passband. Spectral synthesis differs from continuum synthesis, and it also differs
significantly from single antenna spectroscopy. Some of the differences will be pointed out
here; Lecture 12 will consider these special problems in greater depth.

2. CORRELATORS IN GENERAL

The two preceding Lectures dealt mainly with the correlation of quasi-monochromatic
signals. We would now like to generalize to the case of wide bandwidth signals; this leads
naturally to an understanding of spectroscopic cross correlation. Sometimes one wishes to
observe over a signal bandwidth that is not quasi-monochromatic, but the main reason for
considering wide bandwidth correlators is that the signals normally are converted to a low
center frequency by the time they reach the correlator inputs. Their fractional bandwidth
Av/yp can then be very large.

The cross correlation function of two real signals v;(t) and v,(t) is

zij(r) = (vi(t)vi(t + 7)) . (3-1)

This is a real function of delay 7, and can be estimated by the simple correlator of Figure
3-1. In the special case that v; and v; are narrow-band signals centered at v, with band-
width Av < vy, it is clear that z;;(r) is nearly sinusoidal in 7, with period vg ' (see
Fig. 3-2). That is, we can write

zi;(r) = zr cos 2xve(r — 70) + z1 8in 2xwp(r — o) , (3-2)

for 7 in the vicinity of reference delay 7o. Then z;;(r) is specified for a wide range of
by the single complex number R;; = zg + $z;. This defines the complex cross power for
narrow-band signals, where the signals themselves are real functions of time. (Complex cross
power becomes complex visibility after astronomical calibration.) It is thus not necessary
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Figure 8—2. Cross correlation function of quasi-monochromatic signals with rectangular passbands cen-
tered at »o. In this plot, Av/vo = 0.2 for clarity, but often it is much smaller.

to measure z(r) for all 7, but only for two nearby values of r. Convenient choices are 1
and 7o + Ar, where A7 = 1/(41,). This leads to the “complex correlator” of Figure 3-3.
If the signals are not narrow-band, then z;;(r) will not be sinusoidal, but the concept
of complex cross power is still useful. We can imagine using a bank of filters to break up
each wide band into many disjoint narrow bands, and then connecting each pair of outputs
to a complex correlator, as in Figure 3-4. Here each box “CC” represents that part of
Figure 3-3 within dashed lines, but each has a delay Ary = 1/(4v%) appropriate to its own
frequency. If one is not interested in the variation of correlation with frequency, such as
in the case of a continuum source, one can add together all of the outputs; this leads to a
more accurate measure of the average correlation over the full bandwidth. This sum, in the
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Figure $-3. Complex correlator, for narrow bandwidth signals. *“H® is a quarter-cycle delay, Ar = 1/4vo.

limit where the number of filters gets very large (so that the sum approaches the integral
over frequency), we may now define to be the complex cross power R;;(7o) in the general
case of arbitrary bandwidth:

K
Rij(ro) = Jim > zpi+izmk. (3-3)
k=1

Now, it turns out that this same quantity can be measured without the elaborate
filtering and multiple correlators of Figure 3—4. It is merely necessary to replace the quarter-
cycle delay in Figure 3-3 (box “H”) with a filter that passes all frequencies but shifts the
phase of each by x/2. For narrow bandwidths, this is the same thing as a quarter-cycle
delay; for wide bandwidths, a more complicated filter is needed, but such filters can be built.
To save time, I will not give the proof that this is the same as summing the outputs of the
filter bank correlator, but perhaps you can see that it is plausible. Mathematically, the
x /2 phase shift operation is equivalent to the Hilbert transform (also called the Kramers—
Kronig transform by some physicists; see, e.g., Bracewell 1978 for properties of the Hilbert
transform).

The preferred method of making a complex correlator for wide-band continuum obser-
vations is therefore that of Figure 3-3, where “H” is a Hilbert transform filter. But the
filter bank correlator of Figure 3—4 would obviously be useful for spectroscopy, where one
would record the output of each complex correlator separately, rather than adding them
together. However, a nearly equivalent way to obtain the spectroscopic measurements is
illustrated in Figure 3-5. This machine measures the real cross correlation function at a
large number of closely spaced delays near 79, and computes the discrete Fourier transform
(DFT) of the result. It takes 2K samples of the correlation function to obtain the complex
visibility at K frequencies.

The discussion so far has been rather heuristic, so I will now try to fill in some of the
associated mathematics. The (real) correlation function of two arbitrary signals is defined
by Equation 3-1. Now consider its (inverse) Fourier transform!

ri;(v) = / - z;5(r) e~ 2" ¥(r-ro) gr | (34)

-—00

1The Fourier transform definition which is in use here is in accord with the Editors>—rather than the
author’s—preference. It is opposite the convention which is common in the engineering literature, particu-
larly in much of the literature of communications engineering. — Eds.
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Figure 3—4. A wide-band complex correlator synthesised from narrow-band complex correlators, or a
spectroscopic correlator. Each box labeled “CC” is as indicated in Figure 3-3.

which is called the cross power spectrum. (Recall that, similarly, the inverse transform of
the autocorrelation function of a signal is the signal’s power spectrum; but the latter is
always real and non-negative, whereas cross power is generally complex.)! The complex
cross correlation function is defined as

[ <]

Rij(r)=2 / rii(v)et3Tvir=rol 4, . (3-5)
0

i.e., it is twice the Fourier transform of Equation 3-4 with negative frequencies deleted.
Notice that the correlator of Figure 3-5 approximates the right-hand side of Equation 34,
and that adding up the outputs approximates the r.h.s. of Equation 3-5 for r = 7. More
precisely, the operation of the spectroscopic correlator of Figure 3-5 is described by

2K-1 1 T .
Z = Z [i/o v.-(t — 70 — I6r)v,-(t) dt] e 3xilk/2K (3—6)

=0

The expression in brackets is the output of each simple correlator. Comparing Equations
34 and 3-6, one sees that
rij(k/67) ms Z)67 . (3-7)

It can be shown that another way to compute the continuous cross correlation function
Rij(r) = H{[vi(t) + 65:(8)]* [v(t + 7) + §9;(t + 7)])
= (w()v;(t+ 7)) +i(u(t)35(t + 7)),

where ¥ represents the Hilbert transform of v. Thus Equation 3-8 describes the operation of
the complex correlator of Figure 3—-3, except that time averages are replaced by expectations.
Again, I will not give the proof here. I wish only to point out that there is a mathematical

(3-8)

1in Equation 3—4, I have inserted a time-shift of 7o before transforming. This definition is convenient if z;;
peaks near 19, because then r;; will be nearly constant.
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Figure 3-5. A spectroscopic correlator with frequency analysis after correlation.

formalism through which the relationships of various types of complex correlators can be
explored.

Two correlators that perform equivalent computations, although different in detail,
must give the same signal-to-noise ratio in their outputs, since nothing has been said about
whether the inputs contain interesting information or just noise.

3. DIGITAL IMPLEMENTATIONS

Major portions of modern correlators are implemented digitally, for the following rea-
sons: (1) digital operations are precisely defined and repeatable (analog circuitry is subject
to environmental conditions such as temperature and humidity); (2) digital circuits can
be exactly replicated at low cost when many identical elements are needed; (3) for the
long baselines (> 10*m for connected elements and > 10°m for VLBI) and wide band-
widths (108 Hz) now used, the delay lines must have a large ratio of length to resolution
(> LAv/c > 10*), and only digital delay lines can do this with the necessary accuracy and
stability.

3.1. Digitization.

The digital correlator must first convert the signals to digital form. This requires two
distinct operations: sampling, which converts a continuous-time signal v(t) to a discrete-
time sequence of its samples {v(tx), ¥ =0,1,...}; and quantizing, which converts a contin-
uously variable value to one of a finite set of values. This combination of a sampling device
and a quantizing device is called a digitizer. For any finite length of time, the digitized signal
can be represented by a finite number of bits and can be stored and processed with logic
circuits. The signal can be sampled and then quantized, or quantized and then sampled,
and the result will in principle be the same (as long as the circuits behave ideally).

If the signal v(t) is strictly limited to frequencies between zero and Av, then, according
to the sampling theorem (Shannon, 1949), it is fully described by its samples taken at
intervals At < 1/(2Av); that is, v(t) can be exactly reconstructed from these samples.
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Figure 3—-6. An example of a quantiser transfer function (solid lines); this quantiser has seven levels. The
dashed line is the line defined by vy = v, and the difference between it and the transfer function is the
quantisation noise, §.

Strictly speaking, the sampling must go on for all time—but in practice it is only necessary
to have a very large number of samples, and this condition is easily fulfilled in our case.
Thus, sampling at the rate 2Av (called the Nyquist rate), or faster, loses no information at
all.

Quantization, however, does lose information. Consider Figure 3-6, which shows the
transfer function of a typical quantizer. Here v is the quantizer’s instantaneous input, and
v, is the corresponding output; this example shows seven distinct output states. Without
loss of generality, the scale has been chosen so that v, is the integer nearest the input value;
then one can write v; = v + §, so that the quantizer may be described as adding a signal
§ to the input, sufficient to round it to the nearest integer. If the signal is random noise,
then § will also be noise-like, and for a reasonably chosen transfer function, § will have zero
mean. Thus, the quantizer can be viewed as adding noise to the signal. This is known as
“quantization noise”, and in a radio telescope it is the source of the degradation in signal-
to-noise ratio associated with the use of digital correlators (the correlator efficiency 1, is
used in Lecture 6).

Now imagine that the quantization is done before sampling. If the original signal has
bandwidth Aw, then the quantized signal has a larger bandwidth (including harmonics),
because the quantization noise §(t) is not bandlimited. If one now samples at the rate 2Av,
additional information is lost because the larger bandwidth is undersampled. This informa-
tion can be partially recovered by sampling at a higher rate. Thus, it is not straightforward
to apply the sampling theorem to signals that are also quantized, and the digitizer must be
analyzed as a unit.

Nevertheless, if the signal consists of Gaussian noise, then even with Nyquist sampling
very coarse quantization can be used with remarkably little loss of information. In synthesis
telescopes, one is interested in the cross correlation function of two signals that are jointly
Gaussian random processes. It can be shown (Van Vleck and Middleton, 1966; Cooper,
1970; Hagen and Farley, 1973) that the cross correlation function of digitized signals (for
most reasonable quantizations) is a monotonic function of that of the original signals. How-
ever, a measurement of the digitized cross correlation in finite averaging time will have
a larger relative variance than a similar measurement of the original signals, due to the

36



3. Cross Correlators

quantization noise. Table 3-1 shows the resulting “loss” of signal-to-noise ratio for various
cases, computed assuming rectangular power spectra of width Av and with the quantiza-
tion levels optimized for each case (Hagen and Farley, 1973). Even the extreme case of two
level quantization, where only the sign of the signal is retained, gives 64% of the undigitized
signal-to-noise ratio. Two level quantization has been extensively used in VLBI, where
the digitized signal is stored on tape, because it can be shown that this leads to nearly
the maximum information per length of tape. Finer quantization or faster sampling gives
higher sensitivity, at the cost of more complexity and more expensive components in the
correlator. For the VLA, three level quantization was chosen as a reasonable compromise,
with Nyquist sampling at the widest bandwidth (50 MHz) and up to four times Nyquist at

some narrow bandwidths.

Signal-to-Noise Ratio vs. Quantization and Sampling Rate )
Quantization Sampling Rate g%%%%)m
\
s 4
2-level 2Av 64
—_—tV
(1 bit)
4Av 74
'
——— 3-level 2Av .81*
4Av .89
4-level 2Av .88
— 4Av 94
oo-level 2Av 1.00
(continuous)
4Av 1.00
*VLA Case.
All cases assume rectangular bandpasses of width Av, signal levels adjusted
to maximize the signal-to-noise ratio, and small correlation coefficients.

37




Larry R. D’Addario

Besides sampling and quantizing, practical digitizers must do one more job: each quan-
tized sample must be encoded digitally, typically as a binary number. For two level quan-
tization, the obvious choice of one bit per sample is the only reasonable one. But with
more levels, various encodings are possible, especially considering that the various levels do
not occur with equal probability. If the signal is to be stored (say, on magnetic tape) or
transmitted over an expensive channel before correlation, then it is important to choose a
code that minimizes the number of bits needed. It turns out that, with optimum coding,
the total number of bits needed to achieve a given sensitivity is minimized for three level
quantization (D’Addario 1984); in this sense, three level quantization is optimum.

3.2. Quantization corrections.

As I mentioned, the cross correlation of digitized signals is a monotonic function of that
of the original signals. By knowing this function, or rather its inverse, the desired cross
correlation can be recovered. For example, with two level quantization it has been shown
(Van Vleck and Middleton, 1966) that

2:5(r) = 0:05sin ”—;(L) , (3-9)

where p;; is the correlation coefficient (normalized) of the digitized signals, and where
o? = (v}) and o = (v}) are the average power levels of the signals. Equation 3-9 is often
called the “Van Vleck correction”, after the author who first used it, although he did so in
a much different context. Notice that, for two level quantization, the signal powers must be
separately determined in order to get the cross power, since this information is completely
lost in the quantization.

For three (or more) level quantization, the situation is more complicated. The correc-
tion function does not have a closed form expression, and it depends non-linearly on both
the measured correlation coefficient p;; and the signal powers. As an example, for the three
level case one can write

pij(r) = f3(zi5(r); 03, 05) , (3-10)
where fs is an integral of the joint probability density function of the two signals. Then

zi;(r) = f37 (pij(1); 04, 05) - (3-11)

Once again, the signal powers are needed, but now they can be determined from the digitized
signals themselves using digital autocorrelators. The form of f3! can be assumed known,
and can be calculated to any desired accuracy if an adequate computer is available (for
numerical methods pertaining to this case, see Schwab, 1979, and D’Addario et al., 1984).
Similar concepts apply to other quantizations. Some examples are shown in Figure 3-7.

It is worth noting that relationships like Equations 3-9 and 3-11 do not depend on the
sampling rate, the bandwidth, or the shape of the spectrum. However, all of these results
apply only if the signals are zero mean, Gaussian random processes.

It turns out that if p;; < 1, then z;; is very nearly proportional to p;; for all reasonable
quantizations (see Fig. 3-7). This is apparent from Equation 3-9 in the two level case. We
get p;; < 1 when the antenna temperatures due to the source are much less than the system
temperatures. Then a detailed computation of the correction can be avoided, provided that
the signal powers o} and o} remain constant, because the proportionality factor drops out
in astronomical calibration.
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Figure 3$-7. Quantisation correction functions for various quantisations. In each case the signal powers
are set for maximum signal-to-noise ratio. The curves are labeled according to the number of quantisation
levels; 4a uses a simplified multiplier (see Cooper, 1970).

3.3. Gain corrections and ALC loops.

Notice that the cross power z;;(r) and its spectrum r;;(v) are referred to the correlator
inputs. Actually, these quantities are not directly of interest; one would rather know the
cross power spectrum of the signals received at the antennas. Denoting the latter by r{;(v),
one has

rii(v) = g:(v)g; (V)ri;(v + 110) (3-12)

where g;(v) and g;(v) are the complex voltage gains of the signal paths from the antennas
to the correlator, and uy,0 is the net local oscillator frequency, accounting for all frequency
conversions. If the gains are slowly varying, their effects can be largely accounted for
by astronomical calibration (I will not discuss the details here, since Lecture 4 does so).
However, in order to make life easier for electronics engineers, it often happens that no
attempt is made to keep the gains constant (which would be hard); on the contrary, the
gains are deliberately varied in order to keep the signal powers constant at the correlator
(which is easier). This is done with automatic level control (ALC) loops.

For the programmer and the astronomer, ALC loops are a mixed blessing. They usually
will cause the gains to change between the observation of a calibrator and that of a source
being measured, either because one source is strong enough to contribute substantially
to the total noise, or because the sources are in different parts of the sky, so that the
noise contributions from the atmosphere and from ground radiation are different. The
correlator has no way of knowing about this, since its input levels are constant; so an
independent means of monitoring the gains must be provided. This is often done by adding
a fixed, known signal to each receiver input and detecting it near the correlator input.
A switched noise signal at each antenna and a synchronous, square law detector at each
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Figure 3-8. A digital implementation of a simple correlator.

correlator input are effective in measuring the magnitudes of the gains; it is usually assumed
that the phase is sufficiently stable. Given such measurements, the measured correlation
function z;;(r) (after quantization correction) can be scaled in the computer to refer to the
receiver inputs rather than to the correlator inputs. This is sometimes called the “system
temperature correction” , because, with ALC, the gain is inversely proportional to the system
temperature. Notice that this scheme measures only the average gain across the passband,
so the scaling will be strictly correct only if g;(v) is flat; and that the ratio of source to
calibrator gain will be correct only if the gain changes by the same factor at all frequencies.

The following advantages of ALC loops often outweigh these difficulties: (a) changes in
the gains of electronic components with time and temperature are cancelled (if they are the
same at all frequencies); (b) the correlator input powers can be kept at the value that gives
the best signal-to-noise ratio; and (c) the quantization correction calculations are simpler
for constant input powers.

3.4. Digital circuits.

Figure 3-8 shows some details of a digital implementation of a simple correlator, in-
cluding delay line, multiplier, and integrator. I include this mainly to give some feeling for
the quantity of circuitry involved and the speeds at which it must operate. Generally, faster
logic and memories take up more space, consume more power, and are more expensive than
slower ones. High effective speeds can be achieved by having many slow circuits operating
in parallel, and the various trade-offs often favor taking this approach. Thus, the delay line
can be implemented mostly with slow memory, using small amounts of fast memory (shift
registers) to buffer the input and output. Similarly, the integrator memory can be broken
up into two or more stages, with slower devices used to accumulate for longer time periods.
Multipliers, on the other hand, are generally operated at the full sampling rate; but since
only two- or three-state signals usually need to be multiplied, the logic of a multiplier is
quite simple.

When signals from a large array of antennas must be correlated, it usually turns out
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that the multipliers and integrators dominate the circuitry, since N(N—1) s N2 of them are
needed for complex cross correlation of N signals, whereas only 2N digitizers and delays
are needed. They dominate even more in a spectroscopic correlator, where K N(N — 1)
are needed for K frequencies, compared with only N digitizers and delays. Therefore, a
design strategy that reduces the required number of multipliers is helpful. It turns out that
it is sometimes possible to build multipliers and first-stage integrators that can operate
much faster than the sampling rate; this is especially true when the receiver bandwidth is
deliberately made small, so that a low sampling rate can be used. Then if a substantial
number of samples can be stored temporarily in a buffer memory, the same multiplier/
integrator can be time-shared among many correlators. The buffer memory is called a
“recirculator”, since the data in it are re-used many times. This technique is used in the
VLA to implement spectroscopic correlation for up to 256 frequencies with only twice the
number of multipliers as are needed for continuum.

4. SPECTROSCOPY

4.1. Design alternatives.

Referring back to Figures 3—4 and 3-5, recall that there are two nearly equivalent
ways to implement a spectroscopic cross correlator. They differ according to whether the
frequency analysis is done before or after multiplication. I want now to describe further
details of the implementations, emphasizing digital circuitry.

First, note that for K frequency channels, each scheme requires 2K cross multipliers:
two in each complex correlator of Figure 3—4, and one for each of 2K delays in Figure 3-5.

In Figure 3—4, with frequency analysis before cross multiplication, the filter banks could
be implemented by analog circuits, using the undigitized signals. In that case, the long
delay line 7o would also need to be analog. Such a design could be practical for a telescope
requiring a relatively small number of baselines and frequency channels. Alternatively,
the filters could be implemented digitally, operating on digitized signals, using length-2 K
shift registers and fast Fourier transforms (FFTs). These would have to be capable of fast
operation (an FFT every 2K samples), and the outputs would require more bits than the
inputs by a factor of log, 2K to avoid additional quantization noise. The correlators could
be relatively slow (a factor of 2K below the sampling rate), but would have to handle
multibit data words. There would also be losses associated with the fact that input samples
not in the same 2 K-sample interval are never correlated. These tradeoffs are complicated
and must be evaluated for each particular system’s parameters. I will not discuss this
arrangement any further, but I want to note that it has been chosen for at least one modern
synthesis telescope, the millimeter wavelength array at Nobeyama Observatory, Japan.

In the other scheme (Fig. 3-5), with post-correlation frequency analysis, the multipliers
must operate at the full sampling rate, but on signals having only a few possible values. The
FFT has multibit input and output, but needs to be done only once per integration time
(which seems like an eternity compared with a sample time, e.g., 10 sec/{10~® sec) = 107);
a floating point FFT is usually justified. This is the scheme used at the VLA, and I will
concentrate on it from now on.

I should mention, however, that it is also possible to choose a design between those
of Figures 34 and 3-5, where part of the frequency analysis is done before and part after
correlation. Such a “hybrid” correlator, with an analog filter bank and digital cross corre-
lators, is useful when the total input bandwidth is too large for processing all at once; this
happens mainly at millimeter wavelengths.

Notice that, with digitized signals, the small delays §7 must be multiples of the sam-
pling interval. This would seem to be no problem, because if the original signals have
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get away without accurate quantization corrections.

4.3. The Gibbs phenomenon.

The effects of truncation of the cross correlation function measurement are not so
avoidable, and they can have a profound effect on calibration that is quite different from
the case of the autocorrelation spectrometer. To see this, note that the sampling theorem
allows one to write the cross power spectrum as an infinite sum

o0
)= [ sl et gy (5-13%)
—: '
= Z z(ro + kb1) e 27 kTS, (3-13b)
k=—o0

where the second equation holds only within the bandwidth 0 < v < Av < 1/(267). If the
sum is truncated beyond |k| = K, the result may be written

#(v) = i N(k/K) z(ro + kér) e~2=*¥ k7 g7 (3-14a)
k=—o00

= / - N(r/K6r)Li(r/67) z(r)e2*¥(7—"0) gr (3-14b)

= r(v) * /oo M(r/K6r) Li(r/6r) e~ 27 (r=70) g | (3-14¢c)

where M(-) is the unit rectangle function and LLi(-) is the unit sampling function (Bracewell,
1978). The last integral may therefore be regarded as the bandpass function of a single
channel; for large K, it is approximately K sinc(Kwvér).

Now consider the situation illustrated in Figure 3-10, where the actual and computed
cross power spectra are shown for signals from a unit-flux continuum source in the reference
direction; thus the interferometer’s gain vs. frequency function is shown, and in this case the
receivers have a fairly flat response. As you might expect, the computed spectrum shows
ringing near the edges, where the true spectrum changes rapidly. This is the well-known
“Gibbs phenomenon”, which also occurs in autocorrelation spectrometers. The trouble is
that if the computed spectrum from a continuum source is used as the complex gain for
calibration purposes, then large errors can be made when a strong line source is observed. To
see this mathematically, let f(») be the channel bandpass function given by the integral in
Equation 3-14c; then the apparent complex gain on the i~j baseline is f(v) * [9:(v)g] (v)].
This is what the correlator would measure for a unit-flux continuum source. When an
unknown source whose true visibility is V(v) is observed, the correlator measures

fv)=f(v) * [g,-(v)g;'-‘(u)V(V)] .
Dividing by the apparent gain gives

1)+ e V]
YO = 0w e]

Notice that the convolution operations prevent cancelling of the gains, as one might desire.
There are better ways of estimating V(v) than simply taking the above ratio, such as
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Figure 8-9. A digital cross correlation spectrometer, with self-multipliers and quantisation corrections.

bandwidth Av, then their cross power spectrum can have bandwidth at most Av also. Ap-
plying the sampling theorem to the cross power spectrum, we find that there is no loss of
information if the cross correlation function is sampled at an interval §7 < 1/(2Av), which
is compatible with Nyquist sampling of the signals. But in fact the scheme of Figure 3-5
does lose information and lead to errors in the computed spectrum, for two reasons: First,
as mentioned earlier, the quantized signals are not bandlimited to A, so neither is the cross
power spectrum; sampling at only 2Av causes the power outside Av to show up inside, a
phenomenon called “aliasing”. Secondly, the sampling theorem requires measurements at
delays from —oo to 400, and the necessary truncation at a finite number of measurements
usually has a significant effect.

Except for the quantization noise, which affects both continuum and spectroscopic
digital correlators, most of the non-ideal behavior of a digital cross correlation spectrometer
can be explained by the non-zero delay interval §7 and the finite range of delays measured.
I want now to consider these effects in some detail.

4.2. Quantization corrections.

The systematic effects of the quantization on the cross power spectrum can be elimi-
nated, in principle, by applying the quantization correction to each cross correlation mea-
surement prior to Fourier transforming. Each measurement is then adjusted to what it
would have been without quantization, except for the quantization noise. This arrangement
is shown in Figure 3-9, which also illustrates the use of “self-multipliers” to determine the
signal powers. If the digital cross correlation function is used without correction, then there
will generally be a distortion of the spectrum whose form is hard to predict. Nevertheless, if
the cross correlation function is small at all delays—that is, if the source is weak compared
with the system noise—then the correction factor will be nearly the same at all delays,
so the spectrum will be wrong only by a scale factor. For three level quantization, this
effect becomes important for correlation coefficients above about 0.2. Notice that it is the
correlation function of the whole bandwidth that matters, not each frequency channel; the
source can be much stronger than the system noise in a few channels, and one might still
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Figure 3-10. (a) The cross power spectrum resulting from a continunm source of unit flux in the reference
direction: *true complex gain®. Note the nonsero phase. (b) The computed cross power spectrum with 16
delays.

deconvolving both the numerator and denominator, but these are not in common use. The
situation can be somewhat improved by weighting the cross correlation before transforming,
thereby smoothing the channel bandpass, but this sacrifices some frequency resolution. In
practice, measurements near the band edges must be discarded for a variety of reasons, of
which the Gibbs phenomenon is only one.

Because the cross power is complex, the Gibbs phenomenon behaves somewhat dif-
ferently here than in the autocorrelation spectrometer. Both r(v) and #(v) are Fourier
transforms of real functions, so they are Hermitian: r(v) = r*(—v). If the passband ex-
tends to near zero frequency, as it usually does at the input to a digital correlator, then the
imaginary part of the gain makes a sharp change at v = 0, whereas the real part does not.
This means that not even observations of a continuum source will be correctly calibrated
by using the computed cross spectrum, unless the cross powers of the source and calibrator
have the same phase.

5. DELAY RESOLUTION AND FRINGE ROTATION EFFECTS

In the foregoing discussion, I regarded the correlator as being responsible for estimat-
ing the cross correlation function of whatever two signals are presented to it. This tacitly
assumes that the correlation is not changing too rapidly; it must be reasonably constant
during the time required to complete a measurement. As was shown Lecture 2, this can
be achieved by including in one signal path a variable instrumental delay that is continu-
ously adjusted to compensate for the rapid change of geometric path delay caused by earth
rotation. Indeed, we have now seen that it is convenient to implement this delay after
digitization, and to consider it part of the correlator. Lecture 2 also pointed out that im-
plementation of the delay after frequency conversion(s) requires that a compensating phase
shift also be added to the net local oscillator signal, or else the correlation function will be
phase modulated by v1o7,. This phase shift is called “fringe rotation”.
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In this Section, I will describe how a correlator can handle signals from receivers that
do not include fringe rotation in their local oscillators. We must also consider the accuracy
with which the instrumental delay must be set, and the consequences of setting it rather
coarsely. I shall take up the latter question first.

Assume that the required delay can be calculated accurately and to arbitrary precision,
but can only be set to discrete values spaced by Ar. In general this means that there will
be a delay error, or difference between the required value and the setting, which can be
kept between —Ar/2 and +Ar/2. During the integrating time of the correlator, variation
of the geometrical delay may cause the delay setting to change by many steps (and thus
cause the delay error to pass through its range many times), or it may be slow enough so
that the delay setting stays constant (and the error changes only slightly). Typical modern
telescopes experience both extremes in different parts of the sky and on different baselines.
The effect of this delay error depends on which case occurs, and on the bandwidth of the
signals.

To evaluate the effect, one may simply average the cross correlation over the correlator
integrating time, including the time-varying delay error. Letting r = 7o + &7, where 67 is
the delay error, Equation 3-5 gives

Rij(ro+67)=2 / rii(v)e?™ o dy . (3-15)
0

Now if the signals have rectangular spectra, then r;;(v) is constant with frequency up to
the bandwidth Av, so

1 Av .
R“j(fo + 67') = R"’(TO)EI. /(; e?ttvﬁr dl/ . (3—16)

If 67 is constant during the integrating time, this shows that the complex cross correlation
is reduced by a complex factor. If 67 varies, then the result must be averaged over the
variation. For a spectroscopic correlator, replace z(r) in Equation 3—4 with z(r + ér) and
apply the shift theorem of Fourier transforms, obtaining

f.-_.,-(u) = r;,-(u)e"‘""' . (3—17)

This shows that there is a phase shift proportional to frequency and to delay error. The
effect is slightly modified for a practical DFT correlator (as in Fig. 3-5) because of the finite
length of the transform, but Equation 3-17 holds fairly well for practical numbers of points.

Equations 3-16 and 3-17 are evaluated in Table 3-2 for some situations of practical
interest. Two sizes of Ar are considered: half the reciprocal bandwidth (one sample time at
the Nyquist rate), and one-sixteenth as much. In the fast delay case (7, changing by many
Ar per integration), the loss in amplitude for the continuum and for the highest spectrom-
eter frequency (worst channel) are given. In the slow delay case (7o nearly constant), the
continuum amplitude loss is also given. In all cases there is also a phase shift. Since these
effects are all calculable, appropriate corrections can be applied to the data; but the am-
plitude losses represent an irrecoverable drop in sensitivity, since there is no corresponding
reduction in noise.
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Figure 3-11. A simple correlator with fringe rotation.

Table 3-2.
Delay Error Loss Factors
— Delay Resolution—! —
Nyquist 16 x Nyquist

1. Fast Delay
A. Continuum 0.9664 0.99987
B. Band Edge 0.9003 0.9996
2. Slow Delay
A. Continuum, worst case 0.9003 0.9996

Table 3-2 shows that if the delay resolution is a small fraction of the reciprocal band-
width, then the losses can be kept very small. But if all of the delay is implemented after
sampling, then no finer delay resolution than one sample time can be achieved; so Nyquist
sampling might be thought to force acceptance of the larger losses in the Table. One so-
lution is to build samplers whose sampling phase can be adjusted on a fine scale; this has
been done in the VLA, but in some situations this may not be practical. For example, in
VLBI the sampling must be done during observing, but the correlation will not be done
until much later. At observe time, the source position and clock settings may not be known
to sufficient accuracy to determine the optimum sampling phase. At correlate time, this
information is available but the delay can now be set only to within one sample time.

Next, consider the case where the delay is implemented after conversion to a low fre-
quency (e.g., baseband, for digital delays), but no compensating phase shift (fringe rotation)
is applied to the local oscillator. It can be shown by a straightforward extension of the re-
sults of Lecture 2 that a simple correlator (like Fig. 3—1) produces the output

z'(ry) = z(r,y) cos 2xvL07, + E(7y) sin 271,07, , (3-18)

where z(7) is the correlation function of the signals at the antennas, which is what would be
measured by the correlator if fringe rotation were included; vo is the net local oscillator
frequency; and the delay is set to o = 7,. Note that 7, is changing with time, perhaps
rapidly, due to earth rotation; so this result only applies if the correlator averaging time
is short enough. To obtain a direct estimate of z(7,), and to allow use of longer averaging
times, the technique of Figure 3-11 can be used. Here the correlator is modified by multi-
plying the cross product by an appropriate quasi-sinusoid prior to averaging. This sinusoid
is called a “fringe function”; now the job of fringe rotation has been moved from the local
oscillator to the correlator.
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Figure 3-12. A simple correlator with “single-sideband” fringe rotation.

If the averaging time is an integral number of cycles of the fringe function, then the
correlator of Figure 311 produces an unbiased estimate of z(7,). Nevertheless, this method
has some disadvantages. One must integrate for at least one “fringe”, and sometimes vy 07,
changes too slowly for this. More importantly, the signal-to-noise ratio obtained is worse
than that of the Figure 3-1 correlator (with fringe rotation applied to the LO, if any) by
V2. This is because the fringe function is near zero much of the time (a detailed derivation
is left as an exercise). One way to overcome this is to use the more complicated fringe
rotator of Figure 3-12. Here both cosine and sine fringe rotators are used, and the results
are combined with a x /2 phase shift before integrating. This makes use of the second term
in Equation 3-18, and gives a signal-to-noise ratio equal to that of Figure 3-1. Such an
arrangement is feasible even if the signals are digitized (since a digital implementation of
the x/2 phase shift, or Hilbert transform, is possible), but to my knowledge it has not yet
been used in radio astronomy.

There is another way to recover the full signal-to-noise ratio that would have been
obtained with LO fringe rotation, but it applies only to spectroscopic correlators, where the
correlation function is to be measured for many closely-spaced values of 7. In that case, one
can build a correlator like that of Figure 3-13. Note that the order of the fringe rotation
and cross correlation multiplications has been interchanged, but that this has no effect since
multiplication is associative; thus only one fringe rotator is needed for all delays. If one were
to use a sine fringe function rather than the cosine, it would have two effects on the results:
after the DFT, the expected value of the (complex) result at each frequency would change
phase by x/2 (i.e., real and imaginary parts would be interchanged); and the noise would
be different. In fact, one can show that the noises in the two cases would be independent.
Therefore, if the spectrum is obtained botk ways (sine and cosine fringe rotation) and the
results are averaged (after correcting for the phase difference), the signal-to-noise ratio is
improved by /2. (Again, the proof is left as an exercise. You will probably find it easier to
do after studying Lecture 6.) This method is quite expensive, since it doubles the required
size of the correlator; the correlation at all delays must be measured simultaneously for
both sine and cosine fringe functions.

In VLBI, most receivers have been implemented without fringe rotation in the LO,
and the double-size spectroscopic correlator method has been extensively used to obtain
the best signal-to-noise ratio. This has made sense because most correlators have been
small, handling typically 3 to 5 antennas at once, and with a relatively small bandwidth.
In such a situation, slow and inexpensive digital electronics can be used, and not much of
it is needed; the cost is dominated by other components, such as tape recorders. Also, it
is inconvenient to install LO fringe rotation at many VLBI stations that were originally
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Figure 3-13. A spectroscopic correlator with fringe rotation.

designed for single-dish work. But with new, modern systems now being designed, the
bandwidths and numbers of antennas are larger, vastly increasing the amount of cross
correlation electronics. Nevertheless, as of this writing, the new VLBA is being designed in
the “traditional” way, without LO fringe rotation.

REFERENCES

Bracewell, R. N. (1978), The Fourier Transform and Its Apphications, Second Edition, Chapters 4 and 5,
McGraw-Hill, New York.

Cooper, B. F. C. (1970), “Correlators with two-bit quantisation®, Aust. J. Phys., 38, 521-527.

D’Addario, L. R. (1984), *Minimising storage requirements for quantized noise®, VLBA Memorandum
No. 332, NRAO, Charlottesville.

D’Addario, L. R., Thompson, A. R., Schwab, F. R., and Granlund, J. (1984), “Complex cross correlators
with three level quantisation: design tolerances®, Radio Science, 19, 931-945.

Schwab, F. R. (1979), “Quantisation corrections of VLA correlation measurements®, VLA Computer Mem-
orandum No. 150.

Shannon, C. E. (1949), “Communication in the presence of noise®, Proc. IRE, 37, 10-21.

Van Vleck, J. H. and Middleton, D. (1966), *The spectrum of clipped noise®, Proc. IEEE, 54, 2-19.

48



4. Calibration

R. CARL BIGNELL AND RICHARD A. PERLEY

INTRODUCTION

In Lecture 1 it was shown that—after a few reasonable assumptions are made—the
intensity distribution on the sky is the 2-D Fourier transform of the spatial coherence
function of the radiation field (Equation 1-8). An interferometric array measures this
spatial coherence function at many discrete locations specified by the projected baseline
components, (u,v). In Lecture 2 it was described how the signals from each antenna are
transported to a central location where, as outlined in Lecture 3, these signals are correlated
and the correlations are averaged. The data from each antenna pair are then recorded; the
ensemble of numbers is commonly called the observed visibilities.

But, before these data are recorded the radio signals must pass through the inter-
galactic, interstellar, and interplanetary media, and through the Earth’s atmosphere. After
collection by the radio antennas, the signals pass through, and are modified by, the re-
ceivers, the signal transmission system, data digitizers, and the correlator. Each medium
through which the information passes modifies the data, with the result that the observed
visibility often shows little resemblance to the desired quantity, the spatial coherence. Cal-
ibration is the process of determining and applying the corrections needed to produce the
spatial coherence function, so that the imaging procedures, discussed in Lecture 5, can give
a usable representation of the sky brightness. In this Lecture we discuss the origins and
effects of various mechanisms important to interferometric data, the techniques of their
determination, and the methods of correction.

1. LEVELS OF CALIBRATION

Calibration is the art of determining and removing the effects of corruption from the
data. One can discern three levels in the calibration of interferometric instruments. These
levels are distinguished by origin and timescale.

The first level calibrates effects which are unchanging, or nearly so, over long timescales.
This includes antenna locations and pointing, delay constants, time reference, and receiver
characteristics. Typically, the observations required for these calibrations are performed
after changes in array geometry or hardware. Generally, the quantities determined are
applied to the data on-line, s0 no further action need be taken by the observer unless the
applied corrections are themselves in error. In most situations, the data may be corrected
later.

The next level of calibration involves changes induced by the array electronics, such
as transmission system length changes, or receiver sensitivity changes. In many cases,
these can be reduced to an acceptable level by good design. Where this is not possible
they can usually be monitored and corrected by on-line monitoring systems. As this level
of calibration is so intimately connected with design, we pay little attention to it in this
Lecture, except when the effects can be corrected by off-line calibration.

The final level of calibration, and the one of most interest to the observer, involves
corrections for changes in the visibility induced by the atmosphere and the electronics, and
for which acceptable on-line correction is not possible. These changes (which affect phase
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much more than amplitude) can range from small values on timescales of hours or more to
many radians in timescales of less than a minute. Even in these extreme cases, it is often
(even usually) possible to remove completely the time-variable effects and thus to recover
the spatial coherence function.

2. SOURCES USED FOR CALIBRATION

Conceptually, the process of calibration is one of determining system constants by
observing known sources of emission, and it is clearly advantageous that these known sources
be as simple as possible. Thus, the ideal calibrator is an unresolved radio source with a high
flux density and a well-determined position. If such a source is observed at the phase center,
then the amplitude of the measured visibility must be equal to the source flux density, and
the phase of the visibility must be equal to zero, independent of the baseline length. Thus,
the visibility measurements obtained from observations of a calibration source yield direct
estimates of the corrections which are needed to calibrate the array around the time of
those observations for the direction of the calibrator. In principle, no knowledge of the
mechanisms which produce the observational errors is required.

How strong, and how small, should a calibration source be? Ideally, the flux density,
and hence the amplitude of the visibility, should be many times the system noise on short
timescales. The flux density should also be many times the sum of the flux densities of
background sources which also contribute to the visibility—since no source is truly isolated.
This condition is especially important at lower frequencies, where the antenna primary
beam will include large numbers of background sources. The calibrator should also be
small enough that the longest baselines do not perceive a loss of visibility amplitude greater
than the noise.

In practice, it is difficult, and in some cases impossible, to find sources which meet these
conditions, especially with high-resolution arrays. However, it is often quite acceptable to
utilize ‘less-than-perfect’ sources for calibration, using techniques akin to self-calibration.
These techniques will be outlined in a later Section, but involve solutions for antenna gains
rather than baseline gains. Since nearly all modern synthesis radio telescopes contain many
more baselines than antennas, not all the available data need be used for this solution—so
longer spacings, which may partially resolve a calibrator, or smaller spacings, which may
be confused by background sources, can often be discarded from the solution. Indeed, as
discussed in Section 5, if a reasonable initial guess of the source structure can be made,
and a good idea of the total flux is at hand, independent calibration can often be dispensed
with altogether.

The number of available calibrators varies widely with frequency, with resolution, and
with sensitivity. Assuming sensitivities typical of modern antennas (say, with baseline noises
of less than 50 mJy), there are over 500 radio sources which can be used as calibrators at
frequencies between 1 and 20 GHz and on angular scales as small as approximately 0.01 arc-
seconds. Above this frequency range, the number of usable calibrators is reduced as receiver
sensitivities are less. Below this range, the increasing primary beam size, combined with
a rapidly increasing galactic background temperature, allows us to use only the strongest
sources as simple calibrators. Calibration of large interferometer arrays at low frequencies
will probably involve forms of self-calibration (Lecture 9). At milliarcsecond resolutions
(i.e. with VLBI techniques), there may remain no sources which are sufficiently unresolved
to allow straightforward calibration. See Lecture 13 for discussion of the special problems
in calibration at these resolutions.
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3. THE CALIBRATION FORMALISM

The calibration formula, in a reasonably general form, is
Vit v) = Giilt, v)Vis(t,v) (4-1)

where ¢ is the time of the observation, v is the frequency, subscripts ¢ and j refer to the
measurement associated with antenna pair (1, 5), V is the true visibility function, V"’ is the
measured visibility function, and G the baseline-based gain. Each of these quantities is
complex-valued. This formulation assumes that the corrections are linear for each baseline
and that there is no crosstalk amongst them. These assumptions are generally well-satisfied
with modern systems.

Virtually all the corruption of data takes place before correlation, so that the effects
can be identified with individual antennas, rather than baselines. This observation allows
the correlator gain to be factored to a product of antenna gains, so that the calibration
formula can be written:

Vii(t,v) = GG Gi;Vi4, (4-2)

where the G; are the (complex) antenna gains, and G,; is a residual, correlator-based gain.
If the assumption above is perfect, then G;; = 1. All quantities are functions of time and
frequency.

In order to determine the G,’s for the N antennas from the §;;’s, the set of equations

Gi;=GiG}, fori=1,...,N, j=i+1,...,N, (4-3)

must be solved. Because this set of equations is invariant with respect to an arbitrary
phase shift in all of the G;, the phase part of one antenna-based gain can be set to zero.
The number of complex equations is equal to N(N —1)/2, and the number of (real-valued)
unknowns is 2N — 1; the least-squares technique is generally used to determine the G;.
The validity of the assumption that the gain corruptions are antenna-based rather than
correlator-based can be checked by examining the residuals of the solutions.

In the calculation of the correction coefficients, G;, it is convenient and also physically
meaningful to deal with the amplitude and phase rather than with the real and imaginary
parts. This is so because the primary effects of propagation are to rotate the phase and
decrease the amplitude. Better physical insight into the effects involved is gained by exam-
ining the amplitude and phase solutions, rather than the real and imaginary parts. Hence
it is convenient to separate the complex Equation 4-3 into its modulus and argument.

Continuum interferometers return no information about the shape of the spectrum
within the passband supplied to the correlator. We thus can drop the explicit frequency
dependence shown in Equation 4-2, so that we can write the calibration equation as

Aﬁ,-(t) % (t) — Ai(t) A_,'(t)e““" (t)—¢;(2)) A1) ibis (‘)G,-j(t) , (4-4)

where
Al;(t) is the measured visibility amplitude,1.13truein
i;(t) is the measured visibility phase,
A;;(t) is the true visibility amplitude,
$:;(t) is the true visibility phase,
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,7  are subscripts denoting two antennas, the fth and jth,
t is the time,

v is the frequency,

A;(t) is the gain correction for antenna ¢,

#i(t) is the phase correction for antenna ¢, and

G;;  is the residual, baseline-based gain.

We discuss the phase corrections in Section 4 and amplitude calibration in Section
5. Bandpass and polarization calibration techniques are discussed in Sections 6 and 7,
respectively.

4. PHASE CALIBRATION (OR FOCUSING THE ARRAY)

Signals collected by the array elements have traversed long distances through media
with different refractive indices. These variations mean that the propagation times differ
from those that would have occurred, had the path been in vacuo. Most importantly, the
signals collected by different elements have undergone different delays. Further differential
delays occur due to the electronics required for conduction of the signals to the correlator.
The net result of these variations is that the phase of the visibility is not that which would
have been obtained by an ideal system. An analogy can be drawn with a paraboloidal
surface which reflects radiation to a focal point. The geometry guarantees that signals
arriving from the direction perpendicular to the plane of the antenna arrive in phase at
the focus. The object of phase calibration of an array is to cause radiation from the phase
tracking center to arrive at the correlator in phase. Thus, the process of phase calibration
could be considered focusing the array. Because the data from each baseline are individually
collected, it is not necessary to apply this calibration in real-time. Nevertheless, many of
the phase-changing effects can be calculated, or monitored, in real-time, and the subsequent
phase changes applied in real-time. In this Section, we discuss the major origins of phase
perturbations.

4.1. Delay calibration.

As discussed in Lecture 2, signals from a celestial source must arrive at the correlator
at the same time for correlation over a nonzero bandwidth. The accuracy required for
coherence depends on the bandwidth. Consider two monochromatic signals, of frequency
Vo, arriving at the correlator in phase, but with delays differing by §7. Signals traversing
the same path at frequency v will arrive at the correlator differing in phase by an amount

6¢,
5¢ = 2x(v — vo)br, (4-5)

where &7 is the difference in the propagation time of the signals between the wavefront and
the correlator. Thus, the delay difference must satisfy the inequality 7 < 1/6» in order
for the the signals across a bandwidth év to add up in phase.

There are two major components of the delay. The first is the geometric delay 7,
(Equation 2-3) which can easily be calculated from the array geometry and the location of
the radio source. Several techniques are available for insertion of a variable delay in order to
compensate for the geometric delay (Lecture 2, Sec. 3). Note that the geometric delay can
be compensated for one direction in the sky only, so that a degree of incoherence must exist
for all other directions. This is the origin of bandwidth smearing, discussed in Lectures 2
and 8. It can be held to acceptable levels only by using sufficiently narrow bandwidths.

The second component of the delay is caused by propagation time for the signals
imposed by the hardware associated with each antenna. Interferometers are constructed
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to make this delay equal for each signal path, and as time-invariant as possible. Through
good design, the differences between antenna delays can be held constant (through internal
monitoring) to better than than 0.1 nanoseconds (or 3 cm), sufficient to maintain good
coherence for up to 500 MHz bandwidth. Various schemes for monitoring the internal delay
are implemented on different interferometers. The time-invariant (or slowly time-variant)
part of the delay for each antenna-IF is usually determined from calibrator observations.
For a square bandpass of frequency width 6v, the measured amplitude of the visibility
function as a function of delay error 67 is given by

sin xév 67

A’(6r) = xbvér

(4-6)
The relative delay between the antennas is stepped in units of 1/6» until a maximum of
A' is found. The geometric delay must be compensated for during this measurement. This

technique of delay fitting is used in VLBI (Lecture 13) to determine both the positions of
radio sources and the antenna locations.

4.2. Calibration of baselines.
If the true baseline differs from the presumed baseline by an amount Ab, a phase error

¢ =2xAb-s, (4-7)

results, which has a characteristic sinusoidal dependence on source declination and hour
angle. Explicitly, if the antenna locations are expressed in a coordinate system with the
z-axis pointing toward § = 0°, h = OF, the y-axis toward § = 0°, h = —6", and the z-
axis toward § = 90°, and if Ab,, Ab,, and Ab, are the components of the baseline errors
expressed in this reference frame, then

6¢ = 2x((Abzcosh — Abysin h)cos§ + Ab,sinf). (4-8)

The above equation holds for identical antennas. For non-identical antennas, the true
baseline will be a function of antenna pointing position, and extra terms describing this
will be necessary. Calibration of the baselines is straightforward in principle. Observations
of many calibrators of well-determined positions are taken, preferably under conditions of
good atmospheric stability. The coefficients of Equation 4-8 can then be determined.

The array lies on a moving object, the Earth. Since we must determine the antenna
locations with respect to a fixed reference frame, precise knowledge of the motion of the
Earth is required. The important contributions are:

(1) the Earth’s rotation (i.e., the time),

(2) the precession and nutation of the Earth’s axis of rotation,
(3) the wandering of the pole of the Earth, and

(4) the effects of Earth tides.

The non-uniformity of the Earth’s rotation can be predicted to an accuracy of a few millisec-
onds of time. If higher accuracy is required, post-observing corrections can be made (see
Sec. 4.3). Precession of the Earth’s pole is approximately 20” per year. The largest contri-
bution to nutation has a 19-year period and 9" amplitude. There are other, smaller terms
of shorter period. Correction for these effects is required if data from different observations
are to be combined. Besides precession and nutation, the Earth’s pole undergoes an erratic
wandering amounting to approximately 001. Predictions of this motion can be made.
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Earth tides, caused by the Sun and Moon, cause a crustal displacement of approximately
30 cm, or 0701 in apparent position of an astronomical source.

Two other effects, not related to baselines, need to be mentioned, since their effects
must be corrected for in order to use interferometric data. Aberration occurs due to the
Earth’s revolution about the Sun, and to its rotation about its axis. The maximum angular
shifts are 20” and 026 respectively. Bending of rays due to the gravitational field of the
Sun causes an angular displacement away from the Sun of 1”75 at the solar limb, decreasing
nearly linearly to 077004 at 90° from the Sun.

All other effects are believed to contribute less than 0”002 error in the measurement
of position of radio sources. Note that calibration of data through observation of nearby
sources will reduce the errors of most of these effects. However, observations intended for
astrometry must include all these corrections, if milliarcsecond accuracy is desired.

4.3. Correction of time errors.
Occasionally errors occur in the clock used as the time-reference for the array. This
introduces a phase error given by:

8¢ = —2xwbt(bysin h + b, cos h) cos§ . (4-9)

where w is the angular rotational velocity of the Earth, 7.29 x 10~% rads~!. There is a
fundamental limit to correcting the phase errors so introduced, because it is practical to
set the clock only to an accuracy of a few milliseconds, the limit of time-keeping systems.
The seriousness of time-keeping errors is much reduced however, by calibration through
observations of nearby sources, since the phase error will be nearly the same for both
calibrator and source.

4.4. Atmospheric phase errors.

The wavefront from a distant radio source is distorted in its journey from the source
to the array, so that the phase measured by the correlator differs from that characterizing
the coherence function. At centimeter wavelengths, the most important distortion occurs
in the neutral atmosphere, where both the dry and wet components of the troposphere slow
the propagation of the signals, while at meter wavelengths the dominant effect is due to
the ionosphere. Recent reviews on the astronomical importance of these effects is given in
Meeks (1976), and in Chapter 13 of Thompson, Moran, and Swenson (1986). The latter
reference is especially recommended.

The extra path introduced by propagation through the atmosphere is characterized
by the excess path length, §L = c5t, where §t = 1 f(n — 1)dz is the extra propagation
time introduced by the atmosphere, and n is the index of refraction. What is noted by
the interferometer is not the introduced delay per se, but the difference in delay between
the two antennas comprising the interferometer. Thus, the phase error introduced by the

atmosphere is
¢ =2x(8Ly — 6L3)/A, (4-10)

where the subscripts refer to the two antennas. Two origins for the excess path length can
generally be distinguished—the first due to the large-scale, global structure, and the other
to small-scale turbulence. The large-scale structure can often be estimated and corrected
for, using estimates or measures of atmospheric structure. The effects of turbulence are in
general not calibratable, except through use of self-calibration.

The depth of the troposphere is about 6 km, and the decrease in the speed of
propagation—usually called refraction—is about 1 part in 3000, producing an additional
path length, at the zenith, of about 2.3 m. At zenith angles z less than about 80°, the effect
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of Earth curvature can be neglected, and a reasonable approximation to the excess path (in
cm) can be written L = Lgsec z, where Lo = 0.228P, + e9. Here, Py and eq are the total
pressure and water vapor partial pressure in millibars. Note that there is no dependence
on frequency.

A plane-parallel atmosphere has no effect on interferometer phase (since both rays take
the same time traversing it), so that the only correction needed is a small adjustment for
refractive bending (typically an arcminute). However, due to Earth curvature, widely sepa-
rated antennas require a phase correction, since they view the source at different elevations.
A good approximation to the differential excess path is

6L =secz (b'Lo + C:Lo sec z) s (4-11)
0

where §Lg is the difference in vertical extra path, due to the difference in heights of the

antenna, 7 is the geometric delay, and ro is the Earth’s radius. For baselines of tens of

kilometers, the typical correction amounts to a few centimeters.

The troposphere is characterized by micro-turbulence at size scales from meters to kilo-
meters which has little effect on ground-based weather measurements. It is believed that
the irregularities in the distribution of water vapor dominate the observed phase irregular-
ities, which occur with characteristic timescales varying between seconds and hours. These
phase fluctuations can be described by a random process with an r.m.s. that is a power law
of antenna separation [b|,

¢ = ¢ob|* (4-12)

where the baseline is in kilometers, and ¢q is the r.m.s. phase on a 1 km baseline. Numerous
test measurements at the VLA yield values of the coefficients of the root Allan variance! at
1 km baseline for an 8 minute timescale; median values, expressed in millimeters of excess
path length, are given in Table 4-1.

Table 4-1.
Median Coefficients for Root Allan Variance
%o
Day Night
April-September 2.2 1.0
October—March 1.1 0.6

The index a of the power law is predicted by the Kolmogorov theory of turbulence to
be 0.83. The observed index varies from zero to about 0.9 for antenna separations ranging
from a few tens of meters to a few kilometers. The observed low values for the index indicate
that the interferometer is sensitive to a regime of the power spectrum of fluctuations near
the outer scale of turbulence at about one kilometer baseline and 8 minute timescales. The
median index is about 0.3.

At higher frequencies on long baselines, these tropospheric effects severely limit the
ability to construct coherent images. Work on monitoring the variations in the wet compo-
nent (believed to be the more important part) through monitoring of atmospheric emission
near the water vapor resonance line at 22.2 GHz has been done. It appears that corrections

1The Allan variance, for phase fluctations of characteristic timescale r, is given by o2(7) = srl(e(t—r)~

2¢(t) + ¢(t+7))?), where ¢(t) denotes the phase as a function of time, and where the angle brackets denote
the expectation value (averaging over time).
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to the excess path can be made, accurate to better than 1 cm. However, at millimeter
wavelengths, considerably better accuracy is needed before this technique can be used. It
should also be remembered that due to the short correlation scale of water vapor irregular-
ities (< 1 km), each antenna of an array must be outfitted with a radiometer—resulting in
a very significant cost for multi-element arrays.

These fluctuations generally limit the accuracy to which positions of astronomical
source;s can be measured (and, obviously, limit the determination of baseline parameters as
well).

Limited success may be obtained by attempting to calibrate the effect of turbulence by
observations of nearby calibrator sources. The more frequent the calibrator observations and
the closer the calibrators are to the program source, the more likely it is that the calibration
will adequately compensate the small-scale variations in tropospheric refraction over each
antenna. It is found that calibrator-source separations less than 10°, and timescales of less
than 10 minutes, are required to reduce the effects of tropospheric turbulence.

In Lecture 9 the self-calibration algorithm is discussed. This calibration technique
uses the radio source itself (provided that it is sufficiently strong) as the test signal for
determining the antenna-based phase errors, the bulk of which are produced by differential
refraction above the antennas. This phase calibration technique is far superior to calibration
by a nearby source, but it cannot be used when the source flux density is comparable to
the noise (per baseline). Unfortunately, the fraction of astronomical observations for which
this powerful technique can be applied is a decreasing function of frequency, since the flux
densities of most sources, the number of background sources in the antenna beam, and the
antenna sensitivities all typically decrease with increasing frequency.

4.5. Ionospheric phase errors.

The ionosphere is a magneto-active plasma mainly confined to a region 60-2000 km
above the surface of the Earth, with the most important effects on radio astronomical
observing caused by the region 300-500 km in height. The propagation paths of radio waves
passing through this medium are affected because the index of refraction is a function of both
the electron density N, and the magnetic field strength (the latter dependence is important
to propagation of polarized radiation). Given a profile of the electron density along the
radio ray, the excess path can be calculated. A typical value is Lo = —4 x 10%»~2 meters,
where the frequency v is in MHz. Note that the excess path is negative, meaning that the
phase is advanced relative to vacuum (the physically relevant group delay is positive), and
that there is a »—2 dependence, so that ionospheric effects are dominant at low frequencies.
Atmospheric and ionospheric effects are typically about equal near 4 GHz, but effects of the
ionosphere can occasionally be seen as high as 8 GHz. Temporal changes in the phase of the
radio signal passing through the ionosphere result from temporal changes in the electron
density. There is a large diurnal effect, due to solar heating, in which N, changes by as
much as a factor of 10. There are also anomalous variations, with timescales of minutes or
less.

The large-scale, or spherical, component of the ionosphere can be estimated and re-
moved using models based on either (a) past history, or (b) the total electron content of the
jonosphere, as measured by an ionosonde or by satellite transmissions. Given the vertical
excess path Lo, the differential path at zenith angle z can be written

5L = Lger

= — 4-13
rocos3 z+ 2h’ ( )

1For short observations at the VLA in the A configuration at 6 cm, source positions are accurate to about
0”1, while observations over many hours may be accurate to a few times 0701,
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where 7 is the geometric delay, h the height of the ionosphere, and ro is the Earth’s radius.
As is the case for the neutral atmosphere, the ionosphere contains an important turbulent
structure. It might be possible to predict the effects of the larger size-scale, slowly vary-
ing phenomena if total electron content measurements could be made at the time of the
astronomical observations. However, the smaller-scale and more rapidly varying anomalies
(which, unfortunately, are as important as the large-scale effects) would require reasonably
continuous total electron content measurements over each of the antennas, in the direction
of the source of interest. It does not appear that this kind of information will generally
be available. A better prospect is self-calibration, since the flux density per antenna beam
(or, more strictly, per isoplanatic patch?), due to background sources alone, appears to
considerably exceed the baseline-based noise at frequencies below 500 MHz; so that if a
suitable model is provided and if the array contains a sufficient number of antennas, then
self-calibration can be expected to succeed.

4.6. Final phase monitoring.

Observations of calibration sources frequently interspersed with the program sources
are used to correct the fast temporal changes of the phase that are due mostly to the
atmosphere, and to correct for those residual phase errors which are not removed by other
means. Calibrator observations are not needed, or are needed only infrequently, for compact
arrays, especially at lower frequencies, where the effects of atmospheric turbulence are
minor, and for objects where self-calibration can be expected to succeed.

Generally the closest suitable calibrator should be used, to improve the chances of
removing the effects of atmospheric turbulence. Once the observations are complete, the
observed calibrator phase can be used to predict the phase corrections which need to be
applied to the program sources, using a suitable interpolation function. The type of interpo-
lation function and the convolution interval which should be used depend, to some extent,
on the phase behavior and on signal-to-noise considerations. For nearby strong calibrators
simple two-point interpolation (straight-line interpolation) is reasonable, whereas for much
larger separations or weak calibrators a boxcar or Gaussian average of some suitable length
(say 2 hours) may be desirable. If the calibrator phase changes are very large, then care
must be taken in the type of interpolation used, to ensure that there is no degradation of
the interpolated values. For large changes, self-calibration (if applicable) may be the only
recourse.

Note that antenna-based calibration cannot remove baseline-based gain errors. In
modern, well-designed synthesis arrays, these errors are generally less than 1° in phase, and
2% in amplitude, so that their effects on images is at a very low level (see Lecture 11 for
a more complete discussion). These errors are due to a host of effects, most importantly,
delay errors and errors in the phase-shifting networks used to obtain the real and imaginary
parts of the observed visibility function. High-dynamic range imaging will be limited by
these residual errors, and it now appears possible to remove their effects through calibration.
This is further discussed in Lecture 11.

5. AMPLITUDE CALIBRATION

Lecture 6 discusses the sensitivity of radio interferometers. For calibration, the char-
acteristic of most interest is the timescale for changes in antenna sensitivity—that is, for
system gain changes. These can be caused by many effects, including:

2The isoplanatic patch is the angular distance from some direction over which the atmospheric phase
perturbation changes by more than some amount
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5.1. Receivers.

Most modern receivers are stable over time periods of at least a few hours. Through
on-line monitoring of injected calibration signals, gain fluctuations can be reduced to much
less than 1%.

5.2. Antennas.

The antenna gain may be a function of the direction in which the antenna is pointing,
because of gravitational deformations of the antenna structure and the surface. For azimuth-
elevation antennas, this effect should depend only on elevation. Correction depends upon
determining the gain curve, usually measured through observations of strong, unresolved
sources.

The temporal behavior of the gain of the antenna is also affected by the sidelobe
structure, since this moves with the antenna, and the antenna therefore collects changing
amounts of radiation from the ground and sky. The effects are usually more important at
lower frequencies, since it is more difficult to design efficient feeds at these frequencies. It
is obviously important to minimize these effects through good design. Correction for these
changing effects involves monitoring the total system power.

The sensitivity of an antenna is a function of position with respect to the antenna
pointing axis. This function (normalized) is called the primary beam pattern A(s) (see
Lectures 1 and 2). This pattern reduces the apparent intensity distribution at all points off
the pointing axis, so that the measured visibility function is the inverse Fourier transform
of the product A(s)I(s). Calibration is generally accomplished by dividing the final image
by the beamshape. Inaccuracies in this procedure will occur if the beamshape varies over
the observation period because of

(1) motion of the primary beam pattern away from the tracking position,
(2) rotation of a non- axisymmetric primary beam on the sky, or
(3) different primary beam shapes among the antennas.

Errors of the first type are generally known as pointing errors, and can be understood
and corrected for, given a model of the behavior of the antenna as a function of azimuth and
elevation. Generally, a functional dependence of the antenna pointing on these quantities is
assumed, and the coefficients are determined by observations of calibrator sources of known
position. For example, for azimuth-elevation antennas, a general representation is

6F = fICOSA-I- fzsinA+ f3+f(E)+f5008E,

§A=g;sin Atan E + gacos Atan E + gssec E + g4, (4-14)
where f; = g; is the rotation of the antenna azimuth axis along the meridian from the
vertical, f = —g; is the rotation of this axis perpendicular to the meridian, f3 is the
elevation offset, or encoder error, f(E) is a function describing the refraction, fs a sag
coefficient describing the effect of gravity on the feed support system, gs is the azimuth
collimation error (the elevation collimation error is absorbed into fs), and g4 is the azimuth
offset, or encoder error. These equations are sufficient provided that the pointing errors
and the applied corrections are small. The coefficients can be estimated by measurement of
the 6 E and § A offsets for a large number of sources, as functions of azimuth and elevation.

However, after these systematic effects are understood and corrected for, there in-
evitably are residuals which will be important for some kinds of observations, especially at
higher frequencies. There is no simple way to correct for these more random errors, and
the best way to handle them is through good antenna design. That is, the tolerable level
must be decided upon, and the antennas designed to meet that level. The most important
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contributor to these residuals is generally solar heating, and though significant improvement
has been made through insulation of antenna support structures, or thermal control, it is
certainly preferable to avoid use of these methods—through good design. Active corrections
(which could be considered calibration or advanced design) involving measurement by sensi-
tive tiltmeters, combined with computer controlled adjustment, have been contemplated for
many arrays, but to the authors’ and the editors’ knowledge, not implemented anywhere.

The harmful effects of pointing errors are greatly worsened if the antenna beam pattern
varies significantly over the object or field being imaged, since in this case the error is
both spatially and temporally variable. A common criterion of adequate pointing accuracy
is that there be < % full-width half-power (FWHP) error in the position, or change of
position, during the observation. Observations at high frequencies are especially susceptible
to pointing problems, since here the angular pointing errors are often comparable to the
antenna primary beam.

The second error is important for azimuth-elevation (az-el) mounted antennas only,
since, for these, the beam pattern rotates on the sky through the period of observation.
This effect cannot be easily calibrated, so minimization of this problem requires good beam
pattern circularity, obtained through good feed design. The effects of this error type are
important for sources or fields of view with angular size comparable to the antenna beam.
Observations at low frequencies—where there are many sources in the primary beam—
require good beam circularity, because of confusion.

The third type of error is a problem only if:

(1) the interferometer comprises more than two elements, and

(2) the radio source, or the field of view being imaged, is comparable to or larger than
the FWHP of the largest antenna.

If the array consists of just two elements, the effect can be calibrated by multiplication
by the reciprocal of the geometric mean of the antenna power patterns. In most modern
arrays, the differences in primary beam shapes are sufficiently small that they can be ignored
for all but the very largest sources or fields of view. The effects of non-identical beams are
obviously worsened if there are also significant pointing errors

5.3. Atmospheric emission and absorption.

The constituents of the troposphere emit radio noise and absorb incoming radio signals.
In the radio wavelength regime, the most important sources of atmospheric attenuation are
water vapor and molecular oxygen. The latter constituent dominates near the spectral
line transitions at 60 and 118 GHz. At the center of these transitions, the atmosphere is
completely opaque. Away from these frequencies, water vapor is the dominant absorber,
with absorption maxima near 22 and 185 GHz. The former transition is the only important
absorber for frequencies below approximately 50 GHz. Zenith opacity at the center of the
line rarely exceeds 1 dB (corresponding to a brightness temperature of approximately 40
K), and for the commonly used 20 and 6 cm bands water vapor absorption is of order 1%.
Important transitions due to other molecular species are found at frequencies exceeding 100
GHz. For a discussion, see Chapter 2.3 in Meeks (1976). The antenna temperature due
to the source and sky emission can be written (assuming a simple slab model of uniform
density for the atmosphere),

T‘e-r., sec 3 + T;tm (1 _ e-r., sec x) s (4_15)

where 7, is the opacity at frequency v. Here, the source signal T, is attenuated, and we
see that the atmosphere at temperature T, can contribute significantly to the antenna
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temperature. At 22 GHz it is possible for atmospheric emission to be comparable to the
receiver temperature Ty, for very low-noise systems.

Below 10 GHz, tropospheric absorption can generally be neglected. Ionospheric ab-
sorption is appreciable only at very low frequencies, and is rarely of importance above 50
MHz.

5.4. Correlation noise.

Lecture 3 considered the loss of sensitivity involved with digital correlation techniques.
Of especial importance in calibration is the variation of this degradation with degree of
correlation (known commonly as the ‘Van Vleck correction’). The change in correlation can
be corrected for, on-line (as discussed in Lecture 3), although the loss of sensitivity cannot
be.!

5.5. Techniques of calibration.

Many of these elevation- and time-dependent effects, except for atmospheric absorp-
tion, can be calibrated by measuring the system temperature directly and, preferably, by
continuously monitoring it. The usual procedure involves injecting the signal from a stable
noise source into the front end of a receiver and synchronously detecting it later on. The use
of system temperature corrections can adequately correct for atmospheric absorption only
when the equivalent source temperature is much greater than the receiver temperature.

In order to correct for temporal variations which are not removed by system tempera-
ture corrections it is necessary to use calibrator observations which are interspersed among
the program source observations. The sources used for this purpose are usually the phase
calibrators.

The flux densities of most good phase calibrators vary with time and cannot be used for
absolute flux density calibration. Therefore a small number of “non-variable” calibrators is
used to calculate the flux densities, first of the phase calibrators and then of the program
sources.?

Self-calibration is effective in adjusting the relative gains of the antennas, as discussed
in Lectures 9 and 11, for observations of strong radio sources. The absolute gains cannot
be recovered unless the total flux of the source is known a priori.

6. SPECTRAL LINE CALIBRATION

Assuming that the calibrations outlined in Sections 4 and 5 have been completed, and
re-inserting the frequency dependence in the calibration equation, we find

Aﬁj(t, v) () — bi(v) b’.(,,) e (Bi(v)=B;(v)) A.-,-(t, v) etis(tv) , (4-16)

where b;(v) denotes the bandpass amplitude gain correction for antenna ¢ and §;(v) the
bandpass phase correction for antenna s.

6.1. Bandpass calibration.

The channel-to-channel gain variations, both in amplitude and phase, are caused by
filters used to limit the bandpasses and by instrumental effects, such as reflections in the
waveguide and between subreflectors and receivers. These variations can be calibrated
through observations of strong sources.

1At the VLA, these corrections are not yet implemented.
2At the VLA, the flux density scale is tied to the source 3C 286, whose flux density is assumed to be equal
to that given by Baars et al, 1977.

60



4. Calibration

The normal procedure for determining these corrections is to observe, over the same
frequency band as the program source, a strong calibrator that has no spectral line emission
or absorption within the observing band. This correction is very important when small line-
to-continuum ratios are to be observed and high channel-to-channel dynamic range is needed
(e.g., in recombination line observations). The procedure usually requires that the bandpass
be stable for the duration of the observing run.3

To correct for amplitude variations it is possible, using the program source itself, to
obtain an estimate of b;(v) (only) from measurements of the autocorrelation function of
each IF signal. Such bandpass normalization works well when there are no strong lines
(strong relative to the system temperature), either in absorption or emission, within the
passband. This method does not correct for phase variations across the band, and it is
inadequate when high dynamic range is required.

7. POLARIZATION CALIBRATION

7.1. Polarization mixing.

Recall from Lecture 1 that the complete state of the radiation field is the superposition
of two orthogonal vector quantities. Polarimetry measurements require two orthogonally
polarized feeds. In an ideal antenna, these feeds respond solely to the two orthogonal prop-
agation modes. There are four combinations, or correlations, which can be formed from the
signals, and these combinations can be described in terms of the four (real) Stokes param-
eters; I, describing the total intensity, V', describing the circularly polarized intensity, and
Q and U, describing the linearly polarized intensity. These quantities are obtained through
combinations of these correlations. That is, the measured spatial coherence functions trans-
form to the following combinations of Stokes’ parameters:

(1) For circularly polarized signals,

Vrr e—%(x1—x3) 0 0 e—3(x1—xa) Vi
—$(x1+x3)  ge—t(x1+x2)
VRL - (1] e . 1+X2 te - 0 VQ ’ (4.17)
Vir 0 eflxitxa)  _ ges(x1+x2) 0 Vu
Vi et(x1—xa) 0 0 — eflx1—x2) W

where x1 and x2 denote the parallactic angles of the feeds (x; s x32 for identically mounted
feeds on closely spaced elements) and where V; = F1, Vg = F1Q, etc. The antenna
parallactic angle is related to latitude ¢, source hour angle h, and declination §, by tan x =
cos ¢sin h/(sin ¢ cos § — cos ¢sin § cos h).

Assuming equal parallactic angles, x; = x2 = X, Equation 4-17 simplifies to

Vrr 1 0 0 1 V1
VrL _ 0 e¥x 4qe¥x 0 VQ
Vir ] |0 e¥x —4e¥x o Vu (4-18)
ViL 1 0 0 1 Vv

3At the VLA, this is quite often the case (but not always!) for time periods not exceeding 6-8 hours.
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(2) For linearly polarized signals,

Vyv
Wwa | _
Vuv
Vun
cos(x1—xz)  cos(x1+ x2) sin(x1+x2)  —¥sin(x1 — xa) Vi
—sin(x1 —x2) sin(x1+x2) —cos(xi+x2) —fcos(xi—x2) | | Vg
sin(x1 - x2)  sin(xa+xz) —cos(x1+xz) icos(x1—xa) Vy
cos(x1 —xz) —cos(x1+x2) -sin(xat+x2) —isin(xi-x2)/ \W
(4-19)
Assuming equal parallactic angles, this simplifies to
VVV 1 Ccos 2x sin 2x 0 V]
Vvn - 0 8}n2x — cos2x —.z Vo (4-20)
Vav 0 s8in2y —cos2xy 1 Vu
VHH 1 — Co8 2x —sin 2x 0 Vv

Unfortunately, an antenna and feed do not respond solely to a single propagation
mode. By diverse means, some signal from one mode contaminates the other, so that the
polarization matrices become more complicated. The ‘crosstalk’ is generally described by
D, describing the fraction of one polarization mode which leaks into another. Consider first
circularly polarized feeds. If Ep and Ef, are the circularly polarized signals which would be
measured with an ideal system, the actual signals, vz and vz, are vg = Ere~*X+ D Epe'X
and vy = Epe** + DpEge*X (Bignell, 1977). For the linearly polarized case, we have
vy = Egcos(x + 0) — Eysin(x + 0) + Du(Eysin(x + 6) + Ev cos(x + 0)), and vy =
Epy sin(x+ 6) + Ey cos(x+ 0) + Dy (Eg cos(x + 0) — Ey sin(x + 0)), where 0 is the position
angle of the vertical feed. Since Stokes’ parameter I is generally very much greater than
Q, U, or V, and the leakage terms are also small, only products between Q, U, V', and the
D’s with I need be retained.

The cross-handed responses, with the above approximations, assuming equal parallactic
angles, and assuming the antenna-based calibration has been performed, become:

(1) For circularly polarized feeds,

Vrr = e (Vg + iVy) + (Dr1 + D}a)Vr,

) 4-21
Vir= cz‘x(VQ - t'Vv) + (DLl + D;z)VI . ( )
(2) For linearly polarized feeds,
Vv = Vgsin2x — Vycos2x — tVy + (Dyy + D;;z)VI ’ (4-22)

Vv =Vq sin2x — Vycos2x + tVy + (DHI + D;z)VI .
For a more explicit derivation, see Bignell (1977, 1986). Note that in all the above equa-
tions, observation of an unresolved source at the phase-tracking center allows replacement

of V1, Vg, Vy, and Vy with I, Q, U, and V, respectively.
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7.2. Calibration of the leakage terms.

The leakage terms can be calibrated by observations of unresolved calibrators. There
are two approaches:

The first is to observed a source of known polarization. It is important that the
polarized flux be high, so that the leakage terms can be accurately determined. This
requirement, when added to the need for an unresolved source, greatly limits the choice of
sources. Of these, the preferred sources are 3C 286 and 3C 138. The measurement of the
D’s is straightforward.

The second technique applies only to altitude-azimuth mounted antennas. For these,
the antenna beam rotates on the sky during the course of the observations. This rotation
causes the phase of the source polarization to vary, while that due to the antenna polar-
izations remain constant. Observations over a suitable range in parallactic angle allow a
straightforward separation of the two contributions. In this technique, a polarized cali-
brator is not required. However, a high total flux density is desirable—the signal in the
cross-hand channels is augmented by the total flux multiplied by the crosstalk term, as it
allows a more accurate determination of these terms. This technique does not calibrate the
position angle of the polarized flux density (corresponding to the phase difference between
the orthogonally polarized feeds). To do this requires a short observation of a polarized
source of known position angle.

After determination of the D’s, the visibility data may be corrected through by applying
the above equations. For these techniques to be effective, it is desirable that the change
of the polarization constants be kept to a minimum.! This allows degrees of polarization
of order 0.1% to be determined. A serious limitation for polarimetry of extended sources
is that the instrumental polarization varies significantly over the primary beam, and, for
azimuth-elevation antennas, both this pattern and the antenna primary pattern rotate on
the sky over the observing period. (For equatorially mounted antennas, the effect is spatially
constant and, if the antennas are all described by the same D’s, can be removed in the image
plane).

7.3. Faraday rotation.

The presence of a magnetic field in a plasma causes the plasma’s index of refraction
to be different for right- and left-circularly polarized radio waves, with the result that a
linearly polarized wave has its plane of linear polarization rotated as it propagates through
the ionosphere. The amount of rotation at wavelength A is given by

L
EX? f N.(Hy() dl = RM. 2, (4-23)
0

where N,(I) denotes the electron density, H)(/) denotes the component of the magnetic
field parallel to the line of sight, E is a constant equal to 2.62 X 10717 in c.g.s. units,
and L the depth of the ionosphere, measured along the line of sight. The quantity R.M. is
called the rotation measure. Typically the ionospheric rotation measure is about 1 rad m—32,
with values reaching as high as 15 to 20 rad m~2 during solar maximum. Corrections for
Faraday effects are usually required for observations at wavelengths longer than 18 cm, but
can occasionally be important at wavelengths as short as 10 cm. The use of models and
measurements of the total electron content can correct for moderate-size rotations caused
by the slowly varying diurnal component, but it cannot correct for anomalies. These may
be calibratable through observations of a nearby polarized calibrator, or, perhaps, through
polarization self-calibration, presuming the source has sufficient polarized flux density that
variations in the apparent position angle can be monitored.

1At the VLA, it is found that the variations, over an 8-hour period, are less than 0.5%.
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7.4. Limitations of polarization calibration.

In most modern radio astronomy antennas the D’s remain constant to within 0.5%
over an eight-hour period. These variations tend to increase with frequency.

The D’s are not constant over the beam. The spatial variation in D is less than
0.5% only over an area of the beam, centered on the primary lobe of the antenna, with
radius about 10% the FWHP. As long as the extended emission is within this region of the
antenna beam, the accuracy of the polarization calibration is reasonably good. Polarized
emission extending beyond this point will be progressively less accurately calibrated, with
uncertainties possibly as large as a few percent near the half-power point of the beam.

The other important limitation is that the phase difference between the orthogonal
modes! must remain constant in time. Changes in this instrumental quantity will alter
the observed source position angle of polarized flux density, and lower the polarized flux
density. This difference can be monitored through observations of strong calibrators.

8. DATA EDITING

The final step in data calibration is to identify and delete data which are irreversibly
corrupted. This process requires human judgement, which can only be gained with experi-
ence. We will summarize some causes, and effects on the data, and give some guidelines for
identification of affected data.

8.1. Interference.

Communications signals and radars associated with satellites, aircraft, and ground-
based transmitters, as well as signals generated by the local oscillator system, can increase
the system noise or cause erratic behavior in the measured visibility amplitudes and phases.
This is especially true at low frequencies (< 2 GHz) and on short baselines. Spectral line
observations using narrow bandwidths are particularly susceptible to interference, compared
to observations using wider bandwidths, due to the smaller amount of “dilution” (dilution
of the interfering signal by uncontaminated signal in the rest of the band). On the other
hand, observing in spectral line mode will allow efficient removal of interfering signals if
they occur in a small number of channels (and if the interesting signal does not also occupy
these channels). Interference will show up in images in various ways, commonly as stripes
across the image. Efficient techniques of removal are available—see Lectures 10 and 11 for
details.

8.2. Shadowing and crosstalk.

When the antennas are close together one may “look” into the back of another.? A
related problem, notable on short baselines in general, but which is especially severe under
conditions of shadowing, occurs when signals radiated by one antenna (say, by the local
oscillator) are picked up by another. This causes a false correlation to occur, and is generally
known as ‘crosstalk’.

Shadowing changes the baselines of the antennas involved, reduces the antenna gain,
and distorts the primary beam of the antenna that is shadowed. The reduction of the
antenna gain can be corrected by a factor based on the geometrical blockage. However,
it must be emphasized that this factor is only correct for the center of the antenna beam
(and only at high frequencies, where diffraction effects can be neglected). Application of
this correction only makes sense if the region of interest is small compared to the antenna
primary power pattern. The other effects (beam distortion, and baseline offset) can not be

lat the VLA, the so-called *A~C or B-D phase difference”
2This is common in the C and D configurations of the VLA.
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simply corrected, and are most important to imaging of large fields. Given that observations
affected by shadowing are almost always observations of large objects, the safest procedure
is to delete all affected data. Crosstalk effects are not correctable, and afflicted data must
be deleted.

8.3. Strong sources in the sidelobes of the antennas.

The presence of very strong sources in the sidelobes of the antenna beam can signif-
icantly affect the observations. This effect is most notable in observations taken near the
‘Big Three’, the Sun, Cassiopeia A, and Cygnus A, especially at lower frequencies. The use
of wide bandwidths is effective in suppressing this type of interference—however, spectral
line observations taken in daytime at wavelengths longer than 10 cm will nearly always
show the effect of solar contamination.

8.4. Identification and deletion of bad data.

The principal difficulty is in identifying the data which should be deleted. This is best
accomplished by examining the record-to-record consistency of the visibility amplitudes,
since jumps on this timescale cannot occur in good data, unless the source is time-variable
on this scale (e.g., solar and stellar flares). Various schemes have been devised to list data
for quick perusal; their effectual use is a matter of experience. A useful way to spot problems
is to examine the r.m.s. statistics of individual correlators for each scan, and from scan to
scan. A single discrepant value will greatly increase the r.m.s. value. Perusal of matrix
listings of this quantity helps to quickly identify questionable correlators, whose data can
then be listed for detailed editing. Another commonly used method is the baseline-time
display, showing visibility data on a TV monitor. Unusual values can quickly be identified.

Further details on calibration techniques can be found in Lectures 9 and 11.
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5. Imaging
RICHARD A. SRAMEK AND FREDERIC R. SCHWAB

1. FOURIER TRANSFORM IMAGING

A fundamental result of Lectures 1 and 2 was the existence of a Fourier transform (FT)
relationship between the sky brightness I, the primary beam pattern A, and the visibility
V observed with an interferometer. From Lecture 2 (Eq. 2-27),

©0o ©0o
A(l,m)I(l,m)= / V (u,v)e?@H4vm) dy dy (5-1)

This simple relation holds if (a) |22 b- (s —8¢)| < 1 and (b) |w(i? + m?)| <« 1. These
conditions are met whenever the radiation to which the interferometer pairs respond origi-
nates in a suitably small (and confined) region of sky. Since the correction for the primary
beam can be made trivially at the final stage of data processing! (as discussed in Lecture
1, Sec. 4.4), we shall use I(I,m) to denote the modified sky brightness, A(l,m)I(l, m).

V is complex-valued and, after the usual calibration steps (see Lecture 4), is reckoned
in units of flux density (say, Wm~2Hz~!), while I has units of surface brightness (flux
density per unit of solid angle). A standard unit for I is Jy/beam area; sometimes Jy
per square arc second is used instead. The units are determined by the normalization of
Equation 5-1.

Equation 5-1 is used to obtain an estimate of the modified sky brightness from the
observed visibilities, recorded at u-v points (ux,vx), k = 1,...,M. In practice, M may
range from ten to a few hundred with a two element interferometer, to over a million with a
multi-element array like the VLA. With M small, model fitting is feasible—and sometimes
useful (see Lecture 14). But for large M the usual method of estimating I is via the
discrete Fourier transform (the DFT), because extremely efficient algorithms are known for
numerical evaluation of DFT’s.

The topics of some of the Lectures to follow also fall under the broad category of
‘imaging’. But the discussion here is restricted to ‘simple-minded’ methods of estimating
the sky brightness: that is, directly approximating the right-hand side of Equation 5-1, via
only linear operations. The so-called “dirty image” that results is a discrete approximation
to I?, where (from Lecture 1, Eq. 1-10)

(- -] (-]
IP(l,m) = / / S(u, v)V'(u, v)e2™itom) gy dy (5-2)
—oco0 J/—o0

Here, S denotes the u-v sampling function and V'’ the observed visibility; the prime indicates
that the visibility data are noise-corrupted measurements. (For conciseness, I? has been
left unprimed, but it too is noise-corrupted whenever V is.)

1This is assuming that 4 has been carefully measured over a large enough region in (I,m). Wide-field
imaging, in cases in which a source covers, say, a larger region than the central lobe of the primary beam, is
an especial problem. Antennas with azimuth-elevation mounts (as at the VLA) present a problem because
the primary beam patterns rotate on the sky, as functions of parallactic angle. See Lecture 4.
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1.1. The ‘direct Fourier transform’ and the FFT.

Either of two methods is commonly used to numerically approximate the Fourier trans-
form in Equation 5-2. The first, called the ‘direct Fourier transform’ method,? approximates
IP(1,m) by brute-force evaluation of the sum

M
1 ]
__ﬁ E :V'(uk, ”k)CZm(u,‘t-t-w,m) . (5__3)
k=1

If this ‘direct Fourier transform’ is evaluated at every point of an N x N grid, the number of
real multiplications required is 4M N? (the number is halved, though, assuming Hermitian
data). In practice M is usually of the same order as N2, so the number of multiplications
goes roughly as N4. The number of sine and cosine evaluations required is also O(N*), as
is the number of additions/subtractions.

The second method requires interpolating the data onto a rectangular grid, so that
a fast Fourier transform (FFT) algorithm can be used. The process of interpolation is
referred to as gridding. (Gridding may require sorting the data into order of decreasing
|u] or decreasing |v|.) The number of elementary arithmetic operations required by the
technique most often used for gridding is O(M). The number of such operations required
by an FFT algorithm (say, the Cooley-Tukey algorithm) is only a few times N2?log, N —
not O(N*)! This saves much computing time for large databases, and large N especially,
if an economical method of interpolation is used. However, for making small images (i.e.,
for N small) from small databases (M small), the ‘direct Fourier transform’ may be faster
than the combination of gridding and FFT.

In the following Sections we first discuss weighting and selection of u-v data and how
it affects the resulting images. This applies no matter how the Fourier transform is ap-
proximated. Then we touch upon the problems that are introduced by gridding the data
to permit use of the FFT—the problems of aliasing and correction for gridding.

2. THE SAMPLING FUNCTION, AND WEIGHTING THE VISIBILITY DATA

The sampling function S and its Fourier transform, the synthesized beam B, were
introduced in Lecture 1. In practice, the data are variously weighted, according to their
reliability and to control the shape of the synthesized beam.

2.1. The sampling function.
S is a ‘generalized function’, or ‘distribution’, which may be expressed in terms of the
two-dimensional Dirac delta function, or ‘6-distribution’,

M
S(u,v) = Z&(u — Uk, v — vg). (54)
k=1

2This choice of terminology is unfortunate. The natural abbreviation for the term—‘DFT’—is used al-
most universally (by everyone except radio astronomers) to stand for something else: the ‘discrete Fourier
transform’. For example, the 2-D discrete FT of an M x N matrix (z;;) is the M x N matrix (yx2) given

by M N
Yk = Z (""‘P-x)(h-x)/u Z,",z--'(c—x)u-x)/u) .

p=1 q=1

The major distinction between the two usages is that in one case the data are regularly spaced, and in the
other they are not.
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It is useful to introduce a second generalized function, called the sampled visibility function
or, alternatively, the u-v measurement distribution,!

M
VS(u,v)= E 6(u — ug, v — vi)V'(ug, vg) . (5-5)
k=1

That is, VS = SV'. Let F denote the Fourier transform operator. Equation 5-2 can be
rewritten
I? = FVS = F(SV'). (5-6)

By the convolution theorem, which says that the Fourier transform of a product of functions
is the convolution of their FT’s (see, e.g., Bracewell 1978),

IP =FS+FV', (5-7)

where * denotes convolution. For a point source of unit strength, centered at position
(1o, mo), [V'(u,v)| =1, and FV' is the (shifted) Dirac é-function: §(I — lg, m — mg). So the
point source response of the array, i.e., the synthesized beam, is given by B=FS *§ = FS.
Equation 5-7 is the familiar result (Lecture 1, Eq. 1-11) that the observed brightness is the
true brightness convolved with this ‘beam’.

It should be apparent that the so-called ‘direct Fourier transform’, as defined by Ex-
pression 5-3, is ezactly IP. That is to say, that—assuming §-function sampling— I2(l,m),
as defined by Equation 5-2, is given exactly by a discrete surnmation, Expression 5-3, and
that Equation 5-7 holds for the ‘direct Fourier transform’ method (an analogous relation is
given below for the FFT method). Of course, a computed ‘direct Fourier transform’ image
is indeed an approximation, but only in the sense that it is inevitably a discretely sampled
version of I? and that the sums are computed in finite precision arithmetic.

2.2. Weighting functions for control of the beam shape.
In analogy to Equation 54, a weighted sampling function, or weighted sampling distri-
bution, can be written as

M
W(u,v) = Z Ry Ty Db(u — ug,v — vg) . (5-8)
k=1

And, in analogy to Equation 5-5, one can define a weighted, sampled visibility function, or
weighted and sampled measurement distribution, VW according to VW = WV, or, explicitly,

M
Vw(u, v) = Z R,,T,,D,,&(u — U,V — vk)V'(uk, vk) . (5—9)
k=1

The coefficients R, T, and D, are weights assigned the visibility points. These data
points may represent time-averages of visibility measurements spaced along the loci of the
interferometer u-v tracks. Ry is a weight that indicates the reliability of the kth visibility

INote that the visibility measurements are not, in actuality, point samples of the inverse Fourier transform
of the modified sky brightness AI, but that instead they represent local averages of it. Time- and frequency-
averaging, which are discussed in Lecture 2, are the dominant averaging effects. One should try to choose
observing parameters (integration time and bandwidth) that make relatively safe our assumption here about
é-function sampling. This matter is further discussed in Lectures 8 and 16.
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Figure 5-1. A Gaussian u-v taper with dispersion o =1 km.

datum. It may depend on the amount of integration time, the system temperature, and the
bandwidth used for that data point. There is no control of Ry in the image formation, so
no further mention is made of it here.

The density weight D; and the taper T) can be specified in many Fourier trans-
form imaging programs, to ‘fine-tune’ the beam shape. If S were a smooth, well-behaved
function—say, a Gaussian—then B would have no sidelobes, just smooth ‘wings’. In prac-
tice, S is a linear combination of many §-functions, often with gaps in the u-v coverage
corresponding to missing interferometer spacings. There is always a finite limit to the ex-
tent of the u-v coverage, corresponding to the largest (projected) spacing of interferometer
elements. In addition, for many arrays more data points fall in the inner region of the u-v
plane than fall further out. This tends to give higher weight to the low spatial frequencies.
The natural sampling may impair effective deconvolution or mask interesting features of I.

The D) and the T are used to control, to some extent, the beam shape. The T} are
used to weight down the data at the outer edge of the u-v coverage, and thus to suppress
small scale sidelobes and increase the beamwidth. The D, are used to offset the high
concentration of u-v tracks near the center, and to lessen the sidelobes caused by gaps in
the coverage; i.e., to simulate more uniform u-v coverage. We shall discuss these forms of
weighting separately.

2.2.1. The tapering function. The T} are specified by a smooth function T: T = T(uy, vi).
T is usually separable, so that T'(u,v) = Ty(u)T3(v); and often it is a radial function (i.e.,
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Figure 5—2. The effect of a Gaussian taper on the point source response of a VLA snapshot in the A
configuration at 20 cm wavelength. As a narrower Gaussian taper (i.e., a heavier tapering) is applied, the
half-power width of the point spread function increases and the inner sidelobes are reduced.

a function with circular symmetry): Ty = T(rx) where ry = \/ui + vz. Although functions
whose radial profiles follow a power-law or powers of a cosine are occasionally used, the
most prevalent form is the Gaussian. The dispersion, or the half-width at half amplitude,
or the half-width at 0.30 amplitude are used in different data reduction programs to specify
the characteristic width (or widths) of T (see Fig. 5-1).

For a Gaussian taper, T(r) = exp(—r?/20?), the half-power beamwidth (i.e., the
width of the synthesized beam, measured between half-amplitude points) is fyppw =
0.37/0 with @ in radians and o in wavelengths. Translated into common units, fgppw =
0.77\(cm)/o(km) arc-seconds. This holds only for a densely sampled Gaussian that is not
truncated by the edge of the u-v coverage. When the taper is negligible at the edge of the
u-v coverage (assuming dense coverage), one can use a filled circular aperture approxima-
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tion, for which fgpsw = 2.0A(cm)/a(km) arc-seconds, where a is the radius of the aperture.
Real-life observational geometries and u-v coverages often produce larger fgppw and, fre-
quently, elongated beams. Examples of the VLA point source response with different u-v
tapers are shown in Figure 5-2.

Instead of de-emphasizing data near the outer boundary of the u-v coverage, it is
sometimes desirable to downweight the data near « = v = 0. An undersampled large scale
emission region may introduce large undulations in image intensity that are hard to remove.
These can present a problem for detecting a weak point source embedded within a region
containing extended emission. Minimum u-v limits and other forms of downweighting are
often used to diminish the effect of these low spatial frequency data points.

2.2.2. The density weighting function. The density weighting function can be used to
compensate for the clumping of data in the u-v plane by weighting by the reciprocal of the
local data density. Two choices for this weighting are commonly provided:

D=1, called natural weighting,

and D= called uniform weighting,

1
N,(k)’
where N,(k) is the number of data points within a symmetric region of the u-v plane, of
characteristic width s, centered on the kth data point. (8 might be the radius of a circle or
the width of a square.) In many Fourier transform imaging programs s is a free parameter
selected by the user.

Natural weighting, with all points treated alike, gives the best signal-to-noise ratio for
detecting weak sources. However, since the u-v tracks tend to spend more time per unit
area near the u-v origin, natural weighting emphasizes the data from the short spacings, and
tends to produce a beam with a broad, low-level plateau. This latter feature is especially
undesirable when imaging sources with both large scale and small scale structure.

With uniform weighting, a common choice for N, is to count all the points that lie
within a rectangular block of grid cells in the neighborhood of the kth datum (gridding is
discussed later).! This produces a beam specified largely by the tapering function T.

Sometimes, especially in the VLA “snapshot” mode of observing (see Lecture 16),
uniform weighting may not be ‘uniform’ enough. Although all cells have equal weight, the
filled cells are still concentrated toward the center and along the arms of the VLA “Y”.
At the further expense of signal-to-noise ratio, the size parameter s can be increased. This
“super uniform weighting” gives lightly sampled, isolated cells weights comparable to those
given cells in well-sampled parts of the plane. The result is again a beam shape controlled
more by the tapering function and less by the arrangement of the sampled visibilities.
Examples of the VLA point source response obtained with various weighting functions are
shown in Figure 5-3.

3. GRIDDING THE VISIBILITY DATA

To take advantage of the extreme efficiency of the FFT algorithm, visibility values
must be assigned to a regular, rectangular matrix or ‘grid’, usually with a power-of-two
number of points along each side. Since the observed data seldom lie on such a grid, some
procedure (an interpolation procedure comes most readily to mind) must be used to assign

1In the AIPS implementation, these blocks are called “uniform weight boxes”.
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Figure 5-8. The effect of different weighting functions on a VLA “snapshot® image of a point source.

visibility values at the grid points, based on the observed values.? There are many ways
to achieve this interpolation (see, e.g., Thompson and Bracewell 1974), but with quasi-
randomly placed observations a convolutional procedure in the u-v plane leads to an image
with predictable distortions and to results that are easy to visualize. Convolution is not,
in fact, a pure interpolation procedure, since it combines smoothing, or averaging, with
interpolation. This should not be viewed as undesirable—given that there often are many
noisy, possibly discrepant, data points in the neighborhood of a given grid point.

3Some special array geometries (e.g., “T™’s and Crosses, with elements aligned linearly N-S and E-W) can
provide regularly spaced data. See, for example, the description of the Clark Lake array by Erickson et al.
(1982). The assumption (mentioned below) of a sufficiently large number of data points in the neighborhood
of each filled ‘cell’ is not required. However aliasing problems persist, because of the regular sampling.
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3.1. Gridding by convolution.

The idea is to convolve the weighted, sampled measurement distribution V¥ with some
suitably chosen function C, and to sample this convolution at the center of each ‘cell’ of
the grid. For economy’s sake—and because it seems reasonable for the value assigned at a
given grid point to equal some local average of the measurements— C, in practice, is always
taken to be identically zero outside some small, bounded region Ac. Since V¥ is a linear
combination of M §-functions, this convolution C*V% evaluated at the grid point (u,, v.),
is given by

M
Z C(u, — ug,ve — vi)V¥W (up, vi) . (5-10)
k=1
Note that, since the region Ac is quite small in area, there are generally many fewer than
M nonzero terms in this sum.

Note also that Expression 5-10 does not, in fact, represent a local average of the
measurements in the neighborhood of (u,,v.). For that, some sort of normalization would
be required—say, multiplication by the area of A¢, followed by division by the number of
data points whose shifted coordinates (4, — ux, v, — vx) lie within the region A¢ (and one
would want C to integrate to unity). When this particular form of normalization is used, the
normalized sum (ignoring weighting) approaches the non-discrete, integral convolution C+V
evaluated at (u,, v.) as the number of measurements increases without bound, provided that
the measurements in the neighborhood of (u.,v.) are uniformly distributed, and provided
that the noise in V' is well-behaved. In practice, this straightforward form of normalization
is not always incorporated in imaging—so the matter of normalization becomes intertwined
with that of ‘density weighting’, discussed above.

The operation of sampling C * V¥ at all points of the grid may be represented by the
equation

VE=R(C*xVv¥)=R(Cx(WV"), (5-11)
where (as usual) multiplication is indicated by juxtaposition and where R, a ‘bed of nails’
resampling function, is given in terms of Bracewell’s ‘sha’ function (denoted LL!) by

o o
R(u,v) = LWi(u/Au,v/Av)= Y Y 8(j - u/Au,k—v/Av). (5-12)
J=—00 k=—co

Here, Au and Av define the cell size—i.e., the separation between grid points. This oper-
ation is called resampling (hence the R-notation) because, as you recall, the interferometer
array earlier provided the samples embodied in V5 and V¥. Now, since VE is a linear
combination of regularly spaced 6-functions, a matrix of samples of its Fourier transform
FVE can be obtained by a discrete Fourier transform. Thus FVE can be calculated by the
FFT algorithm.

FVE__after normalization, and after one simple correction—is what you have been
seeking: a “dirty” image—a cheap approximation to I?. Denote FVE by 1P,

Applying the convolution theorem to Equation 5-11, 1P is given by

TP = FR+ [(FC) (FV¥)] = FR + [(FC) (FW + FV")] . (5-13)

(Please refer now to Fig. 54 for a graphical interpretation of Eq. 5-13 and for an illustration
of the operations that are described in the remainder of this Section.) LLI is its own Fourier
transform; R behaves similarly—by the dilation property of the FT (see Sec. 4.1),

(FR)(I, m) = AuAvLL(lAu,mAv) = AuAv i i (7 - lAu, k- mAv). (5-14)

J=—00 k=—o00
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One effect of the resampling is to make 12 a periodic function of I and m, of period 1/Au
in l and period 1/Av in m. Another effect, called aliasing, is also introduced. It, too, arises
because of the convolution with the scaled sha function FR (more on this later, in Sec. 3-2).

The FFT algorithm generates one period of (a discrete version of) IP. To image a
rectangular region of width N;A#; radians in [ and N,,A#d,, in m, one chooses grid spacings
satisfying NjAu = 1/A6; and N,,Av = 1/A0,, wavelengths. An N,, X N; FFT yields the
discretely sampled version of 1. Let P denote the region over which 12 is computed—i.e.,
P, which is called the primary field of view, is given by |l| < NjA8;/2, |[m| < N, Ab,y, /2.

The net effect of the gridding convolution is to multiply the sky brightness by a function
¢(l,m), the FT of the convolving function C (i.e., ¢ = FC). The tapering function T,
introduced earlier for control of the beam shape, has the effect of a convolution in the
image domain.

Figure 5—4 (pp. 76-77). A graphical illustration of the steps in the imaging process is shown in this one-
dimensional example. At the top, in panels (a) and (b), a model source and its visibility are displayed
side-by-side; the results of successive imaging operations are displayed vertically. The image domain is
shown on the left, and the visibility domain on the right. Horizontally opposed panels represent Fourier
transform pairs. The units on the vertical axes were chosen arbitrarily—i.e., we have not bothered with
normalisation. The horizontal axes are in radians for the image domain plots, at left; the baselines are
expressed in wavelengths for the visibility domain plots, at right.

The model source, shown in panel (a), is the sum of a Gaussian-shaped extended source and four
symmetrically placed point sources. The total flux density of the Gaussian is 1.5 times the sum of the
fluxes in the point sources. This symmetry was chosen to ensure that the visibility function, shown in panel
(b), is real-valued and even, allowing a simpler display. Panel (d) shows the telescope transfer function,
or sampling function S, which includes a central “hole®. We have chosen a smooth function for simplicity,
but one should note that no array would in fact produce a smooth sampling function. In reality, S is
a sea of closely- and irregularly-spaced §-functions, as in Equation 5-4. The triangular sampling density
was chosen to mimic the fall-off in the density of samples with increasing spacing. The telescope beam B
corresponding to (d) is shown in panel (¢). The data available for imaging are shown in panel (f); this
product of the true visibility function and the sampling function corresponds to V' 5, as defined by Equation
5-5. The image which a direct transformation of (f) would yield is shown in panel (e). This image is equal
to the convolution of the beam (c) with the true sky brightness (a). This image shows a large amplitude
oscillation, reaching a negative peak centered on the position of the extended source. This effect, which
is of much larger amplitude than the oscillation seen in (c), is due to the missing central spacings in the
u-v sampling and to the fact that the visibility of an extended source is relatively highly concentrated near
u = v = 0. With sufficient computing resources (mammoth resources would often be required) ,, one might
use the ‘direct Fourier transform’ method of Section 1.1; (e) is the image that would result.

Extra steps are required to make use of the FFT: First, the data are convolved with some suitably
chosen function, and then they are resampled over a regularly-spaced grid (in practice the convolution
is evaluated only at the grid points). For illustration, a simple, and crude, convolution function C was
employed, as shown in (h). The sharp drop-off in C creates large, oscillating wings in its Fourier transform,
shown in (g) (the reciprocal of the ‘grid-correction function’). The data, after convolution, are shown in
panel (§). If a (continuous) Fourier transform were applied at this stage, the result would appear as in panel
(i). The important effect to note is that the outermost point sources have been inverted in amplitude. This
occurs because the convolution function that we have chosen is too wide. The inner point sources have been
slightly reduced in amplitude, though not inverted in sign. As the FFT requires regularly spaced data, the
data in (j) must be sampled. The (re-)sampling function R is shown in panel (1), and its transform, the
replication function, in panel (k). The resampled, convolved visibility is shown in panel (n). These are the
data that the FFT actually sees. The FT of this is the image shown in panel (m); it has been replicated at
the various points shown in panel (k). Notice that aliases of the outermost point sources appear just outside
the positions of the innermost point sources. This aliasing occurs because the resampling function, shown
in panel (1), undersamples (i.e., takes fewer than 2 samples per cycle) of the transform of the outermost
point sources. The final operation is correcting for the effect of the convolution. This is done by dividing
the image by the Fourier transform of the convolution function. The result is shown in panel (o). This is
the end product, the “dirty image® that is supplied to the deconvolution programs.
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An image representing the point source response of the array, or the ‘dirty beam’ B?,
can be obtained by setting all the measurements V’(u, vi) to unity and following the steps
outlined above. Denote the image so obtained by BP.

Normally, TP and BP are corrected for the effect of the gridding convolution by point-
wise division by ¢: The so-called “grid-corrected” image is given by

~ 12(1,m)
D —_ L —
I7(l,m)= ) (5-15)
and the “grid-corrected” beam by
~ BP(l,m)
Dl m)= — 12/ _
Bc ( ’ ) c(l,m) (5 16)

The commonly used term “grid corrected” is, in a way, a misnomer, since one is actually
correcting for the effect of the convolution function C. The grid correction is not an exact
correction, except in the limit of a large number of well-distributed visibility measurements.
It also is not exact due to the presence of R in Equation 5-11 and FR in Equation 5-13. It
could be so only if ¢(I, m) were identically zero outside of the region being imaged; this is
impossible because C is confined to a bounded region Ac.}

Finally, T;D and ﬁf both are normalized by a scaling factor selected so that the peak
of BP is of unit flux density. One may as well not alter the notation to reflect this, since it
is a trivial operation.

If ¢(I,m) tends sufficiently rapidly to zero outside P, so that the resampling can be
ignored, and if the u-v samples are well enough distributed for the gridding correction to
be approximately valid, then ZD is a good approximation to IP—that is, Equation 5-13
becomes .

I? = FW s FV', (5-17)

—and then the usual convolution relation between I?, B, and I is approximately valid
with 72 and BP substituted for 72 and B, respectively. Note, however, that B is usually
computed only over a region of the same dimensions as the image TcD . For this reason,
the deconvolution algorithms (described in Lecture 7) usually operate just on a region with
one-quarter the area of the input image.

3.2. Aliasing.

Due to the presence of FR in Equation 5-13 and to the fact that ¢ is not identically
zero outside the primary field of view, parts of the sky brightness that lie outside P are
aliased, or ‘folded back’, into P. Undersampling, and the truncation of the sampling at the
boundaries of the u-v coverage, are the root causes of aliasing. (If the sky brightness I has
features extending over a region of width €2; in I and width ,, in m, then its visibility
function has been undersampled if the visibility samples are separated by more than 1/€; in
u and 1/0,, in v.) The amplitude of an aliased response from position (I, m) is determined
by |¢(l,m)|. The simplest way to tell whether a feature is aliased or authentic is to calculate
images with different cell sizes A#; an aliased feature then appears to move, while a real one

1The FT of any nontrivial (i.e., nonzero) function which is confined to a bounded region has features
extending to infinity. By a theorem of Paley and Wiener (see, e.g., Dym and McKean 1972) the FT of such
a function is extremely well-behaved, in the sense that it can be analytically extended to an entire function
in the complex domain (i.e., in the case of 2 dimensions, from R2 to C2). In particular, the FT cannot
vanish over any open set (this is why the synthesized beam has sidelobes that “never go away®).
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stays the same angular distance from the image center. Additionally, an image covering the
full main lobe of the primary beam may quickly reveal whether there is an aliasing problem
in an image of a smaller region.

Aliasing of sources that lie outside the primary field of view is only part of the problem.
Although it may be possible to obtain visibility samples that are closely enough spaced to
avoid undersampling over the sampled region of the u-v plane, the finite physical size of the
array sets a limit on how far the sampling can extend. For this reason, any authentic feature
within P has sidelobes extending outside the image. These sidelobes are also aliased into
P, effectively raising the background variance and resulting in a beam shape that depends
on position. If, for example, the visibility function is well sampled over a square region
of the u-v plane but no samples are obtained outside that region, then (assuming uniform
weighting) the sidelobes in I are precisely those of Gibbs’ phenomenon, discussed in
Lecture 2.

3.3. Choice of a gridding convolution function.

The best ways to avoid aliasing problems are (a) to make the image large enough that
there are no sources of interest near the edges of the image, (b) to avoid undersampling, and
(c) to use a gridding convolution function C whose Fourier transform ¢ drops off very rapidly
beyond the edge of the image. Desideratum (c) favors gridding convolution functions that
are not highly confined in the u-v plane. But, in practice, computing time restricts one’s
choice of C to functions that vanish outside a small region, typically six or eight u-v grid
cells across. A compromise must be struck between alias rejection and computing time.

C is always taken to be real and even. And, since C is usually separable—i.e., C(u,v) =
C1(u)C3(v) —we shall continue the discussion in just one dimension. Typical choices for C
are:

(1) a “pillbox” function,

(2) a truncated exponential,

(3) a truncated sinc function (sinc z = #2XZ),

(4) an exponential multiplied by a truncated sinc function, and
(5) a truncated spheroidal function.

Each is truncated to an interval of width m grid cells, so that C(u) = 0 for |u| > mAu/2;
thus O(Mm?) arithmetic operations are required for gridding. These functions are described

below; for more discussion see Schwab (1978):
. _J1,  |ul <mAu/2,

(1) Pillboz. C(u) = 0. otherwise.
equivalent to simply summing the data in each cell. Calculation of these sums is
fast, but the alias rejection is the worst of the five functions considered here. c is

a scaled sinc function. o

(2) Ezponential. C(u) = exp (— (w_ltj—A|u> ) Typically m =6, w =1, and a = 2.
That is, a truncated Gaussian is often used, in which case ¢ can be expressed in
terms of the erroni fux/xcl:ionj
. sin(ru/wAu
(3) Sinc. C(u) = —;u./_wA—u—-
of the sine integral. If m is allowed to increase, ¢ approaches a step function that is

constant over P and zero outside. This is the intuitive justification for considering
the use of this function, that the FT of a unit step function truncated at +} is
the sinc function.

For m = 1, convolution with this C is

. Typically m = 6, w = 1. c can be expressed in terms
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L. . _ oyl \*\ sin(ru/wiAu) . 1
(4) Ezponential times sinc. C(u) = exp ( (wl Au Py Sy o Typically

m = 6, w; = 2.52, w; = 1.55, a = 2; i.e., a truncated, Gaussian-tapered sinc
function is often used. c can easily be computed by numerical quadrature, but it
lacks a closed-form expression.

(5) Spheroidal functions. C(u) = |1 — n?(u)|*¢ao(xm/2,n(u)), with a0 a O-order
spheroidal function (Stratton 1935), n(u) = 2u/mAu, and @ > —1. For a = 0
this is the O-order ‘prolate spheroidal wave function’, which is the optimal C
(among all square-integrable functions of width m grid cells) in that the en-
ergy concentration ratio [, |¢(!)|? d! / 22 le(1)|? dl is maximized. The other a0
are optimal in the sense of maximizing a weighted concentration ratio: for given
a, [pw(D)|c(l)]?dl / I, w(l)|c()|?dl is maximized, where w(l) = |1 — 2lAu|®.
Choosing a > O gives higher alias rejection near the center of the image, at the
expense of alias rejection near the edges. tqo is its own FT, in the sense that if
you truncate it as done here, and then take the FT, what you get back is ¢qo.
Similarly, the other ¢,¢ are finite Fourier self-transforms, in the sense that if you
so truncate one, weight it, and transform it, what you get back is ¥ ,0. Y0 is used

at the VLA, with m = 6 and a = 1 being typical. See Schwab (1984) for further
discussion and additional references.

Figure 5-5 shows the Fourier transforms of two typical gridding convolution functions,
normalized to unity at ! = 0. The abscissa on this plot is in units of image half-widths,
n = 2lAu, so that n = *1 at the image edges. The image response is suppressed at the
edge for both functions, however the exp X sinc function is flatter inside P, and drops much
faster past the image edge. The aliased response can, of course, be negative, producing an
apparent “hole” in the image. The plots in Figure 5-6 compare the pillbox function and
the Gaussian-tapered sinc function with several spheroidal functions. The quantity of most
direct importance is the ratio of the intensity of an aliased response to the intensity the
feature would have if it actually lay within the primary field of view P, at the position of
its alias: if ' denotes the position within P at which the aliased response of a source at
position n appears, then this ratio is given by ¢(n) = |¢({(n))/<({(n"))|- (And n’ is given by
7' = ((n + 1) mod 2) — 1; it is useful to sketch a plot to convince oneself of this.) Schwab
(1978) and Greisen (1979) show plots of ¢ for these convolving functions and for many
others.

The pillbox, exponential, and sinc functions do not give as effective alias rejection as
the exp x sinc or the spheroidal. The exp x sinc has somewhat smaller corrections and,
thus smaller errors (due to round-off noise and to violation of the assumptions that make
the grid correction valid), near the image edges, while the spheroidal has better rejection
beyond the image edge (Schwab 1984).

Remember that the convolution functions suppress only aliased responses. Sidelobes
which legitimately fall within the primary field of view, whether from sources inside or
outside P, are not suppressed (see Fig. 5-7). With alias suppression of 102 to 103, at two or
three image half-widths, it is these sidelobes which may cause the dominant spurious image
features and impair effective deconvolution.

1For a gridding convolution function of this particular parametric form, these values of the characteristic
widths wy and wg are an optimal choice, in the sense described below in the discussion of t¥oo.
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Figure 5-8. The response to a source, as a function of distance from the image center, for two typical u-v
convolving functions.

4. ADDITIONAL TOPICS

4.1. Translating, rotating, and stretching images.

The Fourier transform possesses three basic symmetry properties that are useful in
radio interferometric imaging. The first important property is the behavior of the Fourier
transform with respect to translation—that is, with respect to a shift of origin: namely, if
you shift a function, i.e., replace f(u) by f(u — Au), and take the FT you get the same
result as if you had first taken the FT and then multiplied by e?***"A® (here x denotes
the variable in the transform domain). Similarly, if you want a shift of origin Ax in the
transform domain, all you need do is multiply, before transforming, by a factor e—3*2-4x,
Thus, in imaging, all that is required to achieve a shift of origin in the image is to multiply
the visibilities by the appropriate complex exponentials before transforming.

The second important property is that the Fourier transform commutes with rotations;
that is, if you take the FT and then rotate the coordinate system in the transform domain,
you get the same result as if you had first rotated the coordinate system and then taken the
FT. Thus, to ‘turn an image around’, all that you need do is rotate the u-v coordinates of
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Figure 5—6. For some typical gridding convolution functions C, plots of the absolute value of the Fourier
transform of C. (a) The spheroidal function ¥10, for m = 6, compared with the pillbox function (m = 1);
(b) the “prolate spheroidal wave function® yoo, m = 6; (c) an optimised Gaussian-tapered sinc function,
m = 6; (d) the spheroidal function ¥_ joom= 6. Adapted from Schwab (1984).

the visibility data. (It is easy to see why the FT has this property: the inner product u-xin
the exponential kernel of the FT is invariant under rotation.) At the VLA, the visibility u-v
coordinates are routinely rotated to correct the data for differential precession—i.e., to put
the data into the coordinate reference frame of a standard epoch, say, J1950 or J2000. Data
taken at two different epochs, say a year apart, need this correction for differential precession
before they can be sensibly combined or compared; routine correction to a standard epoch
automatically rectifies this problem. Additionally, it is sometimes convenient to rotate the
coordinate system so that features in a source have a particular alignment in an image. For
an elongated source, this can reduce the data storage requirements (by reducing the number
of pixels needed to represent the source by a computed, discrete image) and therefore
aid during deconvolution (see Lecture 7) by reducing the required number of arithmetic
operations.

The third basic symmetry property of the FT is that it ant:-commutes with dilations.
That is, if you ‘stretch’ a function linearly and isotropically, then its FT ‘shrinks’ propor-
tionately. (That is, the FT of g(u) = f(au) is given by (Fg)(x) = a~"(Ff)(x/a). The
multiplicative constant a—™ depends on the dimensionality n.) Or, if you linearly stretch
a function in just one coordinate, then its FT ‘shrinks’ proportionately, but in only one of
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Figure 5—7. The effects of aliasing: (a) a point source at the field center; (b) the same source near the
image edge; (c) the source below the lower image edge appears as an aliased image at the upper image
edge, with pillbox convolution; (d) with exp X sinc convolution, the aliased source is greatly attenuated,

but the sidelobe response remains the same.

the coordinate directions. This property is the reason that, for a fixed array geometry, the
spatial resolution increases (i.e., the characteristic width of the synthesized beam beam de-
creases) with observing frequency—the reason that as the u-v coverage expands, the beam

shrinks proportionately.

Following Bracewell (1978), the shift property is sometimes called the shift theorem,

and the dilation property the similarity

theorem.

4.2. Practical details of implementation.

Most Fourier transform imaging programs do not work quite as described above. Often
the tapering, introduced in Equation 5-8, and specified by T'(u, v), is applied after gridding.
This would appear to make only a minute difference. But, in the same sense in which it
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is incorrect to ignore resampling to justify the grid correction, it is also incorrect to ignore
the convolution with FT', which, if inserted into Equation 5-13, would now appear outside
the square brackets.

For economy, Fourier transform imaging programs often do not attempt to evaluate
the gridding convolution function very accurately, but instead use a step function (tabular)
approximation, with steps spaced at increments of, typically, Au/100. This introduces
another (not very serious) ‘replication’ effect like that due to FR, but one with a very long
period, 100/Au. The grid correction given by Equation 5-15 should be based now on the
FT of the step function approximation to C rather than on the FT of C itself. For analysis,
see Greisen (1979). (Schwab (1984) gives cheap and accurate rational approximations to
the spheroidal functions; the step function approximation is unnecessary.)

4.3. Non-coplanar baselines.

In Equation 5-1 the visibility samples are expressed as a function of two variables, u
and v, rather than as a function of (u, v, w). As shown in Section 6 of Lecture 2, Equation
5-1 is strictly valid whenever the visibility measurements are confined to a plane, as they
would be if obtained with an interferometer array whose elements are aligned along an east—
west line; and, again as shown in Lecture 2, this relation is approximately valid when I(l, m)
is confined to a small region of sky—that is, when our condition (b) holds, |w(I2+m?)| <« 1.
In wide field imaging with non-coplanar baselines, condition (b) is often violated.

Recall from Lecture 2 (Eq. 2-21) the relation

This can be rewritten as
V(u,v, w)e™ 3" =

[2[7 [ Amn) - ittt daman.(5-19)

Now, by sampling V', weighting by e~3*** and by the Fourier kernel, and integrating over
(u, v, w), one obtains an analog of Equation 5-2,
*P(l,m,n) = / / / S(u, v, w)V(u,v,w)e 2*iveiri(ultomtwn) gy gy dw, (5-20)

which (cf. Eq. 5-19) is equal to a three-dimensional convolution—the convolution of

3l,m,n) = ‘:/(—lf_—?_{’)i(__'—'ﬂs( -V1i-1p-m?), (5-21)
with o oo roo
B*®(l,m,n) = / / / S(u, v, w)e?slutrvmiwn) gy dy dw . (5-22)

Note that I3 is a distribution confined to the celestial sphere and that B3P is mostly
concentrated near the origin,i.e.,near I=m=n=0.

Either of the methods described earlier for approximating I? can be extended straight-
forwardly to Equation 5-20. In applying the ‘direct Fourier transform’ method, one simply
uses a discrete summation, in analog to Equation 5-3. In the FFT method, w-terms need
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to be inserted into Expression 5-10, defining the gridding operation; a 3-D FFT yields
a three-dimensional discretely sampled image!; and one interpolates this result to obtain
data over a spherical cap, a portion of the surface (I,m,v1 — 2 — m2). Because usually
the importance of the curvature effect is minor and the data cover a small range of w, Ny,
the number of slices required in the w- and n-dimensions, is small—typically eight to six-
teen. At the VLA, such a 3-D imaging capability was designed into the “pipeline” imaging
system, but it has seldom been used.

One additional approach to this problem, involving a combination of mosaicing and
deconvolution, is mentioned below.

5. THE PROBLEM WITH I? —SIDELOBES

An astronomer is seldom satisfied with the approximation to I defined by I D or with
the computed version thereof, I”. This is because of the sidelobes which contaminate I7.
As you have seen, these are due to the finite extent of the u-v coverage and to gaps in the
coverage. Sidelobes from bright features within an image are likely to obscure any fainter
features. The process described here is usually just the first step in obtaining a better
approximation to I. Because the convolution relation ZD = §£ * I, is approximately valid,
this first step provides a starting point for the deconvolution (i.e., sidelobe removal) process
described in Lecture 7. However, in cases of very low signal-to-noise ratio (as might occur in
an observation to determine the detectability of a putative source) one would often choose
not to proceed any further. This is the case, too, in spectral line observing, primarily
because spectral line data reduction is computationally very expensive, and because narrow
bandwidths lead to low signal-to-noise ratios.

In wide field imaging, deconvolution is the real problem in trying to cope with non-
coplanar baselines. Because simple 2-D deconvolution itself is an extremely expensive
operation, there has been little progress to date in obtaining high quality (deconvolved)
images taking proper account of sky curvature and non-coplanar baselines, via any sort
of three-dimensional deconvolution technique (to complement the 3-D imaging techniques
described in Sec. 4-3). Data storage is another problem. Typically, non-coplanar baseline
effects are an important concern in the largest images; but computer storage is often barely
adequate for the number of points, or “pixels”, required in just the /- and m-coordinates.
A crude approach which has yielded some useful results involves mosaicing—constructing
“patchwork” images, each piece computed with the ‘w(n — 1)’-correction appropriate to the
center of the patch. This approach, which is used in the AIPS program MX, combining
linear imaging with deconvolution, is described in Lecture 8. Because sidelobes from a
source in any one patch fall into each of the other patches of the mosaic, the deconvolution
operation must work in parallel on the patches. This necessitates repeated re-gridding of
data.
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6. Sensitivity
PATRICK C. CRANE AND PETER J. NAPIER

1. INTRODUCTION

In this Lecture we analyze the sensitivity of a synthesis array, derive general expressions
for r.m.s. noise levels and evaluate these expressions for the particular case of the VLA. It
is important to note that we will consider only the noise effects of the observed radio source
itself and of additive random noise. By additive noise we mean white, Gaussian noise that
is added to the astronomical signal received by an antenna before cross correlation with
the output from another antenna. The sources of the additive noise are the 3 K microwave
background, the galactic background, thermal noise generated by atmospheric emission,
thermal noise picked up from the ground, thermal noise due to attenuation in the input
microwave feed and waveguide structure, noise from the injected calibration signal and
noise generated in the low-noise receiver itself. Just as the sensitivity of a single-antenna
radio telescope is often not limited by random noise but is determined, rather, by effects
such as confusion and gain instability, there are many effects other than random noise
which limit the sensitivity of a synthesis array. The most important of these effects, which
are not considered here, include errors in calibrating the complex gain of the instrument,
atmospheric amplitude and phase instabilities, effects of sidelobes and confusing sources,
radio frequency interference, DC offsets in the correlators and the distortions caused by a
non-negligible bandwidth. Some of these effects introduce artifacts (e.g., stripes) into the
image while others mimic additive random noise by merely raising the noise level in the
image.

2. DEFINITION OF SYSTEM TEMPERATURE

Figure 6-1 shows a schematic diagram for a two-element, single-multiplier, correlation
interferometer. All of the electronics from the output of the feed horn up to the input to
the multiplier are represented by a single receiver with power gain G and bandwidth Av at
the multiplier input. In a practical interferometer the signal may undergo many frequency
conversions between the feed and the multiplier input, but G and Av are still well-defined
quantities.

For the purpose of analyzing the sensitivity of this simple interferometer, it is useful to
replace the antenna at the input to the receiver with a matched termination having physical
temperature T'. The power P entering the receiver from this termination is given by?

P=kgAvT, (6-1)

where kp is Boltzmann’s constant (1.38 x 10~23 joule K~1).

1Remember that this is an approximation. It is equivalent to the Rayleigh—-Jeans approximation to Planck’s
black-body radiation law, and holds when hv < kpT, where v is the frequency and h is Planck’s constant
(6.63 x 10~ 34 joulesec). The approximation is valid provided that the frequency is not too high and the
temperature is not too low. It is in error by 4% in estimating the noise power available from a 22 GHs
termination at 15 K. For some of the new millimeter-wavelength interferometers it may be necessary to use
the correct Planck equation when analysing and measuring sensitivities. See, for example, Kraus (1966).
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Figure 6-1. Simple block diagram of a two-antenna, single-multiplier, correlation interferometer.

Suppose that the antenna is pointed at a piece of blank sky that contains no astronom-
ical radio sources (other than the 3 K microwave background and the galactic background).
In this case all of the power at either input to the correlator is due to additive noise re-
sulting from phenomena listed in Section 1. Call this power at the correlator input Py.
Then we define the system temperature, T,y,, to be the physical temperature of a matched
termination on the input of the receiver (now assumed to be noiseless) which will produce
Py at the correlator input. That is

Suppose that the antenna now points at a radio source. If G remains constant, the power at
the correlator input will increase to Py + P,, where P, is the additional power collected by
the antenna from the radio source. We define the antenna temperature due to the source,
T,, to be the increase in temperature of a termination on the receiver input needed to
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produce an increase in power of P, at the correlator. That is
kT, AvG = P, . (6-3)

Note that we have defined T,y, to include only the effects of additive noise. Sometimes
Tsys is defined to include the noise due to the radio source under observation, but it will be
convenient in the following analysis to separate T; from T,y,. In most practical situations
this point is not important because T, <« T,y,. It is interesting to break T,,, up into its
component parts:

lel = Tbg + Taky + Tspill + Tioss + Tear + Tex (6"4)
where
Tuys = Total system temperature excluding noise contribution from the observed radio
source,
Tvg = Noise contribution from microwave and galactic backgrounds,
Ty = Noise contributed from atmospheric emission,
Twpin = Noise contribution due to ground radiation scattering into the feed from the sub-

reflector edge, feed legs, dish edge, etc.,
Tioss = Noise contribution due to losses in the feed and input waveguide,

T.a1 = Noise contribution due to injected calibration signal. The VLA noise source has a
50% duty cycle so T, is one-half of the actual calibration value,
T.x = Receiver noise temperature measured at the room temperature input flange to the

receiver, including the contribution from the second and following stages.

Table 6~1 gives typical values at the zenith for these noise contributions for the six VLA
receivers.

Table 6-1.

Noise Contributions in the VLA Receivers
Wavelength Tbg ley Tlpill Tioss Teal Tex Teys
Band K) (X (K (K (K) (K (K
92 cm 3 25 15 7 5 70 125
20 cm 3 3 14 8 2 30 60
6 cm 3 3 7 5 2 30 50
3.6cm 3 3 3 2 2 32 45
2cm 3 8 6 13 6 80 116
1.3 cm 3 17 6 21 7 296 350

For the VLA, the Typ;n and T)o.s contributions are somewhat higher than is usual for low-
noise receivers because of the compromises that were made to have all receivers and feeds
available simultaneously. At 1.3 cm wavelength the T, contribution should decrease to
approximately 100 K when the new cooled preamplifiers are installed.

Several of these terms will vary with the position of the antenna. Obviously, the contri-
bution from the galactic background depends upon the galactic coordinates being observed.
Tspin will change as the orientation of the antenna with respect to the ground varies. More
significantly, at high frequencies the contribution T,xy from atmospheric emission varies
with time and antenna position. Assuming a plane-parallel atmosphere with temperature
Tatm, the dependence of T,y on position is given by

Tsky = Latm (1 g T O E) ’
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where 7 is the zenith attenuation and F is the elevation. Atmospheric attenuation also
reduces the observed antenna temperature T, from the T,, which would be measured outside
the atmosphere by

Ta — Taoe—r csc E .

In this case the quantity of interest is the effective system temperature T.g corrected for
the effect of atmospheric attenuation,

Teﬂ‘ = T.y. e’ e8¢ E .

At the VLA the effects of atmospheric attenuation are most serious at 1.3 cm wavelength
where typical values of r range between 0.03 and 0.17 (Spangler 1982).

3. SENSITIVITY OF A TWO-ANTENNA, SINGLE-MULTIPLIER,
CORRELATION INTERFEROMETER

The two-antenna, single-multiplier, correlation interferometer is the basic element of a
synthesis array, and in this section we consider the sensitivity of this basic element.

Several authors have analyzed the sensitivity of the simple two-antenna interferometer
or the related correlation receiver, including Christiansen and Hogbom (1969), Crane (1982),
Rogers (1968, 1976), Staelin (1974), and Tiuri (1964, 1966). The following derivation follows
that of Crane (1982).

Consider the case in which the interferometer shown in Figure 6-1 is observing an
unpolarized point source of flux density S (Janskys, 1 Jy = 10~2 Wm~2Hz"!). The
antenna temperature of antenna 1 due to the source is given by

=K 1.5' ) (6-5)

where ), is the aperture efficiency of antenna 1 (including the effect of losses) and A, is the
geometrical area of antenna 1. The factor of 2 results from the fact that, since the source
is unpolarized, a single-channel receiver on the antenna can accept only half of the power
from the source. The expression for T,, is the same as Equation 6-5 with the subscript
1 replaced by 2. An important characteristic of the antenna is the sensitivity K = T,/S
(K Jy~!) which, from Equation 6-5, is given by
nA
K= T

This quantity is a measure of the flux-collecting ability of the antenna. Table 6-2 shows
typical values of K for the 25m-diameter shaped-reflector antennas of the VLA; for compar-
ison the value of K for the 100m telescope of the Max-Planck-Institut fiir Radioastronomie
is 1.5 KJy~?, and for the 1000ft telescope of the Arecibo Observatory, between 6 and 15
KJy~!, depending on frequency.

Table 6-2.
Flux-Collecting Ability of VLA Antennas
Wavelength ] K=T,/S
Band (%) (KJy~?)
92 cm 40 0.071
20 cm 51 0.091
6 cm 65 0.116
3.6 cm 65 0.116
2 cm 52 0.093
1.3 cm 43 0.082
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The voltages as functions of time, V (t), at the inputs to the multiplier are given by

Va(t) = $1(8) + nu(2),

Va(t) = S,(t) + naft), (6-6)
where S(t) is the voltage due to the radio source and n(t) is the voltage due to the system
noise. The correlator multiplies V;(t) and V3(t) together and averages the product for
some finite integration time. For this analysis we assume that the source is at the phase
center of the interferometer, that the fringes have been stopped, and that time delays have
been introduced so that S;(t) and S;(t) arrive at the multiplier in time synchronism (see
Lecture 2). In this case, the correlator will produce a DC output resulting from the product
S1(t)S2(t), which corresponds to the desired measure of correlated power. An undesired,
but unavoidable, zero-mean, time-varying output due to the various cross products in the
multiplier will be superimposed on the DC output. To determine the sensitivity of the
instrument, we wish to find the ratio of the DC output to the r.m.s. value of the time-
varying component. Our approach will be to determine the power spectra of the various
products generated in the correlator by using the Wiener-Khinchine theorem (Middleton
1960, p. 405). In this application the theorem states that the power spectrum of the product
produced by the multiplier is equal to the Fourier transform of the autocorrelation function
of the product. The various power spectra will then be integrated over the bandpass of the
integrator to determine the power in the various terms. Several simplifying assumptions
will be made. Assume that both receivers have identical frequency responses and, further,
that G; = G2 = G. Since both the signal and noise are Gaussian and white, the former
assumption implies that the autocorrelation functions of S;(t) and n,(t) will have the same
forms as the autocorrelations of S;(t) and nj(t), respectively.

The autocorrelation function, ¢,,(r), of the signal at input 1 to the multiplier is given

by
¢On (T) = (Slsi) ’ (6—7)

where S; = S,(t), S = Si(t + 7), and the angle brackets are used to denote an expected
value. S;(t) and S;(t) differ only by a multiplicative constant

Sz(t) = \/II;::SI(t) . (6—8)

Note that ¢,, (0), the r.m.s. power contained in Sy(t), is given by
¢6,(0) = GkpT,,Av. (6-9)
The autocorrelation function, ¢y, (7), of the noise is given by

$ni (1) = (n1n}), (6-10)

where n; = n,(t) and n} = n,(t+7). Note that the noise power at input 1 to the multiplier
is given by

¢ﬂ1 (0) = GkBT.yglA" > (6_11)
and that the autocorrelation function of ny(t) differs only by a multiplicative constant from
¢ﬁ1 (T) ’ T

(nand) = 7224, (r). (6-12)

sys,
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Now, the autocorrelation function, ¢,,(7), of the multiplier output is given by
¢m(7) = a® (Vi(t)Va(t)Va(t + r)Va(t + 7)) . (6-13)

Using Equation 6-6

$m(r) = a® ((S1 + n1)(Sz + n2)(S] + n})(S; + nj)), (6-14)

where a is a constant.

Equation 6-14 can be expanded using a relationship from statistics which gives the
expansion of the expectation of the product of four jointly Gaussian random variables
(Davenport and Root 1958)

$m(r) = a*[((S1+ n1)(Sz + n2)) - (5] + n})(S3 + n3))
+{(S1 + n1)(S1 + 1)) - {(S2 + n3)(S3 + n3)) (6-15)
+{(S1+ n1)(Sz + n3)) - {(S2 + n2)(S1 + n1))] .

The required multiplications in Equation 615 can now be carried out simply. Setting
the averages of the products of all uncorrelated voltages to zero, and using Equations 6-7,
6-8, 6-10 and 6-12, Equation 6-15 becomes

K K T,
bn() =" (A0 +22 .00+ (4 T22) bu(dbm ()4 T2202,(0))
8
(6-16)
Applying the Wiener-Khinchine theorem to Equation 6-16 and noting that the Fourier
transform of a product is equal to the convolution of the Fourier transforms, we find that
the power spectrum ®,,(v) of the multiplier output is given by

B,(v) = a? (i}g,,«,,‘(o)a( )+2gt / 8. (o)., (v — o) dx

i (%+ .::’r_'i_) / ~ &, ()@, (v — o) da+ :,l- f ” B, (0)®o,y (v — ) da) ,

—00 sys; J —oo
(6-17)
where §(v) is the unit impulse at v = 0.

The power spectral components of the multiplier output are shown in Figure 6-2,
taken from Crane (1982), for signal and noise with flat spectra passing through filters with
rectangular passbands of width Av. A physical interpretation of Figure 6-2 is useful. A
component of S;(t) at a given frequency has multiplied the component of Sz(t) at the same
frequency to form |S(t)|?; that is S(t) has been rectified and provides the desired DC output
from the multiplier. Different frequency components of S;(t) and S;(t) beat together to
form sum and difference frequencies. Since they are uncorrelated, frequency components of
signal and noise or of noise and noise do not produce a DC signal when multiplied together,
but do produce the sum and difference frequencies.

The output of the multiplier is integrated by passing it through a low-pass filter. The
power in the DC component is

P, noise — @ —'¢o(0)
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Figure 6-2. Power spectra for a two-antenna, single-multiplier, correlation interferometer.
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Thus, from Equations 6-9 and 6-5 the DC voltage is

(Vo) = aGkBSAu\/ Kle . (6—18)

To determine the fluctuations about this average value we must multiply ®,,(») by the re-
sponse of the output filter, | H(»)|?, and integrate. The power in the fluctuating component
of the filter output is

Vo= [ enelEe) s, (6-19)

where @/, (v) = ®m(v) - a”—é}d’z (0)6(v). We will consider an output filter which is an ideal
integrator having integration time At. For practical values of At, H(v) will be negligible
except near v = 0, so ®! (v) may be replaced by its value near » = 0, which is shown in
Figure 6-2. For an ideal integrator the impulse response is

—al O<t< Al
h(t) { 0 elsewhere , (6-20)

and the output noise power Ppqise i8, from Equation 6-19,
Proise = ®7,(0) |H@)|?dv. (6-21)
—~00

Using Parseval’s theorem

Proise = o, (0) / hz(t) dt
_ 2n(0)
At

K, ST, T, K. Tsys, T,
— 2 10 Lsys, sysy 2 sys, L sys,
(aGkp)? (K KaS*+ —— (T-y-. + Kl) + T ) . (6-23)

(6-22)

The r.m.s. variation in the output is just v/Pjyoise. In terms of flux density at the input, the
r.m.s. noise AS at the filter output is

r.m.s. noise Vy
AS = = A/ Proise | == - 6-24
correlator scaling factor (V Jy ™) o / as ( )

Thus from Equations 6-24, 6-23, and 6-18,

Tsy-, Tnyl, ) Tnynl lec,
AS = \/M\[ Kl + |+ g, (6-25)

In the case of identical antennas and receivers, Equation 6-25 simplifies to

AS = "' + Tiys 6-26
- \/AtAV 2K3° ( )

In the usual weak source case when S < Ty, /K,
Aas<Tws 1 _ V2ksTs, (6-27)

K 2AtAv  nAVAlAv'
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The corresponding expression for a total-power radiometer attached to an antenna identical
to one of the interferometer antennas, is v/2 worse than this (i.e., AS is /2 bigger). Thus
the sensitivity of a single correlation interferometer is v/2 worse than a single dish with the
same total collecting area. The reason for this is that the interferometer does not make use
of the information in the autocorrelation of the signals from each dish separately.

In the case of a strong source, S >> T,y,/ K, Equation 6-26 becomes

g— S _ 25T
VAtAvy  AtAvnA~

Equation 6-28 is the same expression as is obtained for a single antenna with a total-
power radiometer observing a strong source. Notice that the sensitivity for a strong source
is independent of antenna collecting area so that no improvement in sensitivity can be
obtained by increasing the size or number of antennas. Equation 6-28 indicates that a
noise source of a given noise temperature that is correlated between antennas will produce
V2 larger noise fluctuations at the correlator output than will a noise source of the same
noise temperature that is uncorrelated between antennas.

Expression 6—26 was derived for the special case of an observation of a point source
with zero delay and phase, in which all the power received from the source is correlated
between the two antennas. In the less ideal case the source is resolved with frequency-
dependent structure and the properties of the system itself are also frequency-dependent.
The quantity of interest is the correlated flux density

A (6-28)

Se(v) = A(v) cos(¢(v) + $1(v) — ¢2(v) + wAT),

where A, ¢ are the amplitude and phase of the visibility function, ¢; is the phase of the
complex voltage gain of antenna ¢, and Ar is the net delay. The DC voltage becomes

Vo = aka\/ K]_Kz [)oo Gl(V)Gz(V)sc(V) dV,

and the output noise power is given by

b _ KKK
noise — —2—A-T——_
<[~ 1036109 [s20)+ 5709 + 50) (Tl Tl Tom WV (),

In terms of correlated flux density at the input, the r.m.s. noise, AS, at the filter output is

AS =
\/ f(;” G(v)Gi(v) [53(1’) + S?(v) + S(v) (T.y;{,l(l') + T"I?-.-(V)) + Dy (vl)'l‘.az.,(l')] dv

V24t [° G1(v)Ga(v) dv

This shows that the fluctuations in the correlated signal are independent of those in the
total signal and must be added quadratically to the other noise terms. Also, in principle,
the noise will differ between the real and imaginary parts of the visibility function and as
the overall amplitude of the visibility function itself varies.
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For a strong, fully resolved source (A = 0), once again making the usual simplifying

assumptions, the r.m.s. noise is
S

V2AVAL

This means that for those few experiments where an observer wishes to detect a weak spec-
tral line or point source in the presence of a strong, extended continuum source whose flux
density dominates the system temperature, the interferometer can offer a v/2 improvement
in sensitivity over a single antenna. Note that this improvement is in addition to any im-
provement in dynamic range which the interferometer is able to achieve by resolving the
strong, extended source.

Expression 6-27 shows the dependence of the sensitivity of a correlation interferometer
on the most important factors: system temperature, integration time, bandwidth and ef-
fective collecting area. Several other factors will affect the sensitivity by the order of a few
percent to a few tens of percent. The most important of these effects we will call correlator
efficiency,

AS =

_ sensitivity of the correlator
~ sensitivity of a perfect analog correlator having the same At

e (6—30)
nc is needed because of the current tendency to use digital correlators. The correlator
efficiency for a one-bit digital correlator of the type used in VLBI is 64%, and for a three-
level correlator, of the type used at the VLA, 7. is 81% (Cooper 1970).

A second effect, present in interferometers which have time-shared communication
systems or digital correlators (especially those with recirculators), is a loss of integration
time. For example, the VLA in normal continuum observing mode spends only 96.2% of
observing time carrying out useful integration, and in the narrow-band spectral-line modes
only 90.6% of observing time is useful (Escoffier 1979). Thus for the VLA in continuum
mode 1), is 0.79 and in narrow-band spectral-line mode, 0.77.

Thus, the r.m.s. noise out of a two-antenna, single-multiplier, correlation interferometer
observing weak sources is given by

AS = \/ikBTsys
VAtAvAn.n. '’
where 1, is the antenna aperture efficiency.

Table 6-3 shows AS for the six observing bands of the VLA with 5, appropriate for
continuum observing, At of 10 sec, Av of 46 MHz, using a single multiplier and one IF.

(6-31)

Table 6-3.
VLA Single-Multiplier
Interferometer Sensitivity
Wavelength AS
Band (mJy)
92 cm 73
20 cm 28
6 cm 18
3.6 cm 16
2cm 52
1.3 cm 180*
* Approximately 80 mJy after re-
celver upgrade
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4. SENSITIVITY OF A TWO-ANTENNA, COMPLEX,
CORRELATION INTERFEROMETER

The derivation of Equation 6-31 assumed that the point source was at the phase
center of the interferometer. In general this will not be the case and a so-called “complex
correlator” is used which has two multipliers, one of which has the signal from one antenna
phase-shifted by 90°. The fringe patterns for the two correlators are phase-shifted by one
quarter of a fringe on the sky, and the flux density and phase of a point source of arbitrary
position can be determined by combining the two measurements. The two outputs from
the correlator are called the cosine and sine or real and imaginary outputs. We will use the
latter terminology and call the outputs of the correlator, calibrated in units of flux density,
Sk and Sy for real and imaginary outputs, respectively. The measured amplitude, S,,, and
the measured phase, ¢,,, are determined by

Sp = Slzl + slz ’ (6—'32)
S
— pan—1 OI
$m = tan Sa (6-33)

Both Sp and S; are contaminated by noise with r.m.s. value AS given by Equation 6-31,
and we wish to determine noise estimates for S,, and ¢,,. Notice that, in general, noise
estimates for S,, and ¢,, are not needed because synthesis images are computed directly
from Sg and S;. However, for completeness, we include the appropriate analysis here. This
problem has been examined by several authors (Rogers 1968, 1976; Vinokur 1965; Hjellming
and Basart 1982; Berge 1965; Moran 1973, 1976).

The probability distribution of Sp, P(Sm), is given by (Hjellming and Basart 1982)

m Sms - :., 2
P(Sm) = : 57 fo ( A sz) exp (i A;,S ) ' (6-34)

where I is the modified Bessel function of the first kind, order zero, and S is the true

amplitude. Plots of P(S,,), adapted from Hjellming and Basart (1982), are shown in Figure

6-3 for various values of S/AS. For small values of S/AS, P(S,,) is close to a Rayleigh
- distribution and S,, is a biased estimator of S (Moran 1976).

(Swm) = ‘/g AS (1 +5 ‘Z;,) , (6-35)

and .
x S
asn_\/z—EAS(l+4Asz). (6-36)
For large values of S/AS,
S8 AS SnS
Io (AS’) = /Zx5.8 PAsST’
and

P(Sm) = 25\ 225 P —2a35?
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] L] ¥ Ll ¥ ¥ T T T L T T

As

Figure 6-3. The probability distribution of the measured amplitude is plotted as a function of the apparent
signal-to-noise ratio for a number of values of the true signal-to-noise ratio.

Since we need only consider S,, ~ S,

1 —(Sm — S)3
P(Sm) = exp =S

T V2xAS

which is a Gaussian distribution with standard deviation AS.
The probability distribution of the phase error ¢ — ¢,,, where ¢ is the true phase is
given by Hjellming and Basart (1982),

(6-37)

P(¢— dm) = 5}; exp (2——2‘%) (1 +Gy/xeS (1 +erf G)) , (6-38)

where erf is the error function and G(f) = f—/%'—;. Plots of P(¢ — ¢mm), reproduced from
Hjellming and Basart (1982), are shown in Figure 6—4 for several values of S/AS. For small

S/AS the r.m.s. phase error is given by (Moran 1976)

x 9 S
Op = 75‘ (l - E;_—s Es—) ) (6—39)

while for large values of S/AS, P(¢—¢m) approaches a Gaussian distribution with standard
deviation AS

T4 = 5 (6—40)

Figure 6—4 demonstrates clearly why an observer, who is trying to establish if correlated
signal is present on a given interferometer pair by looking at a time sequence of the amplitude
and phase, should look at the phase rather than the amplitude. The difference between the
phase distributions for S/AS of 0 and 1 is much more obvious than the difference between
the associated amplitude distributions.
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Figure 6—4. The probability distribution of the measured phase is plotted as a function of ¢ — ¢, for a
number of values of the true signal-to-noise ratio.

5. SENSITIVITY OF A SYNTHESIS ARRAY TO A POINT SOURCE

The brightness distribution I(I, m) of a source is determined from the complex visibility
function V' (u, v) using (from Lecture 1, Eq. 1-9)

I{t,m) = j / V(u, 0) et +0m) du gy (6-41)

where [ and m are direction cosines and u and v are baseline coordinates. V is related to
the real and imaginary outputs of a complex correlator, described in the previous section,
by

V = Sg+iS1, (6-42)

where 12 = —1. We wish to determine the r.m.s. noise in I(l,m) given that both Sk and
S; contain r.m.s. noise AS. In practice, Expression 641 is approximated by, including the
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tapering and weighting functions discussed in Lecture 5,

3L
In(l,m) = K Y T W Vyemiluettvem) (6—43)
=0

where I,, is the measured brightness distribution, K is a constant, L is the number of
measurements of V' plus a zero-spacing flux density (£ = 0), and the factor 2 in the limit 2L
is included because V' is Hermitian so that, if V' (u, v) is measured, V(—u, —v) is also known.
ue and v, are the u and v coordinates of the £/® measurement of V. By the appropriate
choice of K, the units of I,,(I,m) can be expressed as flux density per synthesized beam.
Equation 643 can be rewritten using Equation 642

L
In(l,m) = 2K _ TW,(Sg, cos2x(ud + vem) — Sy, sin 2% (ugd + vem)) , (6—44)
=1

where it has been assumed, to simplify the expression, that no zero-spacing flux density is
available. The easiest way to determine the noise in I,, (I, m) is to consider the noise at the
center of the image where the expressions become very simple. Equation 6—44 is a ‘direct
Fourier transform’ and the noise will be the same at all points on the image. At the image
center

L
In(0,0)=2K ) T W,Sg, . (6-45)
=1

Now, for a point source of flux density S located at l = m =0,
Sk, =S+ ng,, (6-46)

where ng, is the noise in the real part of the correlator output and has the properties
nr, =0 and n}, = AS?, where AS is given by Equation 6-31. The expected value at the
image center is

L
In(0,0) =2KS ) T W,. (6—47)
=1

To express I,,(I,m) as flux density per beam area, K is set equal to

L
1 /2 ZT¢W¢ 5
£=1
so that
I,(0,0)= S, (6—48)

and the r.m.s. noise in the image, Al,,, is

L
Al,, =2KAS, l > Tiw}. (6—49)
=1

For a naturally weighted, untapered image, this simplifies to
AS

A= (6-50)
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For an array with C complex correlators, correlator integration time At and total observa-
tion time T', the number of measurements is

CT
L=—. 6-51
Combining Equations 6-31, 6-50 and 6-51 gives the desired expression for the noise in the
image
\/ikBTsys
Al, = .
Anan.VCTAv

(6-52)

Notice that at the image center only the noise from the real correlators affects the image.
Elsewhere in the image the noise from both the real and imaginary parts will contaminate
the image, but the noise estimate is still the same as given by Equation 6-51 because the
real noise is weighted by cos 2x(ul+ vm), the imaginary noise is weighted by sin 2x(ul+vm),
and the real and imaginary noise terms are uncorrelated.

For a synthesis array of N antennas using two IF’s, if all possible baselines are corre-
lated, C = N(N —1). As N becomes large, C approaches N2, and AlI,, becomes

_ ﬁkBT.y'
Al = )
Nan. NAVTAv

which, with 5. equal to 1, is the same noise as would be expected from a single antenna
of collecting area N A with two IF’s connected to total-power radiometers. That the large
synthesis array has the same sensitivity as a single antenna of the same total area is not
surprising because, as N becomes large, the fraction of the information lost by the synthesis
array because it does not carry out the autocorrelations becomes negligible. The synthesis
array has the advantage, however, that all points in the field of view are observed with
sensitivity Al,,, while the single antenna must observe each point separately for time 7T'.

Most modern synthesis arrays have the capability of operating as a phased-array in
which the IF signals from each antenna are added together after the delay lines, to create
an IF received by the synthesized beam at the array phase center. Such a phased-array
output is useful for VLBI and for spectroscopic observations. In principle this output has
all the information present in a single antenna of the same collecting area and resolution,
so that even the autocorrelation information can be recovered. In practice, several effects
may reduce the sensitivity of this output by a few tens of percent below the expected
sensitivity. If the output is formed by adding together digitized outputs from a small
number of antennas (less than 15, say), the sensitivity will be slightly less than expected
and will vary depending on whether odd or even numbers of antennas are added together
(Van Ardenne 1979, 1980). If the output is again digitized to allow VLBI recording or
digital spectral analysis, the loss of sensitivity n, occurs again. An effect present in the
VLA phased-array output is that the phased-array IF is reconstructed using pulses of finite
width rather than delta functions. This reduces the effective bandwidth of the output and
lowers its sensitivity by a few percent.

Table 6—4 shows the theoretical A, for the six observing bands of the VLA for a
twelve-hour synthesis with 5. appropriate for continuum observing, Av of 46 MHz, using
two IF’s. In practice, atmospheric attenuation, variations in aperture efficiency, the presence
of radio-frequency interference, and many other factors will prevent one from reaching the
theoretical Al,,.

(6-53)
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Table 6—4.
Theoretical VLA Sensitivity
for a Twelve-Hour Synthesis

Wavelength Al,

Band (n#Jy/beam)

92 cm 42

20 cm 16

6 cm 10

3.6 cm 9

2 cm 30
1.3cm 100*

* Approximately 44 pJy/beam af-
ter receiver upgrade

In natural weighting, every correlator measurement is given the same weight. This
gives the highest sensitivity for detecting point sources. As described in Lecture 5 tapering
and weighting functions can be applied to each measurement to control, to some extent, the
beam shape. Applying such functions degrades the point-source sensitivity (makes Al,,
larger) by

L L
> 1w} / > TW,.
=1 =1

For an east—west synthesis array such as the Westerbork Synthesis Radio Telescope,
the weighting function for uniform weighting is known analytically (W o ¢) and the point-
source sensitivity can be determined analytically. Because the sampling function for the
Very Large Array varies greatly with declination, integration time, observing strategy, and
total observing time, for example, the weighting function for uniform weighting is not
known analytically. Instead, as described in Lecture 5, the weight for each measurement is
determined from the inverse of the local density of measurements, which usually is measured
over one cell in the u-v plane, but the user can select a larger area.

Consequently, when only a few measurements are spread over many cells in the u-v
plane, the local density of measurements for most u-v cells will be either zero or one and
the sensitivity will be close to that for natural weighting. At the other extreme of many
measurements spread over a few cells, the density of measurements near the center of the
u-v plane will be very high (several hundred), the weights low, and the sensitivity will be
considerably degraded (by a factor of order 1.2 to 3).

Application of a Gaussian taper tends to cancel the effect of the weighting function
for uniform weighting on the point-source sensitivity. The sensitivity will be best for an
optimum value of the taper dispersion o at which the tapering function best matches natural
weighting, and will degrade monotonically in either direction for other values of o.

The examples in Figure 6-5 illustrate the dependence of the point-source sensitivity
upon the number of cells in the u-v plane and upon o. The calculations were done for
a twelve-hour synthesis at a declination of 90°, with an integration time of 100 seconds.
In addition to the curve labelled “Natural” which shows the effect of combining natural
weighting and a Gaussian tapering function, the other four curves show the effects of com-
bining a Gaussian tapering function and uniform weighting, with the u-v plane spanned by
the number of cells indicated. (The number in parentheses indicates the maximum number
of measurements per u-v cell in each example.)
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Pigure 6-5. The effects of applying a Gaussian tapering function on the point-source sensitivity of the
VLA, shown for natural weighting and for uniform weighting with four different numbers of cells spanning
the u-v plane. The calculations are for a source at the North Celestial Pole, observed for twelve hours with
an integration time of 100 seconds, and have been normalized to the result for untapered natural weighting.

6. SENSITIVITY OF A SYNTHESIS ARRAY TO AN EXTENDED SOURCE

A very important aspect of the sensitivity properties of a synthesis array is the difference
between the sensitivity to point sources and to extended sources. The units of the brightness
image can be expressed as Janskys per synthesized beam area, and the r.m.s. noise in the
image is Al, Janskys per synthesized beam. Suppose that the size of the synthesized
beam is varied by scaling the size of an array. A point source of flux density S has a
constant apparent brightness of S Janskys per synthesized beam, independent of the size
of the synthesized beam. Therefore the signal-to-noise ratio of a point source, S/Al,, is
independent of the beam size. For an extended source that is larger than the synthesized
beam, having constant brightness I Janskys per steradian, the flux density per synthesized
beam is I},, where {1, is the area of the synthesized beam in steradians. Therefore, the
signal-to-noise ratio for this source is

n,
Al,’

which improves as the synthesized beam is made larger, so long as the beam is smaller
than the smallest detectable source structure. Fomalont and Wright (1973) give further
discussion of this point. In general, the resolution of an array increases linearly with the
size of the array, but the sensitivity to extended structure decreases as the square of the
size. Thus, the VLA observers who propose to observe an extended source in the A array
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Figure 6-6. The effects of applying a Gaussian tapering function on the peak response of the VLA to
a circular Gaussian source with & of 2.08\/¢max, shown for natural weighting and for uniform weighting
with four different numbers of cells spanning the u-v plane. The calculations are for a source at the North
Celestial Pole, observed for twelve hours with an integration time of 100 seconds, and have been normalised
to the response to a point source.

configuration after observing it in the B configuration and needing 3 times more resolution,
must remember that they will have an order of magnitude less sensitivity to the extended
structure (see also Lecture 16).

The sensitivity to extended structure, as well as being improved by scaling the array
to match the size of the source, can usually be improved by applying a tapering function as
described in Lecture 5. The primary improvement in sensitivity arises because the area of
the synthesized beam (2, increases approximately as 0~2 but also because, as indicated by
Figure 6-5, A I,, remains constant or even decreases for a wide range of 0. So for o ~ 0.3-
0.4¢mmax, the improvement in sensitivity to an extended source may be a factor of 4-10 over
uniform weighting.

For a more detailed, although still qualitative, understanding of the sensitivity of the
VLA to extended structure, consider the response to a circular Gaussian source with full
width at half maximum 6. The average surface brightness I, for such a source with a total
flux density S is given by S

1.13362 °
As with the point-source sensitivity, the peak response of the VLA to a circular Gaussian

source depends upon many variables; Figure 6-6 shows the peak responses to a circular
Gaussian source with a 0 of 2.08)/¢max for the same examples used in Figure 6-5. The

I.(S’ 0) =
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Figure 6-7. The effects of tapering and source sise on the surface-brightness sensitivity of the VLA,
shown for uniform weighting over 512 cells, and assuming a Gaussian tapering function of dispersion o.
The calculations are for a source at the North Celestial Pole, observed for twelve hours with an integration
time of 100 seconds. The contour levels are 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, and 10.0 in arbitrary units which
scale as 3.2852(1—") where n is 1, 2, 3, or 4 for the A, B, C, or D configurations, respectively. (Note that
the calculations do not extend to sero size or taper.) Points A and B indicate the tapers which provide
the optimum sensitivities for observing the same source (8 = 5.6A/¢max,4 = 1.7A/¢max,p) in the A and B
configurations, respectively; for further discussion see the text.

surface-brightness sensitivity AI,(8,0) for a source with angular size # and imaged with a
Gaussian tapering function of dispersion ¢ is then given by

Al,(0)I,(S,0)
In(S,0,0)

As illustrated in Figures 6-5 and 6-6, this function will depend upon the details of the
observing strategy used, the parameters chosen for the image, and many other variables.
Figure 6-7 shows A, for the case of 512 u-v cells already shown in Figures 6-5 and 6-6.
Figure 6-7 can be used, for example, to compare the surface-brightness sensitivities of the
A and B configurations. Point A shows that the optimum sensitivity for a source with a 6 of
5.6 /qmax,4 (1.7A/gmax,B), observed in the A configuration, is 0.1 for o x5 0.1¢ax,4- Point
B shows that the optimum sensitivity for the same source observed in the B configuration
is 0.5(3.285)~2, or 0.046, for 0 = 0.2¢max,B- As expected, the B configuration is more
sensitive to extended structure than the A configuration, although, in this example, not
by the factor often suggested by the simple arguments used above. One reason is that the
tapering function can be adjusted to obtain the optimum sensitivity in each configuration.

Al(8,0)=
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Figure 6-8. The effects of convolution and gridding in the u-v plane on the noise in an image: (a)
‘Direct Fourier transform’, no convolution or gridding. (b) ‘Direct Fourier transform’ after convolution.
(c) Fast Fourier transform after convolution and gridding. (d) Fast Fourier transform after convolution
and gridding, followed by division by the Fourier transform of the convolving function.

The lesson to be learned from this discussion is that the optimum taper for a particular
observation can only be determined by trial and error.
7. THE EFFECTS OF CONVOLUTION AND GRIDDING ON SENSITIVITY

The sensitivity analyses in Section 5 are appropriate when images are made using a
‘direct Fourier transform’ without convolution in the u-v plane, in which case the noise is
uniform over the image. In most practical cases, images are made using the Fast Fourier
transform which requires that the u-v plane data be convolved and gridded before being
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transformed. Analysis of the effect of these operations on the signal-to-noise ratio in the
image is complicated and is discussed extensively in three reports (Greisen 1976, 1979;
Clark 1976). The reader is referred to these reports for details; here we will attempt only
to give the reader a physical understanding for the effect which can significantly degrade
the signal-to-noise at the edge of the image. The effect is caused by a combination of
two processes; the aliasing of noise back into the image and the division of the image by
the Fourier transform of the u-v plane convolving function to remove the effects of this
convolution.

Consider only the noise in the u-v plane. If we compute the distribution of the noise
in the image plane using a ‘direct Fourier transform’, the noise will have the same vari-
ance everywhere, as shown in Figure 6-8a (provided the smoothing effect of the correlator
integration time is negligible). Now let us convolve the u-v plane data with a convolving
function and again compute the image using a ‘direct Fourier transform’. Now the distri-
bution of the variance of the noise is shown in Figure 6-8b, where the variance in the image
is multiplied by the Fourier transform of the autocorrelation function of the convolving
function (which is equal to the square of the Fourier transform of the convolving function).
Now, if the convolved u-v plane data are again sampled at points with normalized spacing
%, and transformed using a Fast Fourier transform, the variance of the noise in the image
is significantly changed by aliasing, as shown in Figure 6-8c. Finally, after the image has
been divided by the Fourier transform of the u-v plane convolving function, the variance of
the noise is as shown in Figure 6-8d. Clearly this final division process has enhanced the
noise at the edge of the image, resulting in a degraded signal-to-noise ratio.

Greisen (1979) computes the size of this effect for many different convolving functions.
The commonly used pillbox function with width equal to the grid spacing, for example, sig-
nificantly degrades the sensitivity over most of the image, with the worst degradation being
a factor of 0.4 decrease in signal-to-noise at the image corners. Other types of convolving
functions can be found which only effect the outer one quarter of the image, with a worst
case degradation of a factor of 0.5.

8. EFFECT OF PRIMARY BEAM ON SENSITIVITY

Ignoring for the moment all image distortions except additive noise and the effect of the
primary beam of the individual antennas comprising the synthesis array, we may express
the measured brightness image I,(I,m) as

In(l,m) = I(l,m)P(l,m)+ N(l,m), (6-54)

where I(l,m) is the true brightness distribution, P(l,m) is the response of the antenna
primary beam and N(l,m) is additive noise with r.m.s. value Al,,. If the variation of
P(l,m) across I(l,m) is not negligible its effect may be removed by dividing the image by
P(l,m), in which case

In(l,m)/P(l,m) = I(l,m)+ N(I,m)/P(l,m). (6-55)

In this case Equation 6-55 shows that the noise is enhanced at the edge of the image,
reducing the sensitivity in this region.
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7. Deconvolution
TmM CORNWELL

1. DECONVOLUTION

This Lecture describes how the visibility samples collected by an interferometer array
can be used to produce a high quality image of the sky. As noted in Lecture 1, the image
described in Lecture 5 will have defects due to the limited sampling of the u-v plane. Non-
linear deconvolution is required to correct these defects.

As described in Lectures 1 and 2, an interferometer array provides samples of the
complex visibility function of the source at various points in the u-v plane. Under various
approximations, which are valid for a sufficiently small source in an otherwise blank region
of sky (see Lecture 1, Section 4.2 and Lecture 2, Section 6), the visibility function V'(u,v)
is related to the source intensity distribution I(l,m) (multiplied by the primary beam of
the array elements) by a two-dimensional Fourier transform:

V(u,v) = / fs I(1, m)e= 7 s+9m) gf g (1-1)

where S denotes taking the integral over the whole sky, as in Equation 2-5.

Since only a finite number of noisy samples of the visibility function are measured in
practice, I(l,m) itself cannot be recovered directly. Either a model with a finite number
of parameters, or some stable non-parametric approach, must be used to estimate I(l,m).
A convenient general purpose model I of the source intensity that is capable of represent-
ing all the visibility data consists of a two-dimensional grid of §-functions with strengths
i (pAl, gAm) where Al and Am are the separations of the grid elements in the two orthog-
onal sky coordinates. The visibility V' predicted by this model is given by:

Ny N
V(u,v) = Z E I(pAl, gAm)e~2~i(pull+quam) (7-2)
p=1¢=1

For simplicity I will henceforth denote the discrete form I (pAl, gAm) by the notation f,,,,.
Assuming reasonably uniform sampling of a region of the u-v plane, one can expect to
estimate source features with widths ranging from O(1/max(u,v)) up to O(1/ min(u,v)).
The grid spacings, Al and Am, and the number of pixels on each axis, N; and N,,, must
allow representation of all these scales. In terms of the range of u-v points sampled, the
requirements are:

1

Al < , Am< 1 , NAl> 1 s NmAm > .

~ 2Umax Umax Ymin Umin

This model has N;N,, free parameters, namely the cell flux densities f,',. The measure-
ments constrain the model such that at the sampled u-v points:

V(ur,v,) = f’(u,, vy) + €(u,,v,), (7-3)
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where €(u,,v,) is a complex, normally distributed random error due to receiver noise, and r
indexes the samples. At points in the u-v plane where no sample was taken, the transform
of the model is free to take on any value. One can think of Equation 7-3 as a multiplicative
relation: .

V(u,v) = W(u,v)(V(u,v) + €(u,v)), (74)

where W (u, v) is a weighted sampling function (see Lecture 5, Equation 5-8) which is non-
zero only for sampled points of the u-v plane:

W(u,v) = ZW,S(u — U,V —v,). (7-5)

By the convolution theorem, this translates into a convolution relation in the image plane:

ng = Z Bp—p q— jn',q' + Epq, (7-6)
r'q
where: .
ng = Z W(“n vr)Re (V(u,., v')ezm(pu,Al+qu,Am)) ) (7_7)
r
B, q = EW(“-, vr)Re(ez"(’“'A'+q"'A'“)) . (7-8)
r

E, 4 in Equation 7-6 is the noise image obtained by replacing V in Equation 7-7 by ¢(u,, v,).
Note that the B, 4 given by Equation 7-8 is the point spread function (beam) that is
synthesized after all weighting has been applied (and after gridding and grid correction
if an FFT was used—to keep the notation concise, I will not signify this gridding and
grid correction explicitly). The Hermitian nature of the visibility has been used in this
rearrangement.

Equation 7—4 represents the constraint that the model fp,q, when convolved with the
point spread function B, , (also known as the dirty beam) corresponding to the sampled
and weighted u-v coverage, should yield I,fq (known as the dirty image).

The weighting function W(u,v) can be chosen to favor certain aspects of the data. For
example, setting W (u,,v,) to the reciprocal of the variance of the error in V(u,,v,) will
optimize the signal-to-noise ratio in the final image, whereas setting it to the reciprocal of
some approximation of the local density of samples will minimize the sidelobe level (see
Lecture 5).

I now examine the possible solutions of the convolution equation.

1.1. The “principal solution” and “invisible distributions”.

Let us now consider whether the convolution equation has a unique solution. Clearly
if some of the spatial frequencies allowed in the model are not present in the data then
changing the amplitudes of the corresponding sinusoids in I will have no effect on the fit to
the data. In effect, the dirty beam filters out these spatial frequencies. Let Z be an intensity
distribution containing only these unmeasured spatial frequencies. Then B *Z = 0. Hence,
if I is a solution of the convolution equation, so is I + aZ where a is any number. Thus,
as usual, the existence of homogeneous solutions implies the general non-uniqueness of any
solution in the absence of boundary conditions. An important point to note is that Equation
7-6 cannot be solved by linear methods, such as I' = A * D where A is some matrix, since
the homogeneous solutions Z will also be absent from I'. Thus, conventional deconvolution
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procedures such as inverse filtering, Wiener filtering, etc. (e.g., Andrews and Hunt 1977)
will not work: a non-linear procedure is required.

Interferometrists call the homogeneous solutions “invisible distributions” (Bracewell
and Roberts 1954) or “ghosts”. The solution having zero amplitude in all the unsampled
spatial frequencies is usually called the “principal” solution. Invisible distributions arise
from two causes: firstly, the u-v coverage only extends up to finite spatial frequencies so
that the invisible distributions correspond to finer detail than can be resolved; secondly,
holes may exist in the u-v coverage.

The problem of image construction thus can be reduced to that of choosing plausible
invisible distributions to be merged with the principal solution. The shortcomings of the
principal solution must be considered before tackling this problem.

1.2. Problems with the principal solution.

If the data are obtained on a regular grid then the principal solution can be computed
very easily: one must simply choose the weighting function in Equation 7-7 so that the bias
in weight due to the vagaries of sampling are corrected. For each grid point the visibility
samples are summed with appropriate weights, and the total weight normalized to unity.
In such circumstances, known as uniform weighting, the principal solution is thus equal to
the dirty image and is given by the convolution of the true brightness distribution with the
dirty beam. For most synthesis arrays currently in use, the dirty beam has sidelobes in the
range 1 to 10%. Sidelobes represent an unavoidable confusion over the true distribution
of any emission in the dirty image, which can be resolved only either by making further
observations or by introducing a priort information such as the limits in extent of the source.
For example, consider uniformly weighted observations of a point source: the dirty image
is just the dirty beam centered on the point source position. Without a priors information
we cannot tell whether the source is a point or is shaped like the dirty beam. Of course
we know that Stokes parameter I must be positive and that usually radio sources do not
resemble dirty beams (in particular they do not have sidelobe patterns extending to infinity)
and so we could use this information as an extra clue. One further unsatisfactory aspect of
the principal solution, besides its implausibility, is that it changes (sometimes drastically)
as more visibility data are added. A better estimator would possess greater stability.

A priort information is thus the key; in the rest of this Lecture I consider two algo-
rithms which use different constraints on the invisible distributions to derive solutions to
the convolution equation. These algorithms, ‘CLEAN’ and the Maximum Entropy, Method
(MEM), are now the predominant ones used for deconvolution of radio synthesis images.

2. THE ‘CLEAN’ ALGORITHM

The ‘CLEAN’ algorithm, which was devised by J. Hogbom (1974), provides one solution
to the convolution equation by representing a radio source by number of point sources in an
otherwise empty field of view. A simple iterative approach is employed to find the positions
and strengths of these point sources. The final deconvolved image, usually known as the
‘CLEAN’ image, is the sum of these point components convolved with a ‘CLEAN’, usually
Gaussian, beam to de-emphasize the higher spatial frequencies which are usually spuriously
extrapolated.

I now discuss some of the currently available ‘CLEAN’ algorithms, including two vari-
ants of the Hogbom algorithm which are better suited to large images.

2.1. The Hogbom algorithm.
The algorithm proceeds as follows:
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(1) Find the strength and position of the peak (i.e. of the point brightest in absolute
intensity) in the dirty image IP.. If desired one may search for peaks only in
specified areas of the image, called ‘CLEAN’ windows.

(2) Subtract from the dirty image, at the position of the peak, the dirty beam B
multiplied by the peak strength and a damping factor 4 (< 1, usually termed the
loop gain).

(3) Go to (1) unless any remaining peak is below some user-specified level.

(4) Convolve the accumulated point source model f, , with an idealized ‘CLEAN’
beam (usually an elliptical Gaussian fitted to the central lobe of the dirty beam).

(5) Add the residuals of the dirty image to the ‘CLEAN’ image.

The fifth stage is not always performed but can often provide useful diagnostic infor-
mation, for example about the noise on the map, residual sidelobes, “bowls” near the center
of the image (Section 3.3 below), etc.

2.2. The Clark algorithm.

Clark (1980) has developed an FFT-based ‘CLEAN’ algorithm. A large part of the work
in ‘CLEAN? is involved in shifting and scaling the dirty beam; since this is essentially a con-
volution it may, in some circumstances, be more efficiently performed via two-dimensional
FFTs. Clark’s algorithm does this, finding approximate positions and strengths of the
components via ‘CLEAN’ using only a small patch of the dirty beam.

In detail, the Clark algorithm has two cycles, the major and minor cycles. The minor
cycle proceeds as follows:

(1) A beam patch (a segment of the discrete representation of the beam) is selected
to include the highest exterior sidelobe.

(2) Points are selected from the dirty image if they have an intensity, as a fraction of
the image peak, greater than the highest exterior sidelobe of the beam.

(3) A Hogbom ‘CLEAN’ is performed using the beam patch and the selected points
of the dirty image. The stopping criterion for the ‘CLEAN’ is roughly such that
any remaining points would not be selected in step (2).

The algorithm then proceeds to a major cycle in which the point source model found
in the minor cycle is transformed via an FFT, multiplied by the weighted sampling function
that is the inverse transform of the beam, transformed back and subtracted from the dirty
image. Any errors introduced in a minor cycle because of the beam patch approximation
are, to some extent, corrected in subsequent minor cycles.

2.3. The Cotton—Schwab algorithm.

Cotton and Schwab (Schwab 1984, top right corner of p. 1078) have developed a variant
of the Clark algorithm in which the major cycle subtraction of ‘CLEAN’ components is
performed on the ungridded visibility data. Aliasing noise and gridding errors can thus
be removed provided that the inverse Fourier transform of the ‘CLEAN’ components to
each u-v sample has sufficient accuracy. Two routes are used for the inverse transform:
for small numbers of ‘CLEAN’ components, a ‘direct Fourier transform’ is performed and
so the accuracy is limited by the precision of the arithmetic. In the other extreme of a
large number of ‘CLEAN’ components, an FFT is more efficient but inevitably some errors
are introduced in interpolating from the grid to each u-v sample. Currently, high order
Lagrangian interpolation is used.

The other considerable advantage of the Cotton—Schwab algorithm, besides gridding
correction, is its ability to image and ‘CLEAN’ many separate but proximate fields simulta-
neously. In the minor cycle each field is ‘CLEAN’ed independently, but in the major cycles,
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‘CLEAN’ components from all fields are removed. In calculating the residual image for
each field, the full phase equation, including the w-term, can be used. Thus, the algorithm
can correct what is commonly called the “non-coplanar baselines” distortion of images (see
Lectures 2 and 8).

The Cotton—Schwab algorithm is often faster than the Clark ‘CLEAN’, the major
exception occurring for data sets with a large number of visibility samples where gridding
over and over again becomes prohibitively expensive. The Cotton—Schwab algorithm also
allows ‘CLEAN’ing with smaller guard bands around the region of interest, hence with
smaller image sizes.

This algorithm is implemented in NRAQO’s Astronomical Image Processing System
(AIPS) as the program ‘MX’.

2.4. Other related algorithms.

Several algorithms have been invented with the aim of correcting some deficiencies of
‘CLEAN’.

Steer, Dewdney and Ito (1984) developed a variant of the Clark algorithm in which
the minor cycle is replaced by a step of simply taking all points above a sidelobe-dependent
threshold, scaling them and then subtracting normally in the major cycle. The saving in
time seems to be considerable compared to ‘CLEAN’, but the radio astronomy community
has little experience with this variant of the algorithm so its ability to handle different
practical situations is not yet well-known.

Segalovitz and Frieden (1978) proposed an ad hoc modification of the dirty beam to
enhance the smoothness of the resulting ‘CLEAN’ image. Cornwell (1983) justified a similar
prescription as forcing the minimization of the image power (i.e. the sum of the squares of the
pixel values) and thus pushing down the extrapolated visibility function. Both approaches
seem to ameliorate partially the striping instability to which ‘CLEAN’ is susceptible (see
Section 3.7 below).

3. PRACTICAL DETAILS AND PROBLEMS OF ‘CLEAN’ USAGE

Theoretical understanding of ‘CLEAN’ is relatively poor even though the original al-
gorithm is about 15 years old. Schwarz (1978, 1979) has analyzed the Hogbom ‘CLEAN’
algorithm in some detail. He notes that in the noise-free case the least squares minimization
of the difference between observed and model visibility, which ‘CLEAN’ performs, produces
a unique answer if the number of cells in the model is not greater than the number of inde-
pendent visibility measurements contributing to the dirty image and beam (cf. Equations
7-7 and 7-8), counting real and imaginary parts separately. This rule is unaffected by the
distribution of u-v sample points so that, in principle, super-resolution is possible if enough
data points are available. In practice, however, the introduction of noise and the use of
the FFT algorithm to calculate the dirty image and beam corrupts our knowledge of the
derivatives of the visibility function upon which super-resolution is based. Clearly, even if
the FFT is not used, the presence of noise means that independence of the data must be
re-defined. Schwarz has in fact produced a noise analysis of the least squares approach but
it involves the inversion of a matrix of side N;N,, and so is totally impractical for typical
image sizes; furthermore, we are really interested in ‘CLEAN’, not the more limited least
squares method since ‘CLEAN’ will still produce a unique answer in circumstances where
the least squares method is guaranteed to fail. To date no one has succeeded in producing
a noise analysis of ‘CLEAN’ itself. The existence of instabilities in ‘CLEAN’, which will be
discussed later, makes such an analysis highly desirable.

Schwarz also proves three conditions for the convergence of ‘CLEAN’:

(1) The beam must be symmetric.

113



Tim Cornwell

(2) The beam must be positive definite or positive semi-definite. Thus the eigenvalues
must be non-negative.

(3) The dirty image must be in the range of the dirty beam. Roughly speaking, there
must be no spatial frequencies present in the dirty image which are not also present
in the dirty beam.

All three of these conditions are obeyed in principle for the dirty image and beam
calculated by Equations 7-7 and 7-8 if the weighting function is nowhere negative. In
practice, however, numerical errors, and the gridding and grid-correction process may cause
violation of these conditions. The ‘CLEAN’ algorithm will therefore diverge eventually.
‘CLEAN’ing close to the edge of a dirty image computed by an FFT is particularly risky.

Most of our understanding of ‘CLEAN’ comes from a combination of guessing how
to apply intuition and Schwarz’s analysis to real cases, and much practical experience on
real and test data. In the rest of this Section I will attempt to summarize the current lore
concerning how the algorithm should be used, and how it can fail.

3.1. The use of boxes.

The region of the image which is searched for the peak can be limited to those areas
(known as the ‘CLEAN’ windows or bozes) within which emission is known or guessed to be
present. These boxes effectively restrict the number of degrees of freedom available in the
fitting of the data. Schwarz’s work (and common sense) tells us that the number of such
degrees of freedom should be minimized but that the ‘CLEAN’ window should include all
real emission in the image. For a simple source in an otherwise uncluttered field of view,
one ‘CLEAN’ window will do, but multiple boxes may be needed when ‘CLEAN’ing more
complicated sources, or for a field containing many sources. In the latter case, the presence
of weak sources may be revealed only after the sidelobes of the stronger sources have been
removed; more boxes may therefore be required as the ‘CLEAN’ progresses. Note that
such a posteriors definition of ‘CLEAN’ boxes considerably complicates any possible noise
analysis.

The practical implications of Schwarz’s observation that the number of degrees of
freedom should not exceed the number of independent constraints are difficult to gauge. In
the presence of noise u-v points should be judged independent if the differences in visibility
due to the size of structure expected are much greater than the noise level. Counting
visibility points in such a way, the aggregate area of the ‘CLEAN’ boxes in pixels should be
less than twice the number of independent visibility points. If the FFT is used (see Lecture
5) then the number of independent visibility samples cannot be greater than O(N;N,,), and
so the use of ‘CLEAN’ boxes is certainly advisable.

Given the uncertainty in determining the number of independent data points, and
hence the number of constraints, caution dictates that boxes should always be placed tightly
around the region to be ‘CLEAN’ed.

3.2. Number of iterations and the loop gain.

The number of ‘CLEAN?’ subtractions N¢cz, and the loop gain 4 determine how deep
the ‘CLEAN’ goes. In particular for a point source the residual left on the dirty image is
(1 — 4)Noz. Hence, to minimize the number of ‘CLEAN’ subtractions (and so to minimize
the CPU time) 4 should be unity; one then finds however that extended structure is not well
represented in the corresponding ‘CLEAN’ image. In typical VLA applications a reasonable
compromise lies in the range 0.1 < 4 < 0.25. (Incidentally, this dependence of the ‘CLEAN’
image upon the loop gain is a nice demonstration of the multiplicity of solutions to the
convolution equation.) Lower loop gains may be required in cases where the u-v coverage
is poor, but experience suggests that the improvements in deconvolution for 4 < 0.01 are
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generally minimal. If one is in any doubt then it is wise to experiment (e.g. by decreasing
4 and increasing Ncr). One exception to the use of low loop gain is in the removal of
confusing sources; it is preferable to remove them with high loop gain, as their structure is
usually not of interest.

The choice of the number of iterations depends upon the amount of real emission in
the dirty image. One should aim at transferring all brightness greater than the noise level
to ‘CLEAN’ components (some implementations of ‘CLEAN’ allow one to specify a lower
intensity limit to the components instead of N¢r). ‘CLEAN’ing deep into the noise is
usually a waste of time unless you specifically wish to analyze the extended low surface
brightness emission (but see Section 3.4 below).

Examination of the list of ‘CLEAN’ components, and, in particular, of the behavior
of the accumulated intensity in the model, is useful in detecting divergence; sometimes the
accumulated intensity diverges. As discussed above, divergence of the Hogbom ‘CLEAN’ is
always due to a computational problem. Possible culprits are the gridding process, aliasing,
and finite precision arithmetic. In the case of the Clark or the Cotton—-Schwab algorithms,
the truncated dirty beam patch that is used in the minor cycles of these algorithms must
violate Schwarz’s conditions. Therefore both may be subject to instability or divergence if
the minor cycle is prolonged unduly.

3.3. The problem of short spacings.

Implicit in deconvolution is the interpolation of values for unsampled u-v spacings. In
most cases ‘CLEAN’ does this interpolation reasonably well. However, in the case of short
spacings the poor interpolation is sometimes rather more noticeable since very extended
objects have much more power at the short spacings. The error is nearly always an un-
derestimation and is manifested as a “bowl” of negative surface brightness in which the
source rests. In such a case, introducing an estimate of the zero spacing flux density into
the visibility data before forming the dirty image will sometimes help considerably. The
appropriate value of this flux density would be that measured by a single element of the ar-
ray. In practice, however, single array elements rarely have sufficient sensitivity or stability
to provide this estimate accurately. Values estimated from surveys made with larger, more
sensitive, and more directive elements are therefore frequently substituted. Choosing the
weight for the zero spacing flux density is difficult; the best estimate seems to be simply the
number of unfilled cells around the origin of the gridded u-v plane. However, the results
obtained are fairly insensitive to the value used provided that the ‘CLEAN’ deconvolution
goes deep enough.

The ‘CLEAN’ windows or boxes may also be viewed as providing crude estimates of
the shape of the visibility function near the zero spacing u = v = 0. For this reason, careful
choice of ‘CLEAN’ windows may also minimize problems associated with the short spacings.

After ‘CLEAN’ing, the emission should be, but is not guaranteed to be, distributed
sensibly over the ‘CLEAN’ image. Failure of the interpolation is indicated by the presence
of a “pedestal” of surface brightness within the ‘CLEAN’ box upon which the source rests.
Such a pedestal all over the ‘CLEAN’ image can be caused by insufficient ‘CLEAN’ing of
the dirty image; one can experiment by simply increasing Ncr. Ultimately, it may actually
be necessary to measure the appropriate data!

3.4. The ‘CLEAN’ beam.

The ‘CLEAN’ beam is used to suppress the higher spatial frequencies which are poorly

estimated by the ‘CLEAN’ algorithm. There are two competing opinions on this in the

radio astronomy community: some object that it is purely ad hoc and is undesirable—in
the sense that the equivalent predicted visibilities do not then agree with those observed.

115



Tim Cornwell

Others defend it as a way of recognizing the inherent limit to resolution. In practice, it
does appear to be necessary in order to produce astrophysically reasonable images. The
most common method of choosing the ‘CLEAN’ beam is to fit an elliptical Gaussian to the
central region of the dirty beam. One should remember that this choice is merely the result
of a compromise between resolution and apparent image quality and that larger or smaller
beams may be appropriate in particular cases. If one is prepared to tolerate a decrease in
the apparent quality of the ‘CLEAN’ image, and if both the signal-to-noise ratio and the
u-v coverage are good, then often a smaller ‘CLEAN’ beam can be used.

Various attempts have been made to improve the selection of the ‘CLEAN’ beam. The
dirty beam, truncated outside the first zero-crossing, is appropriate in some applications
since it lacks the extended wings of a Gaussian, but I emphasize that, after convolution with
such a beam, the ‘CLEAN’ image does not agree satisfactorily with the original visibilities.
An ideal ‘CLEAN’ beam might be defined as a function obeying three constraints:

(1) Its transform should be unity inside the sampled region of the u-v plane.
(2) Its transform should tend to zero outside the sampled region as rapidly as possible.

(3) Any negative sidelobes should produce effects comparable with the noise level in
the ‘CLEAN’ image.

Constraint (1) is usually the first to be relaxed, and then only positivity of the transform
is necessary. It may be that in typical applications ‘CLEAN’ performs so poorly that these
constraints do not allow an astrophysically plausible ‘CLEAN’ image, however such a topic
is probably worth further consideration.

One very important consequence of a poor choice for the ‘CLEAN’ beam is that the
units of the convolved ‘CLEAN’ components may not agree with the units of the residuals.
The units of a dirty image are not very well defined but can be called “Jy per dirty beam
area”. The only real meaning of these units is that an isolated point source of flux density
S Jy will show up in the dirty image as a dirty beam shape with amplitude S Jy per dirty
beam area. An extended source of total flux density S Jy will be seen in the dirty image
convolved with the dirty beam, but the integral will not, in general, be S Jy. However,
convolved ‘CLEAN’ components do have sensible units of Jy per ‘CLEAN’ beam, which
can be converted to Jy per unit area since the equivalent area of the ‘CLEAN’ beam is
known. Provided that ‘CLEAN’ is run to convergence, the integral of the ‘CLEAN’ image
will often provide an accurate estimate of the flux density of an extended object, usually
failing when the u-v coverage is incomplete on the spacings required. If convergence is not
attained then both flux density and noise estimates taken from the ‘CLEAN’ image can be
in error.

3.5. Use of a priors models.

A priori models of sources can be used to good effect in ‘CLEAN’. Perhaps the best
example is in the ‘CLEAN’ing of images of planets; in this case the visibility function of a
circular disk can be subtracted from the observed visibilities before making the dirty image.
‘CLEAN’ then needs only to find the small perturbations from the disk model and so both
the image quality and speed of convergence should be improved.

3.6. Non-uniqueness.

Perhaps the biggest drawback to the use of ‘CLEAN?’ is the way in which the answers
depend upon the various control parameters: the ‘CLEAN’ boxes, the loop gain and the
number of ‘CLEAN?’ subtractions. By changing these one can, even for a relatively well-
sampled u-v plane, produce somewhat different final ‘CLEAN’ images. In the absence of an
error analysis of ‘CLEAN’ itself one can do nothing at all about this problem. Awareness
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of the possible effects discussed in this Section should however keep you from becoming
over-confident in the final ‘CLEAN’ image, as will experience of applying ‘CLEAN’ to a
wide range of different images.

In any one application, Monte Carlo tests of ‘CLEAN’ can sometimes be illuminating,
and, indeed, provide the only means of estimating the effects of various data errors and
‘CLEAN’ing strategies upon the final image.

3.7. Instabilities.

One particular instability of ‘CLEAN’ is well known: in ‘CLEAN’ images of extended
sources one sometimes finds modulations at spatial frequencies corresponding to unsampled
parts of the u-v plane (see e.g. Cornwell 1983 for an example). Convolution with a larger
than usual ‘CLEAN’ beam will sometimes mask this problem, especially when the unsam-
pled region is in the outer parts of the u-v plane. Reducing the loop gain 4 to very low
values generally has little effect, but there is reason to believe that the instability is trig-
gered by noise and hence that temporarily setting the loop gain equal to the noise-to-signal
ratio when the instability begins may help (U. J. Schwarz, private communication).

Cornwell (1983) has developed a simple modification to the ‘CLEAN’ algorithm which
is sometimes successful in countering the instability. A small delta function is added to
the peak of the beam before ‘CLEAN’ing. The effect of the spike is to perform negative
feedback of the ‘CLEAN?’ structure into the dirty image, and thus to act against any features
not required by the data. Spike heights of a few percent, and lower loop gains than usual
are usually required. If view of the limited success of this modification, a better solution is
to use another deconvolution algorithm, such as MEM.

The occurrence of the stripes is a natural consequence of the incorrect information
about radio sources embodied in the ‘CLEAN’ algorithm. Astronomers very rarely find
convincing evidence for the existence of such stripes in radio sources and so they are skep-
tical about such stripes when found in ‘CLEAN’ images. Unfortunately the only a priors
information built into ‘CLEAN?’, via the use of ‘CLEAN’ boxes, is that astronomers prefer
to see mainly blank images; there is no bias against stripes. Such considerations, and some
others, have led to the development of deconvolution algorithms which either incorporate
extra constraints on astrophysically plausible brightness distributions or are claimed to pro-
duce, in some way, optimal solutions to the deconvolution equation. In the next Section I
briefly consider one such algorithm.

4. THE MAXIMUM ENTROPY METHOD (MEM)

The deconvolution problem is one of selecting one answer from the many possible.
The ‘CLEAN’ approach is to use a procedure which selects a plausible image from the set
of feasible images. Some of the problems with ‘CLEAN’ arise because it is procedural so
that there is no simple equation describing the ‘CLEAN’ image. Thus, for example, a
noise analysis of ‘CLEAN’ is very difficult. By contrast, the Maximum Entropy Method
(MEM) is not procedural: the image selected is that which fits the data, to within the
noise level, and also has maximum entropy. The use of the term entropy has lead to great
confusion over the justification for MEM. There is no consensus on this subject evident
yet in the literature (e.g. Frieden 1972, Wernecke and D’Addario 1976, Gull and Daniell
1978, Jaynes 1982, Narayan and Nityananda 1984, 1986, Cornwell and Evans 1985). I will
use the “lowest common denominator” justification and define entropy as something, which
when maximized, produces a positive image with a compressed range in pixel values. Image
entropy is therefore not to be confused with a “physical entropy” (see Cornwell 1984).
The compression in pixel values forces the MEM image to be “smooth”, and the positivity
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forces super-resolution on bright, isolated objects. There are many possible forms of this
extended type of entropy, see e.g. Narayan and Nityananda 1984, but one of the best for

general purpose use is:
Iy
= — I —_ )
X Ek x In (Mke) 5 (7 10)

where M} is a “default” image incorporated to allow a priori knowledge to be used. For
example, a low resolution image of the object can be used to good effect as the default.

A requirement that each visibility point be fitted exactly is nearly always incompatible
with the positivity of the MEM image. Consequently, data are usually incorporated in
a constraint that the fit, x?, of the predicted visibility to that observed, be close to the
expected value:

V(u,,v,) - V(u,,v,)|?
x2 — E I ( 0.2 ( )I . (7_11)
r V("'I"')

Simply maximizing ¥ subject to the constraint that x? be equal to its expected value
leads to an image which fits the long spacings much too well (better than 10), and the
zero and short spacings very poorly. The cause of this effect is somewhat obscure but is
related to the fact that the entropy ¥ is insensitive to spatial information. It can be avoided
by constraining the predicted zero spacing flux density to equal that provided by the user
(Cornwell and Evans 1985).

Algorithms for solving this maximization problem have been given by Wernecke and
D’Addario (1976), by Cornwell and Evans (1985), and by Skilling and Bryan (1984). The
Cornwell-Evans algorithm is coded in NRAO’s Astronomical Image Processing System
(AIPS) as ‘VM’. It is generally faster than ‘CLEAN’ for larger images; the break-even
point being for images of about 1 million pixels.

5. PRACTICAL DETAILS OF THE USE OoF MEM
The following description relates to the AIPS MEM algorithm, ‘VM’.

5.1. The default image (prior distribution).

Examination of Equation 7-10 reveals that if no data constraints exist, the MEM
image is the default image, so the MEM image is always biased towards the default. A
reasonable “default default” image is flat, with total flux density equal to that specified. A
low resolution image, if available, can be used as the default to very good effect; this is a
nice way of combining single dish data with interferometer data. A spike in the default can
sometimes be used to indicate the presence of an unresolved source, which could otherwise
cause problems (see Section 5.5 below).

5.2. Total flux density.

As described above, if the total flux density in the MEM image is not specified then
the value found may be seriously biased if the signal-to-noise ratio is low. There is no real
way around this at the moment, except by guessing a value and then adjusting it to get an
image that looks “reasonable”, for example, possessing a flat baseline. For bright objects,
only an order-of-magnitude estimate is required to set the flux density scale. Of course,
then the estimated flux density is not fitted but is used only to set a reasonable default
image.

5.3. Varying resolution.
In the folk lore MEM is criticized for resolution that depends on the signal-to-noise
ratio. In fact, there are sound theoretical reasons to believe that this effect is common to
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all non-linear algorithms which know about noise (Andrews and Hunt 1977). If you want
to “fix” the resolution in MEM, you basically have two choices:

(1) Convolve the final MEM image with a Gaussian beam of appropriate width to
smear out the fine scale structure (the convolved image makes a very good default
image for another deconvolution!).

(2) Before deconvolution, convolve the dirty image with a Gaussian beam.

The advantages of (2) over (1) are that the algorithm usually converges faster, and
that given the non-linear nature of the deconvolution, the answer can be (and usually is)
better. For example, sidelobes around a point source embedded in extended emission are
not well removed by MEM, whereas scheme (2) often alleviates this effect.

Quite often, the super-resolution exhibited by MEM images is reliable and can be
trusted up to an order of magnitude in solid angle.

5.4. Bias.

Another commonly heard complaint about MEM is that the answer is biased, i.e. that
the ensemble average of the estimated noise is not zero. This is certainly true, and is
the price paid by any method which does not try to fit exactly to the data as ‘CLEAN’
does. Bias in an estimator is quite common and acceptable since it usually leads to smaller
variance. Cornwell (1980) has estimated the magnitude of the bias, and has shown that it
is much less than the noise for pixels having signal-to-noise ratio much greater than one.
In fact, if the u-v coverage is very good then for bright pixels the effect of noise on an
MEM image is very similar to that on a dirty image. The effect of bias can be substantially
reduced by using a reasonable default such as a previous MEM image smoothed with a
Gaussian; then only the highest spatial frequencies are biased.

5.5. Point sources in extended emission.

Nearly all the power of MEM to remove sidelobes comes from the positivity constraint.
Hence if the source sits on a background level of emission then the sidelobes will not be
removed fully. The only consistently effective solutions are either (a) to remove the point
sources using ‘CLEAN’ or (b) to smooth the dirty image prior to deconvolution.

6. COMPARISON OF ‘CLEAN’ AND MEM

‘CLEAN’ has dominated deconvolution in radio astronomy since its invention nearly
15 years ago, but has not been widely applied in other disciplines. One of the major reasons
for this is the decomposition into point sources, which is often not permissible in other types
of images. In contrast, MEM has spread to many different fields, probably because most of
the justifications are independent of the type of data to which it is applied.

The philosophy behind MEM is intriguing and may convince some of you about the
objectivity of MEM (see Jaynes 1982 for an exposition of MEM from its inventor). For
those of you who do not become acolytes, the practical differences between ‘CLEAN’ and
MEM are probably more interesting.

‘CLEAN’ is nearly always faster than MEM for sufficiently small and simple images, be-
cause its approach of optimizing a relatively small number of pixels is simply more efficient.
For typical VLA images, the break even point is at around a million pixels of brightness.
For very large and complex images, such as those of supernova remnants, which may con-
tain up to 100 million pixels, ‘CLEAN’ is impossibly slow and an MEM-type algorithm is
absolutely necessary.

‘CLEAN’ images are nearly always rougher than MEM images. This may be traced to
the basic iterative scheme: since what happens to one pixel is not coupled to what happens

119



Tim Cornwell

to its neighbors, there is no mechanism to introduce smoothness. MEM couples pixels
together by minimizing the spread in pixels’ values, so the resulting images look smooth
although the entropy term does not explicitly contain spatial information.

Both MEM and ‘CLEAN’ fail to work well on certain types of structure. ‘CLEAN’
usually makes extended emission blotchy, and may introduce coherent errors such as stripes,
while MEM copes very poorly with point sources in extended emission. Both work quite
well on isolated sources with simple structure, and can produce meaningful enhancement
of resolution although MEM seems to do slightly better in most cases.

Since MEM tries to separate signal and noise, it is necessary to know the noise level
reasonably well. Also, as mentioned above, knowledge of the total flux density in the image
helps considerably. Apart from this MEM has no other important control parameters,
although it can be helped enormously by specifying a default image. ‘CLEAN’ makes no
attempt to separate out the noise and so specification of the noise level is not required. The
main control parameters are the loop gain 7, and the number of iterations N¢r, both of
which are important in determining the final deconvolution.

The default image of MEM is a very powerful mechanism for introducing a priors
information. I have previously described the use of a simple image as a default; however,
the default image need not be only a simple fixed set of numbers, but instead can be used
to introduce functional relationships between pixels. For example, to further encourage
smoothness, make the default for a pixel equal to the geometric mean of the brightness of
its neighbors (S. F. Gull, private communication). Only the simple fixed default image can
be easily mimicked by ‘CLEAN’: the default image is simply used as the starting point for
the collection of ‘CLEAN’ components. Thus the use of a disk model for a planet is an
example of the use of a default in ‘CLEAN’.

7. FUTURE DEVELOPMENTS

Deconvolution in radio astronomy is dominated by two non-linear algorithms, ‘CLEAN’
and MEM. Other non-linear algorithms exist and may turn out to be useful, at least in the
sense that, as with ‘CLEAN’ and MEM, their defects are orthogonal to those of other
algorithms.

The concept of a default image can be extended to ‘CLEAN’ and other algorithms,
and will probably improve their performance and suggest different types of algorithm.

A relatively unexplored area is that of linear methods with boundary conditions, such as
singular value decomposition (SVD; e.g., Andrews and Hunt 1977). SVD is a generalization
of eigenfunction analysis to systems split into two domains, such as the sky and the u-v
planes. Using SVD, the constraint of confinement could be applied to estimate unsampled
data and thus remove sidelobes. Unfortunately, it is very expensive to use unless the
geometry of the imaging system is simple in some way and thus it may only be applicable
to certain telescopes, such as east—west arrays.

It is ironic that, formally, more is known about the type of images generated by MEM
than by ‘CLEAN’ (see e.g. Narayan and Nityananda 1986), since ‘CLEAN’ is rather more
widely used. Indeed many of the criticisms of MEM arise because certain of its properties,
such as the bias, can be analyzed. Schwarz’s analysis of ‘CLEAN’ is incomplete in that it
does not address the interesting underdetermined case in which there are fewer data than
pixels. I hope that someday this problem might be investigated satisfactorily.

Although deconvolution algorithms are now as important in determining the quality of
images produced by a radio telescope as the receivers, correlators and other equipment, they
are far less well understood. A good description is that they are poorly engineered. Only
further research and development of new and existing algorithms can redress this inbalance.
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8. Special Problems in Imaging

WILLIAM D. COTTON

In practical applications, one or more of the simplifying assumptions which were used
in Lectures 1 and 2 to derive the relationships between the interferometer visibility measure-
ments and the image of the sky may be violated. Serious violations of these assumptions
result in distortions and/or errors in the image. Practical considerations, such as finite
computer resources, may also occasionally create difficulties. This Lecture addresses sev-
eral potential problems from a relatively practical point of view; the general nature of the
problems is described, as are the conditions under which they become important. Finally,
there is a discussion of techniques used to reduce the distortions and/or the error introduced
into images and to reduce the computing requirements.

1. WIDE FIELD PROBLEMS

This Section discusses various common effects that are present to some extent in images
of regions of any size, but which become important only when a wide field of view is imaged.

1.1. Bandwidth smearing (chromatic aberration).

The effect of finite bandwidth on a correlator was discussed in Lecture 2; this effect
can be shown by expressing u and v as functions of frequency and explicitly averaging over
frequency. The monochromatic Fourier transform relation between visibility and intensity
(Lecture 1, Equation 1-9) can be re-expressed in terms of the bandwidth-smeared intensity
T(l, m), the frequency-dependent u’s and v’s and the instrumental bandpass g(v) as:

i(’: m) = // V(ﬂo, vo)ez’“'("“"'""'“)duo de N (8—1)
where
~ _ 1 1 4 v v 2 211'!—:-.—'“("0'-""0"‘)
Pluoo) = o [V (wZ,wl) (Z) o5 v, (82
and

vo = reference frequency,

u=uo(1+y—vo)=uoia

Vo Vo
V=V 1 4
v=y(l+ =v—,
Vo Vo

and Av = the observing bandwidth .

In general, the effect is to smear I(l, m) with a radially oriented image of the bandpass.
This smearing is not a proper convolution since the smearing function is a function of (I, m).
A specific example is worked out in the Appendix to this Lecture in which the radial extent
of the image of the bandpass is shown to be proportional to v/I2 + m32 Av /v,.
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Figure 8-1. The grey scale shows the real part of the inverse Fourier transform (visibility function) of a
model source brightness distribution. The boxes indicate the region over which a given data sample might
be averaged; the radial extent of the box is determined by the bandwidth, and the asimuthal extent by the
time averaging. If the visibility function changes significantly over the region being averaged, as in the case
illustrated here, the resulting image will be distorted.

The effect of using a finite bandpass is to average over a finite region of the u-v plane.
Smearing occurs when the visibility changes significantly in the region over which the aver-
aging takes place, as in Figure 8-1.

Since the averaging due to the bandpass is along a radial line, the smearing in the
image plane is also in the radial direction.
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Figure 8—2. The effect of bandwidth smearing on a source 12! 9 northeast of the delay tracking center.
The smearing is along the radial direction.

A practical example of this effect is shown in Figure 8-2, in which the image of a
bandwidth-smeared extragalactic double source is shown. This observation was made with
the VLA at 1.4 GHz with a 50 MHz bandpass, and the source was 12!9 from the phase
tracking center.

As described above, the width of the smeared image is proportional to the fractional
bandwidth—multiplied by a function of the separation (I, m) from the phase tracking center.
For sufficiently small fields of view, the smearing has less effect than the convolution with the
synthesized beam and is thus relatively unimportant. For a rectangular bandpass function,
the degradation of the response of an interferometer to a point source is shown in Lecture

2 and in the Appendix to be:
sinxﬁ—;’\/u’ +v24
x8r\/uT 29

where 0 is the angular distance from the phase center, measured in radians: 8 = /12 + m2.
A conservative approach is to consider the image to have been substantially distorted if the
amplitude on the longest baseline is reduced by more than 5%.

Bandwidth smearing may not be a serious problem if the affected source is not directly
of interest but must be imaged only to remove its sidelobes from the region that is of interest.
Bandwidth smearing is a single-valued, symmetric function of u and v, so the observed data
correspond to some, rather unlikely, brightness distribution on the sky. The response to the
source can therefore be removed by standard deconvolution procedures. An example of the
successful deconvolution of the effects of the source shown in Figure 8-2 from another field
is given in Section 1.3 below.

(8-3)
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If an undistorted image is desired, there are several possible approaches to reducing
bandwidth smearing; these include: (a) using a single sufficiently narrow band, (b) narrow
bandwidth synthesis!, and (c) analytical deconvolution. A related technique, which is not
directly used to reduce bandwidth smearing but is sufficiently similar to these methods that
it merits attention here, is (d) wide bandwidth synthesis.

1.1.1. Observing with a single narrow bandwidth. The effects of bandwidth smearing are
proportional to the bandwidth, so the simplest remedy for bandwidth smearing is to observe
with a single bandwidth narrow enough that the problem becomes negligible. The resulting
sensitivity loss may make this approach unattractive, however.

1.1.2. Narrow “bandwidth synthesis”. If the source can be considered to have the same
brightness all across the bandpass, then, as in spectral line observing, the observing band
can be divided up into a number of narrowband channels—sufficiently many of them that,
in each one, bandwidth smearing is no longer a problem. In practice, the requirement for a
constant source brightness distribution across the observing band necessitates a relatively
small (s a few percent) total fractional bandpass.

As was discussed in Lecture 2, Section 10, if each of the narrow band channels is imaged
individually and then averaged, the bandwidth smearing will be that due to the channel
bandwidth rather than to the total bandwidth. The individual channels may be combined
on a common grid either while gridding (if an FFT is being used) or after making the
Fourier transform.

The practical effect of this bandwidth synthesis is that the sidelobes are smeared,
rather than the image of the source. This is because explicit use is made of the bandwidth
to increase the u-v coverage used for the point source response; each of the channels in effect
provides its own distinct u-v coverage. In many cases, this reduction of the far sidelobe levels
will reduce the effects of a distant, strong confusing source better than using the bandwidth
smearing to reduce its response.

1.1.8. Analytical deconvolution. Several analytical techniques have been suggested for
dealing with bandwidth smearing (e.g., Clark 1982). The principal difficulty with these
techniques is that if the image is heavily distorted, then much of the desired information
has been lost, and the restoration is likely to tell more about the bandpass functions g(v)
than about the source.

1.1.4. Wide “bandwidth synthesis®. The use of bandwidth synthesis to increase the u-v
coverage can be expanded to wider bandpasses. The frequency channels need not be
contiguous, but may be as widely separated as the electronics will allow; this is a mode
frequently used for astrometric and geodetic measurements with very-long-baseline inter-
ferometry (VLBI). If the frequency channels are relatively widely spaced (so they span
bandwidths of tens of percent), then there is a significant improvement of the u-v coverage
of the observation—which may result in a significant improvement of the quality of the
derived image. Unfortunately, in this regime the assumption that the intensity distribution
across the source is constant across the bandpass is likely to break down. For these cases
the analysis of the data should take into account the variations in the spectral index across
the source, and perhaps also spectral curvature. For a more detailed discussion of this
technique see Cornwell (1984).

1 The term bandwidth synthesis is frequently used to describe the process of improving the u-v coverage by
independently gridding and combining data obtained in several different frequency channels. — Eds.
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1.2. Time-average smearing.

Time-average smearing is similar to bandwidth smearing, since it is the result of av-
eraging the data over time periods during which the source visibility, on at least some
baselines, is not constant. Earth-rotation synthesis arrays use the rotation of the earth
to vary the u-v location of the constituent interferometers; thus, the u-v locations being
sampled are constantly changing. Averaging data over times during which the visibility
changes significantly causes an amplitude reduction which will result in a distortion of the
derived image.

The effects of time-average smearing are much more difficult to analyze than those of
bandwidth smearing, because they depend on the time derivative of the observing geometry.
Due to the complex nature of the effect, its symptoms are not as easily recognized as are
those due to bandwidth smearing. However, since longer baselines tend to move more
rapidly through the u-v plane and to occupy regions of higher spatial frequencies u and
v, where the visibility function may be highly variable, time-average smearing tends to be
stronger on longer baselines. Time-average smearing will mimic resolution, and the image
of a point source away from the phase center will appear resolved and distorted. Since the
phase of the response in the u-v plane to a source varies increasingly rapidly with increasing
separation of the source from the phase center, the extent of the smearing also depends on
the separation of the source from the phase center of the pre-averaged data.

If the source is at a celestial pole, then the u-v tracks are circular and the smearing
is in the azimuthal direction and proportional to the distance in the [-m plane from the
visibility phase center. In this case, the source image will be convolved with the image of
the time-averaging function, and the profile of the source will be rectangular.

Figure 8-3 shows a relatively extreme example of the effects of time-average smearing
derived from model data. This Figure shows the ‘CLEAN’ image derived for a given model
point source, with and without time-average smearing.

Lecture 2, Section 11, described how to determine whether time-average smearing is a
problem compared with bandwidth smearing. The principal reasons for longer integration
times are economic: shorter integration times require more storage medium, more 1/O
time and more CPU time for the data reduction. If considerations such as these are not
overwhelming, the simplest solution to time-average smearing problems is to use a shorter
integration time, if one is available from the correlator.

If available computer resources dictate some averaging of the data, then there are
several approaches. Three of these are (a) baseline-dependent averaging, (b) optimal time
series filtering, and (c) multiple fields.

1.2.1. Baseline-dependent averaging. As shown above, the effects of time averaging are
most severe on the longest baselines. If a given array has a relatively centrally-condensed
u-v coverage, then much of the data is obtained from the shorter baselines. Thus, the bulk
of the data may be significantly reduced in volume if the averaging time is a function of
the baseline length, with shorter baselines having longer integration times. In this case, an
upper limit to the integration time should be imposed which corresponds to the timescale
for instrumental or atmospheric variations, so that self-calibration will be able to remove
these effects.

1.2.2. Optimal time series filtering. Averaging of data is usually done by convolving a time
series of data with a rectangular function and sampling at the center of the function. Recent
work in this area suggests that other convolving functions may allow a data compression
factor on the order of four using Finite Impulse Response filtering. A good reference is
Crochiere and Rabiner (1983). Unfortunately, a convolution on a time sequence (i.e., along
a baseline track) does not correspond to a convolution in the u-v plane. The effects of other
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Figure 8-3. (a) shows the ‘CLEAN’ed image of a point model s 500 synthesised beamwidths west of
the phase center without time-averaging, and (b) shows the ‘CLEAN’ed response to averaged data for the
same model, showing the effects of time-average smearing.

convolving functions, and for that matter the rectangular function currently in use, need
further study.

1.2.8. Multiple fields. Since the effects of time-average smearing are a function of the
separation from the phase center of the pre-averaged data, they can be reduced in a given
direction on the sky by shifting the phase center before averaging. Data for multiple fields
may be derived from the pre-averaged data by this technique. Unfortunately, multiple
copies of the averaged data must be kept. If the data compression due to the averaging
is sufficiently large, and the number of fields is sufficiently small, then this technique is
practical.

1.3. Sparse fields and confusing sources.

Observers are frequently interested in wide fields of view which contain widely scattered
sources but which are otherwise mostly empty. This happens either because the sources
of interest are widely scattered—e.g., as in surveys—or because there are scattered sources
in the field whose sidelobes contribute significantly to the region of interest. (Such sources
are usually termed confusing sources in radio astronomy). Such fields of view may contain
several relatively small, but widely separated regions of interesting emission, with blank sky
in between. These regions cannot be deconvolved independently because the sidelobes from
one will appear in each of the others.

Figure 8—4 shows an example of the effect of widely scattered confusing sources. This
Figure shows the field around the position of a pulsar observed with the VLA at 1.4 GHz.
Figure 8—4a clearly shows the sidelobes of distant confusing sources (one of which is shown
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Figure 8—4. (a) The region around a pulsar observed with the VLA at 1.4 GHs, showing the sidelobes of
distant, confusing sources. (b) The same region as in (a) with the effects of the confusing sources removed
by ‘CLEAN’.

in Figure 8-2). To remove the effects of these distant sources by deconvolving the entire
region, a 4096 x 4096 image would be necessary.

One approach to this problem is to image the entire region and then to restrict the
deconvolution to the areas of emission. This approach can be very expensive when the
image size becomes very large, as in the field shown in Figure 8—4. If most of the region to
be imaged is blank, then it is more economical to process only the subregions that are of
interest.

Since the sidelobes of sources in one subregion must be removed from the other sub-
regions, the subregions must all be deconvolved in parallel. The ‘CLEAN’ deconvolution
technique is easily adapted to this purpose since it accumulates the deconvolved image by
finding and removing a series of delta functions from the image. If the responses to com-
ponents found in any one subregion are removed from all the others, ‘CLEAN’ will proceed
as though there is a single image with a number of windows.

Figure 8—4b shows the result on the image shown in Figure 8—4a of ‘CLEAN’ing four
256 % 256 subregions, centered on the position of interest and three distant confusing sources.
The r.m.s. fluctuation in Figure 8—4a is 109 uJy and in Figure 8—4b is 62 uJy. It is of interest
to note that the bandwidth-smeared image shown in Figure 8-2 has one of the confusing
sources removed; ‘CLEAN’ properly removed the response, although it could not recover
the correct image of the bandwidth-smeared source.

In order to subtract the sidelobes in the image plane, the dirty beam must be computed
for an area twice the size (i.e., four times the area) of the region of interest. Thus, it is
frequently much more economical to subtract the current ‘CLEAN’ model from the ungrid-
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ded u-v data every so often, then re-grid and re-FFT the data. This approach (termed the
Cotton—Schwab algorithm in Lecture 7, Section 2.3) is a variant of the Clark modification to
‘CLEAN’ (Clark 1980) and will be referred to here as the ungridded subtraction technique.
Other deconvolution methods would similarly benefit by this technique.

A number of features of this technique make it attractive for processing single as well
as multiple fields of view. The most obvious of these is that the ungridded subtraction
allows ‘CLEAN’ing (almost) all of an image, rather than only a quarter of its area. An-
other advantage is that the aliased responses—both to sources outside the subregion and to
sidelobes of sources in the subregion which appear outside it—are greatly reduced. Other
potential uses of the ungridded subtraction technique will become apparent later.

There are several possible techniques for subtracting a model from the u-v data. For
‘CLEAN’ or other deconvolution techniques which can produce a list of discrete components,
a ‘direct Fourier transform’ can be employed (see Lecture 5). In the more general case, the
(inverse) Fourier transform of the model for each field can be computed, and the values at
observed u-v locations can be interpolated. These methods are discussed below.

1.8.1. Direct Fourier transform. The (inverse) ‘direct Fourier transform’ of a linear combi-
nation of N delta functions (point components), evaluated at a given u, v and w, is given
by

N
V(u, v, w) — ZA‘.e—zﬂ'(l;u+m.-v+mw) , (8—4)
=1

where
A; = flux density of component ¢,

(1;, m;) = position of component 1,

and n; = \/1 =13 —m?, (lo,mp) = center of the field.
The role of the w term in Equation 8—4 is to correct the phase center of the field to the phase
center of the u-v data, and the sum can be extended over components found in all fields.
Similar expressions can be derived for other models (models which include other than point
components). The method is relatively efficient when there is a small number of model
components or a large number of fields and/or bandwidth synthesis frequency channels,
but it may become very expensive for large numbers (100,000 or more) of components.

1.8.2. Gridded interpolation. Another technique, which becomes attractive when the model
cannot be expressed as a manageable number of discrete components, is to compute the
(inverse) Fourier transform of the model of a given field and interpolate the model values
at the observed u-v locations. This process must be done separately for each field, and each
frequency channel must be interpolated independently.

1.4. Noncoplanar baseline effects (w term).
‘ Section 4.2 of Lecture 1 described a small-field approximation to the fundamental
Equation 1-5 whereby the transformation became a two dimensional Fourier transform. In
the general case this approximation breaks down, and the effects due to ignoring the w term
may become serious.

In order to estimate the consequences of neglecting the w term, consider the effect on
a point source at (I, m) observed with a single interferometer. As was shown in Lecture 2
the phase error (in radians) incurred by ignoring the w term is:

error =5 xwf?, (8-5)

130



8. Special Problems in Imaging

where 8 = /12 + m?.

If w is a linear function of u and/or v, as in the case of a coplanar array, then the
linearly increasing phase error across the u-v plane will appear as a position error in the
image plane. The apparent position shift is a function of the zenith angle and the azimuth of
the source. Thus the source will appear to move during the observations, and the resultant
image will show the trace of this apparent motion during the observations. For noncoplanar
arrays (e.g., in VLBI) the effect is more complex. This problem has been discussed in a
number of other places (Clark 1973, Hudson 1977, Clark 1981)

For a coplanar array, w in the azimuth of the source is ~ v/u? + v2 sinz where 2
is the instrumental zenith angle. Using this relation, Equation 8-5, and the relation
“phase error (in turns, i.e., multiples of 2x)” = “position error (radians)” x “spatial fre-
quency (wavelengths)”, the apparent position shift in arcseconds is approximately given
by:

des 62 .
position error & o——-—o——o sin z. (8-6)
The effects for noncoplanar arrays (e.g., VLBI arrays) will be of the same order of magnitude
if the sin z term is dropped, although, in this case, the effect will not mimic a simple position
shift.

If the error derived from Equation 8-6 is small compared to the synthesized beam
size, then this correction may be ignored. For astrometric or geodetic applications the
requirements are more stringent than if only an image is desired. In general, the fields
of view imaged with a coplanar array in which w is not zero will be distorted, although
the effect can be reduced by restricting the observations as closely as possible to meridian
transit.

Examples of the effects of neglecting the w term in the transform are shown in Figure
8-5. This Figure shows model source data for a point 47!5 from the phase center, for VLA
u-v coverage obtained at 40° declination. Figure 8-5a shows the image derived for a full
track of the object, and Figure 8-5b shows the image derived for a single 30 minute subset
of the data. Figure 8-5a shows a gross distortion of the image as the apparent position of
the source changes during the day. Figure 8-5b appears relatively undistorted, but note
the > 30” position error.

There are several techniques for reducing noncoplanarity problems in addition to ob-
serving only near the zenith; those which will be discussed here are (a) multiple fields of
view, (b) geometric correction, and (c) 3-D FFTs.

1.4.1. Multiple fields of view. As was shown above, the errors resulting from ignoring the w
term increase as the square of the distance from the phase center. Thus, the errors due to
ignoring the w term can be arbitrarily reduced by breaking the region up into a number of
fields of view, each of which is imaged using its center as the phase center. The ungridded
subtraction technique discussed previously is useful for deconvolving the resultant images.

1.4.2. Geometric correction. If the array is coplanar with nonzero w, or if it can be
considered to be so for suitably chosen time intervals, then

w=au+bv, (8-7)
and there will be a simple geometric distortion of the image which can be corrected. This
technique, which is especially useful for east—west arrays, is in use at Westerbork. If the
array is only approximately coplanar for intervals of time, then the field can be imaged in

each interval, corrected, and (finally) all of the images averaged.
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Figure 8-5. (a) The response of the VLA to a point model source 47!5 in RA from the phase center, for
full coverage in the VLA B configuration at 1.4 GHs. Zeroes on the axes label the correct position of the
source; the model contained 1 Jy, but the peak in the image is 0.071 Jy. (b) Similar to (a), but made using
the u-v coverage corresponding to only 30 minutes of observation. The peak in the image is 0.948 Jy.

A note is in order here about dividing data into several time segments. Since the
Fourier transform is linear, data can be averaged before or after the transform. However,
if uniform weighting is being applied to the data, then this correction must be done before
the data are divided into time intervals.

1.4.8. 8-D FFTs. A more nearly correct, but expensive, method is to do a full three-
dimensional FFT and then project the result onto the celestial sphere.

1.5. Nonisoplanatic and antenna polarization effects.

A common assumption made during calibration is that the complex gains needed for
calibration do not vary with position on the sky. This assumption is unavoidable during
the initial calibration phases, since the distribution of signals from the sky is, of course,
unknown. This assumption may be incorrect for some wide field observations.

The two principal causes of position-dependent calibration are small-scale variations
in the atmosphere, especially the ionosphere, and instrumental—primarily polarization—
variations across the antenna pattern. Ionospheric problems become increasingly severe with
decreasing frequency, both because the antenna pattern becomes larger and because phase
fluctuations become increasingly larger. When the field of view becomes larger than the size
of an isoplanatic region (a region over which the phase and amplitude errors induced by the
atmosphere can be considered to be constant), position-dependent calibration is required.
Position-dependent polarization problems arise in wide field observations when the antenna
patterns in the orthogonal polarizations are not identical and/or are not aligned.
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By the nature of position-dependent calibration, its application must involve a decon-
volution of the image. Schwab (1984) has suggested a solution to this problem using an
adaptation of self-calibration in which the gain at a number of grid points on the sky is de-
termined. The gain at intermediate locations is determined by interpolation. Instrumental
gain variation may be computed or accurately measured independently of the observations,
but atmospheric effects must be determined from the data.

The corrections can then be applied using an adaptation of the ungridded subtraction
technique. The model used to determine the response can incorporate the position and/or
time variations in the gain. Several iterations of this technique may be needed.

1.6. Regions larger than the primary beam.

It is sometimes necessary to image a region that is large compared with the main lobe
of the primary beam pattern A(l{,m) of the array elements. In this case the image must
consist of a mosaic derived from separate pointings of the array. Since the regions observed
by the individual pointings of the array will provide a great deal of overlap on the sky, a
substantial improvement in the deconvolution may be obtained by deconvolving the regions
in parallel. This technique also allows the determination of, and removal of, the effects of
relative pointing errors. The analysis must explicitly include the beam pattern A(l,m) of
the array elements; the images of the different regions must also be projected onto the same
plane (i.e., have the same tangent point) and must use the same grid of positions on the sky.
For a more detailed discussion of this technique, also known as tesselation, see Cornwell
(1985).

2. TIME-VARIABLE EFFECTS.

There are a number of time-variable effects which are not removed by normal calibration
procedures. Two of these, involving variability of the source and of the antenna pattern, are
discussed below. In these cases it is frequently desirable to divide the data into short time
intervals, but this may have a serious negative impact on the deconvolution of the image.
Deconvolution is nonlinear, so combining images after deconvolution is not equivalent to
combining them before deconvolution. The dynamic range of the deconvolution depends
strongly on the u-v coverage used to make the image, so that only a relatively low dynamic
range image can be obtained from the short time interval data.

2.1. Variable sources.

One of the fundamental assumptions in forming an image using a synthesis array is that
the distribution of brightness on the sky remains constant during the observations. If the
source varies during the observations, then the image that is derived is not the convolution
of the average brightness of the source with the dirty beam derived in the usual manner.
This will lead to an incorrect deconvolution for the source. Two classes of violations of the
assumption of constancy are considered below.

2.1.1. Variable point sources. Pulsars may exhibit considerable brightness fluctuations due
to interstellar scintillations, and some compact, galactic sources have been observed to have
significant variations on timescales of a day. An example of a deconvolved image derived
from data for a time variable point model is shown in Figure 8-6.

Various artifacts appearing in this Figure correspond to sidelobes during time periods
when the flux density of the source was different from the average. Especially troublesome
are the artifacts which appear similar to jets—these are due to the arms of the VLA.

Two approaches which can be taken to the problem of a time-variable point source
are (a) to divide the data into time intervals for which the data can be considered to be
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Figure 8—6. The deconvolved (‘CLEAN’ed) image derived from model data for a point source with time-
variable flux density. The u-v distribution used was that of a source observed with the VLA in the A
configuration at 1.4 GHs.

constant, or (b) to subtract a time-variable point model from the data before making the
image. The latter approach is preferable if there is weak extended emission in the field and
a high dynamic range image is desired.

2.1.2. Variable extended sources. Under some circumstances, extended emission may be
variable on the timescale of the observations. Two examples of this are observations of
the sun, which can vary on short timescales, and observations of planets, which rotate. In
these cases, if an image is desired, then the data must be divided into sufficiently short
time intervals. This will result in relatively poor u-v coverage and correspondingly poor
dynamic range. If the desired result can be described by a time-evolving model, such as for
VLBI observations of the rapidly changing galactic object SS 433, then the parameters of
the model can be fitted directly to the observations.

2.2. Variable sidelobes.

Antennas with altitude-azimuth mounts have the property that the antenna primary
beam pattern A(l, m) rotates on the sky. If there are strong confusing sources outside of the
main beam of the antenna pattern, then they will appear to vary during the observations,
as the pattern rotates over them. This is especially problematic at lower frequencies where
the primary beam patterns of the array elements are broad and typically contain many
strong sources. The effects of these sources on the region of interest will not be completely
removed by the standard deconvolution techniques.

An approach to this problem is to divide the data into short time intervals and remove
the effects of the confusing sources from the data in each interval. After the effects of the
confusing sources are removed, the data can be recombined to form the image of the region
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of interest. For reasons discussed above, the image of the region of interest should not be
deconvolved before the different time intervals are combined.
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APPENDIX

An Example of the Bandwidth Smearing Effect. Let us consider a specific example
of the bandwidth smearing of a unit amplitude point source. Since the smearing is due to
the averaging along a radial path in the u-v plane, we can consider the one-dimensional case,
with no loss of generality. Using the shift theorem (Bracewell 1978) the visibility function
becomes

V(u) = e~ 27iulo | (A8-1)
where /o = the location of the source. Further, assume a rectangular bandpass function
which is given by

_J1, iflv—-w|<Av/2, .
9() = {0, otherwise . (452}

The relation between intensity and visibility can then be explicitly stated by averaging over
frequency:

oo vo+Av/2 . .
() = [ L / emiutg=2mivle gy gy (As-3)
—00 Av vo—Av/2

Expressing u explicitly as a function of frequency,

V-V
u=ug <1+ ” 0) ’

and du = Zdug. Since the fractional bandpass can be assumed to be small, v/vq will be
close to unity and can be ignored. Rewriting the expression for the intensity,

I(l)= /-oo -I——/Vo-i-AV/? ezsri(luo(l+1:—°'m)—louo(l+?—:fﬂ-)) dvduo
-o0 Av vo—-Av/2

Vo +AV/2 (A8—4)

oo -
_ / 1 _2xiuo(i~to) AT
—o0 AV vo—Av/2

uoli=to) gy, dug .
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Let us for the moment consider the inner integral—substitute v’ = v — v, dv’ = dv.
Then

Av/2

Av z /, -1 > '} =1
1 /‘ /3 hw wol=la sin2xv'ug=5 % dcos2xviup ¢

R dy Yo  __
Ay tyot=le top I=lo
—Av/2 2xv'ug st 2xv'ug o —Av/2
l

__sinxAvup's (A8-5)
- x Auuo'—;:-“
_Avuo(l—lo)
Vo

Equations A8-5 yield the result which earlier was stated without proof (Eq. 8-3).
By the convolution theorem, Equation A8—4 can be rewritten as

oo oo - .
()= / g2 ivo(i=to) gy, + / sinc (éz_uﬁ(_l_ﬁ) e ivol dy, (A8-6)
—o0

where * denotes convolution. The first integral corresponds to our initial model; i.e., §(lo).
Bracewell (1978) solves the second integral, which gives what we will call the smearing
function S(I). Recognizing the Fourier transform of the sinc function as a unit step function,
and applying the similarity theorem (see Bracewell 1978), we get

_ 1 A l .
0= %f(""o)'n (%E('-'o)) ’ 4s

H(s)z{l’ if s| < 7,

otherwise .

where

Again applying the approximation < -41 < 1, we find that the width of this function is Io
as was asserted in the text for the two-dlmenslonal case.
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TIM CORNWELL

1. PROBLEMS WITH ORDINARY CALIBRATION

Calibrating a synthesis array is one of the most difficult aspects of its operation and, in
many cases, is the most important factor in determining the quality of the final deconvolved
image. Small quasi-random errors in the amplitude and phase calibration of the visibility
data scatter power and so produce an increased level of “rumble” in the weaker regions of
the image, and other systematic errors can lead to a variety of artifacts in the image.

Ordinary calibration (see Lecture 4) relies upon the monitoring of the variable quanti-
ties in the array by frequent observations of a calibrator source of known structure, strength
and position. The relationship between the visibility V;; obs observed at time ¢t on the i-3
baseline and the true visibility V;; true(t) can be written very generally as:

Visiobs(t) = Gi(t) G5 ()G:5(t)Viserue(t) + ass(t) + ei5(2) - (8-1)

The terms G;(t) and G,(t) represent the effects of the complex gains of the array elements
¢ and j; the term G;;(t) represents the non-factorable part of the gain on the s-5 baseline;
a;;(t) represents an offset term and ¢;,(t) is a pure noise term due to the thermal noise. The
effects G;;(t) and a;;(t) which factor per baseline can usually be eliminated to a satisfactory
degree by clever design (see Lecture 3), so I will mainly ignore their presence hereafter.
Equation 9-1 can then be simplified to

Vijioba(t) = Gi(t) G5 (t)Vijarue(t) + €5(2) - (9-2)

For simplicity I have neglected the effects of time averaging and finite bandwidth, discussed
in Lectures 2 and 8; these have relatively little impact here. The element gain (usually
called the antenna gain in radio astronomy) really describes the properties of the elements
relative to some reference (usually one array element for phase and a “mean” array element
for amplitude). Although this use of the word “gain” may seem confusing, it is quite helpful
in lumping all element-based properties together. The gain for any one array element has
two contributing components: firstly, a slowly varying instrumental part and secondly, a
more rapidly varying part due to the atmosphere (and ionosphere) above the element.
Variations in the phase part of the atmospheric component nearly always dominate the
overall variation of the element gains (see Lecture 4).

Given a calibrator source near the region to be imaged, one can solve for the element
gains as functions of time. Interpolation of the solutions then provides approximate values
for use in correction of the source visibility data. If the equations are overdetermined, then
a least-squares technique can be utilized to good effect in overcoming the random errors
embodied in the ¢;;(t). In particular, for an array in which all baselines are correlated
and whose elements are identical, when calibrating on a point source of flux density S the
variance in the gain estimates due to the receiver noise is (Cornwell 1981):

oy

05 = SN —3)’ (9-3)
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where o7 denotes the variance of a visibility datum (assuming all visibilities have equal
variance) and N is the number of array elements.

The main drawback to ordinary calibration arises from temporal and spatial variations
in the atmosphere (and ionosphere) through which the wavefront passes before reaching
the array elements. Values for the G;(t) inferred from observations of a calibrator may not
apply to a source observed at a different time and in a different part of the sky. Hence, the
effect of the G;(t)’s cannot be removed completely and residual errors are left. The level
of error varies tremendously with the frequency at which the observations are made and
with the lengths of the baselines involved, but on a source of appreciable strength it nearly
always overwhelms the error due to the receiver noise term.

Other obstacles to ordinary calibration are the strength (or lack of it) of the calibrators,
and any resolved structure they may contain. In some circumstances one may not be able to
find a sufficiently strong unresolved calibration source anywhere near the source of interest.

The net effect of this calibration problem depends upon the context. In VLBI, it
prevents imaging altogether, whereas for shorter-baseline arrays (such as the VLA and
Westerbork) it merely lowers the image quality attainable. Fortunately, progress can be
made if the element gains are allowed to be degrees of freedom when determining the sky
intensity distribution. Allowing the element gains to be free parameters is the basic principle
of self-calibration.

2. REDUNDANT CALIBRATION AND SELF- CALIBRATION

I now discuss the pros and cons of letting the element gains be free parameters. If all
baselines are correlated then there are, at any one time, N complex gain errors corrupting
the 1 N(N—1) complex visibility measurements. Hence there must be at least } N(N—1)-N
“good” complex numbers hidden in the data that can be used to constrain the true sky
intensity distribution!. Let us briefly consider what is lost by using only these “good”
numbers. The most obvious losses are the absolute position and strength of the source.
The former produces a phase term in the visibility which depends upon the difference in
position of the element in an interferometer (see Lecture 1); hence it can be factored out
as two element-related terms. The loss of absolute source strength information is obvious
from Equation 9-2. One also loses the ability to distinguish between various different source
structures but I will show that for large enough numbers of array elements this effect is not
too important since the ratio of constraints to degrees of freedom increases.

It is clear what one can expect to lose by letting the element gains be free variables
but the degrees of freedom embodied in the element gains, G;(t), must still be balanced
somehow. There are two different schemes: the explicit use of redundancy, and the use of a
priori knowledge about the object. I will examine these in turn.

2.1. Redundant calibration.

Suppose that the geometry of the interferometer array is arranged so that some different
pairs of array elements measure the same spacing, or u-v sample. As an example, consider a
one dimensional linear array of N elements equally spaced, with separation d. All spacings
except the longest are measured at least once. In fact there are only N — 1 different
spacings measurable while there are 1 N(N —1) pairs of elements. This redundancy enables
the solution of both the N — 1 true visibility samples, up to a linear phase slope, and the
N complex gains, again up to a linear phase slope (Hamaker et al. 1977). Since the system

1 Actually, because absolute phase is meaningless for an interferometer, there are %N(N -1)-(N-1)
“good” phases and %N (N —1) — N “good® amplitudes.
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of equations is overdetermined, a least-squares method can be employed to good effect in
suppressing the effects of receiver noise.

Complete redundancy is not necessary for this approach to work; in fact, since only N
complex gains need be solved for, there need only be N redundant spacings. The drawback
is that the signal-to-noise ratio of the estimated true visibilities decreases, and nulls can
prove disastrous.

Redundant calibration is currently used at the Westerbork Synthesis Radio Telescope.

2.2. Self-calibration.

The basis of this approach is that in many cases, even after adding the degrees of
freedom in the element gains, the estimation of an adequate model of the brightness is still
overdetermined (see Lecture 7). Hence self-calibration is really just another method like
‘CLEAN’ (Lecture 7, Section 2) which is used to interpret the visibility data by introducing
some plausible assumptions about the source structure.

Our aim is to produce a model T of the sky intensity distribution, the Fourier trans-
form V of which, when corrected by some complex gain factors, reproduces the observed
visibilities to within the noise level. The model T should be astronomically plausible: for
example, possible constraints are positivity of brightness and confinement of the structure.
(Other, more elaborate, constraints could involve the maximization of some measures of
“goodness” of an image; see Lecture 7). One convenient method (Schwab 1980) of obtain-
ing such an agreement is to minimize, by adjusting both the complex element gains G;,G;
and the model intensity distribution T, the sum of squares of residuals

$ =) wij(te)Vij.ons(ts) — Gilte) G (tx)Vis(te) |2, (9-4)
3
where the w;;(tx) are weights (purely from signal-to-noise considerations these should be
set to the reciprocals of the variance of the €;;(tx)). The time over which the gains should
be held constant depends upon the signal-to-noise ratio and upon the variability of the
atmosphere (see Section 5.3).

An interesting and illuminating connection to ordinary calibration is apparent if Equa-
tion 94 is re-expressed as:

$ =) wi(te) Vii(te) 121 Xi5(ta) — Gilta) G (2)? (9-5)
ki
where:
A1) — ViJ',obs(t)
Xi(t) = ‘7' _1_( 1) = (9-6)

Division by the model visibilities f},-,-(t) turns the object being imaged into a pseudo-point
source, though admittedly with rather strange receiver noise, which can then be used in the
ordinary calibration outlined in Section 1.

It is crucial to this gain-solution step that there be too few degrees of freedom (i.e.,
the element gains G;(t)) to allow the model ¥;;(t) to be reproduced exactly. If there were,
nothing would be achieved. The overdeterminacy also means that errors in the model are
averaged down, to an extent dependent on the number of elements in the array. This
suggests a possible line of attack in which the model is iteratively refined:

(1) Make an initial model of the source using whatever constraints we have on the
source structure.
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(2) Convert the source into a point source using the model.
(3) Solve for the complex gains.
(4) Find the corrected visibility

V. b (t)
\ 1) = oot
tJ,cO!‘r( ) G,(t)G; (t) (9“7)
(5) Form a new model from the corrected data, again using constraints upon the source

structure.
(6) Go to (2) unless you are satisfied with the current model.

This approach divides the optimization problem into a part dealing only with the u-v data
and a part dealing only with the model of the sky brightness. The former can be solved by
a simple iterative approach (Schwab 1980) and in Lecture 7 we showed that both ‘CLEAN’
(Section 2) and the Maximum Entropy Method (MEM, Section 4) solve the latter problem.

Another view of this iterative approach arises from the application of an optimization
approach, such as MEM, to gain correction. The unknown gains are added as free variables
in the optimization. In the specific case of MEM, the problem is then to choose the image
I and the gains G;(t) to maximize the image entropy

u:{&um(ﬁ) , (9-8)

subject to:
§ =) wii(t)|Visona(ts) — Gi(tr) G (tx)Vij(ta) 2
o (6-9)
= expected value,
and:

E I = estimated value of total flux density , (9-10)
k

where V;;(t) is given by the inverse Fourier transform of the MEM image Ij.

The most general approach to solving this optimization problem would vary the image
and the gains simultaneously, whereas the iterative approach consists of alternately fixing
either the image or the gains, and varying the other as required. The latter is certainly
easier to code and seems to work most of the time.

2.3. Redundant calibration or self-calibration?

The relative merits of redundant calibration and of self-calibration are still being de-
bated. The real question is not “Should redundant calibration be used with an existing
array? (of course, it should, if it is possible), but rather “Should new arrays be designed
with redundant spacings?” The main advantage of redundant calibration is that the re-
sults are almost model-independent (there is a variable phase shift to worry about), but it
is less flexible than self-calibration, and uses the available signal-to-noise ratio rather less
efficiently. A compromise would be to use redundant calibration to get the structure ba-
sically correct, and then to use self-calibration to improve the signal-to-noise. In practice,
self-calibration is more commonly used simply because many arrays are not instantaneously
redundant. Therefore in the rest of this Lecture I will concentrate on self-calibration. First,
however, I digress slightly to emphasize the links of both schemes with other methods of
phase correction.
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3. OTHER APPROACHES TO PHASE CORRECTION

The two schemes for phase correction described in Section 2 have two close relatives:
the concept of closure, and adaptive optics.

3.1. Closure quantities.

In the early days of radio interferometry, Roger Jennison was faced with the problem
of measuring phase information with interferometers which were inherently phase-unstable.
He was struck by the fact that an appropriate sum of visibility phases around a closed loop
of baselines is free of element-related errors (Jennison 1953, 1958). This can be confirmed
by taking the phase part of Equation 9-2:

Pij,obs(t) = Pij erue(t) + 0i(t) — 05(t) + noise term, (9-11)

where 0;(t) = arg(Gi(t)). Now suppose that a loop of three baselines is formed from
elements 1,5 and k. Then the quantity C;; obs(t), known as the observed closure phase!, is
given by:

Cijk,obs(t) = ij,obs(t) + Sk obs(t) + Pks,obs(t)
= ¢ij,true(t) + ¢J'k,true(t) + ¢ks',true(t) + (nOise t'erm) . (9'12)

= Cjjk,true(t) + (noise term)

Thus, for an array of three or more elements, and neglecting noise, closure phase is always
a good observable. For an array of N elements there are 3 N(N —1) — (N —1) independent
closure phases; these are just the “good” constraints mentioned in Section 2.

A closure amplitude T';;x; can be defined for any loop of 4 elements:

Aij(t) Ani(t)
Ap(t)Au(t)’

where the A’s here denote the amplitudes of the complex gains. Apart from noise, the
observed and true closure amplitudes should be identical. There are 3 N(N — 1) — N such
closure amplitudes.

These closure quantities were of little use until the advent of sufficiently fast computers.
Neither closure quantity can be used directly to form an image. However, in the 1970s
iterative schemes were developed by Readhead and Wilkinson (1978), Cotton (1979) and
others to produce ‘CLEAN’ images consistent with the closure quantities—see Ekers (1984)
for an account of the history of closure phase and self-calibration.
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