

Definition of Coordinate Systems:

The Base Coordinate System, (X, Y, Z). The base coordinate system is fixed to the ground. Its origin is at the intersection of the antenna azimuth axis and the top of the azimuth track. The positive directions of the axes are defined as follows:

> X-axis towards East Y-axis towards North Z-axis points up

The azimuth angle (AZ) is measured from the Y-axis and is positive in the clockwise direction looking from the positive Z side. The Alidade Coordinate System, (Xa, Ya, Za).

The alidade coordinate system is attached to the alidade structure. It rotates about the antenna azimuth axis. Its position is defined by the azimuth antenna angle. The positive azimuth antenna angle (AZant) is measured from the negative Y axis in the counter-clockwise direction. When AZant is zero, the orientations of the axes are:

Xa-axis towards West Ya-axis towards South Za-axis points up

Therefore, AZ = 180 degrees – AZant. The transformation between the two coordinate systems, (1) and (2), are:

 $\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = R_{12} \begin{bmatrix} Xa \\ Ya \\ Za \end{bmatrix}$

where

$$R_{12} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos(AZant) & -\sin(AZant) & 0 \\ \sin(AZant) & \cos(AZant) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

CRT DATE REVISIONS NATIONAL RADIO ASTRONOMY OBSERVATORY ASSOCIATED UNIVERSITIES INC. GREEN BANK, W. VA. THE FOCI ARRANGEMENT AND COORDINATE SYSTEMS FOR THE GBT UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN INCHES RECOMMENDED DESIGN TOLERANCES ANGLES ± 3 PLACE DECIMALS (.xu):± 2 PLACE DECIMALS (.xu):± 1 PLACE DECIMALS (.xl):± FRACTIONS:± GMORRIS 1/94 L.KING DRAWN ENGINEER CHECKER APPROVED DATE NAME SIGNATURE SCALE SHEET NO. C35102M081 2 or 5

MATERIAL:

FINISH:

3. The Elevation Coordinate System, (Xe, Ye, Ze).

The elevation coordinate system is attached to the elevation structure. It rotates with the elevation structure defined by the elevation and the azimuth antenna angles. When the elevation antenna is 90°, ELant = 90°, its axes are positioned in the same directions as that of the alidade coordinate system. The relation between the Elevation and Alidade coordinate systems is given as follows:

$$\begin{bmatrix} Xa \\ Ya \\ Za \end{bmatrix} = R_{23} \begin{bmatrix} Xe \\ Ye \\ Ze \end{bmatrix} + T_{23}$$

where

$$R_{23} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & sin(ELant) & cos(ELant) \\ 0 & -cos(ELant) & sin(ELant) \end{bmatrix}$$
$$T_{23} = \begin{bmatrix} 0 \\ 0 \\ +1900.000 \end{bmatrix}$$

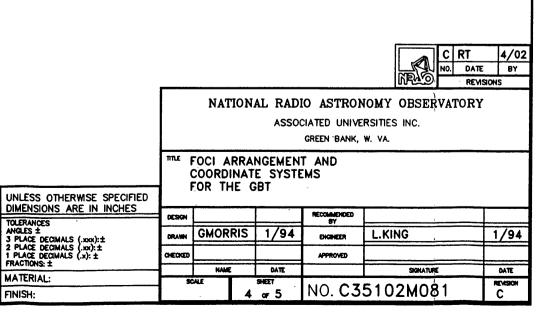
1900.00 is the height in inches of the elevation axis about the top of the track.

							C №0.	RT DATE REVIS			
	NATIONAL RADIO ASTRONOMY OBSERVATORY ASSOCIATED UNIVERSITIES INC. GREEN BANK, W. VA.										
INLESS OTHERWISE SPECIFIED	THE FOCI ARRANGEMENT AND COORDINATE SYSTEMS FOR THE GBT										
DIMENSIONS ARE IN INCHES	DESIGN				RECOMMENDED						
OLERANCES WGLES ± 1 PLACE DECIMALS (.1001):±	DRAWN	GMORRIS		1/94	ENGINEER	L.KING					
PLACE DECIMALS (.1007):± PLACE DECIMALS (.107):± PLACE DECIMALS (.107):±	CHECKED				APPROVED						
RACTIONS: ±		NAME		DATE		SIGNATUR	SIGNATURE				
IATERIAL:	SCALE		SHEET		NO. C35102M081						
INISH:			3	or 5	NU. US	STUZMUÇ					

4. The Reflector Coordinate System, (Xr, Yr, Zr). The reflector coordinate system is obtained by translations of the elevation coordinate system. This is shown in the following equation:

where

$$\begin{bmatrix} Xe \\ Ye \\ Ze \end{bmatrix} = \begin{bmatrix} Xr \\ Yr \\ Zr \end{bmatrix} +T34$$
$$T34 = \begin{bmatrix} 0 \\ -2159.020 \\ 196.850 \end{bmatrix}$$


The offsets of the reflector paraboloid vertex from the elevation axis is given in inches by T34. 5. The Prime Focus Coordinate System, (Xp, Yp, Zp).

The origin of this coordinate system is at the focus of the dish paraboloid, 2362.205 inches from vertex of the paraboloid on the Zr—axis. Yp—axis is 45.5° from Zr—axis on the ZrYr plane, and the Zp—axis is parallel to the Xr—axis. The transformation is as follows:

 $\begin{bmatrix} Xr \\ Yr \\ Zr \end{bmatrix} = R45 \qquad \begin{bmatrix} Xp \\ Yp \\ Zp \end{bmatrix} + T45$

where

$$R_{45} = \begin{bmatrix} 0 & 0 & 1 \\ \cos(45.5^{\circ}) & -\sin(45.5^{\circ}) & 0 \\ \sin(45.5^{\circ}) & \cos(45.5^{\circ}) & 0 \end{bmatrix}$$
$$T_{45} = \begin{bmatrix} 0 \\ 0 \\ 2362.205 \end{bmatrix}$$

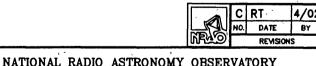
The Subreflector Coordinate System, (Xs, Ys, Zs). 6. The axes of this coordinate system are orientated similarly as that of the prime focus coordinate system. The angle between Ys-axis and Zr-axis is 36.7°. By the same token, we have:

 $\begin{bmatrix} Xr \\ Yr \\ Zr \end{bmatrix} = R_{46} \qquad \begin{bmatrix} Xs \\ Ys \\ Zs \end{bmatrix} + T_{46}$

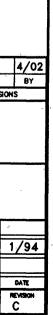
where

$$R_{46} = \begin{bmatrix} 0 & 0 & 1\\ \cos(36.7^{\circ}) & -\sin(36.7^{\circ}) & 0\\ \sin(36.7^{\circ}) & \cos(36.7^{\circ}) & 0 \end{bmatrix}$$

$$T_{46} = \begin{bmatrix} 0\\ -168.976\\ 2511.929 \end{bmatrix}$$


7. Examples:

a. For a point L from the reflector coordinates to the base coordinates.


$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{L} = R_{12} \begin{bmatrix} R_{23} \begin{bmatrix} Xr \\ Yr \\ Zr \end{bmatrix}_{L} + T_{34} + T_{23}$$

b. For a point M from the base coordinates to the reflector coordinates.

$$\begin{bmatrix} Xr \\ Yr \\ Zr \end{bmatrix} M = R_{23}^{-1} \begin{bmatrix} R_{12}^{-1} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} M^{-T_{23}} \end{bmatrix} -T_{34}$$

		1111	10101		o abiitor	OMI ODOBICIAIONI			
	ASSOCIATED UNIVERSITIES INC. GREEN BANK, W. VA.								
UNLESS OTHERWISE SPECIFIED	THE FOCI ARRANGEMENT AND COORDINATE SYSTEMS FOR THE GBT								
DIMENSIONS ARE IN INCHES	DESION				RECOMMENDED				
TOLERANCES ANGLES ± .3 PLACE DECIMALS (.xxx):± 2 PLACE DECIMALS (.xx):± 1 PLACE DECIMALS (.x):±	DRAWN	GMORRIS		1/94	ENGINEER	L KINO			
	CHECKED				APPROVED				
FRACTIONS: ±		NAME		DATE		SIGNATURE			
MATERIAL:	s	SCALE		SHEET	NO. C35102M081				
FINISH:			5	or 5	INU. C3	5102M081			

