
Precision Telescope Control System 

PTCS/SN/2: 
Overview of the GBT 

Version: 2 
Date: 2003 Mar 28 
Authors: J. J. Condon 
Archive: PR004 
File: PROJECTS 



Overview of the GBT 

Revision History 

Ver. Changes Date Author 
1 Initial Version 2003 March 26 J. J. Condon 



Overview of the GBT 

Contents 

1 Introduction 

2 The GBT structure 

3 Telescope Optics 

4 The Active Surface 

5 GBT Metrology Systems 





Overview of the GBT 

Abstract 

The GBT, with its unblocked 100 m aperture, is potentially the world's largest millimeter-wave tele¬ 
scope, with sensitivity 1 Jy w IK and resolution « 7" at A « 3 mm. The GBT is so big in wavelengths 
that, in important ways, it behaves more like an optical telescope than a radio telescope. This overview 
of the GBT emphasizes those features that affect the PTCS goal of making astronomically useful obser¬ 
vations in benign conditions at frequencies up to the atmospheric cutoff at 117 GHz. 

1.    Introduction 

The Robert C. Byrd Green Bank Telescope (GBT) is the successor to the old 300-foot telescope that 
collapsed in 1988. It is a 100 m general-purpose radio telescope operated by the NRAO for use by the 
worldwide astronomical community, and observing time is granted for projects of the highest scientific 
merit as judged by external referees. The GBT (Fig. 1) has an unblocked aperture which increases the 
effective collecting area and reduces system noise, standing waves, and sidelobe levels (Lockman 1998). 
The primary reflector surface consists of 2004 precision (« 70 fim rms error) solid aluminum panels. 
The heights of these panels can be adjusted by 2209 computer-controlled actuators to maintain the 
desired surface shape under changing environmental conditions and gravitational loading. The actuators 
are currently used to correct the primary mirror only for the gravitational deformations predicted by the 
GBT finite-element model (FEM). Recent aperture-efficiency measurements made at 20 and 43 GHz 
indicate that the rms deviation from the best-fit paraboloid is less, than 470 fim over a wide range of 
elevations. The rms absolute pointing error in two dimensions is <72 ~ 10", and the offset pointing 
accuracy is <J2 ~ 3". Thus the GBT is already usable up to about 40 GHz (Condon 2003b). 

The science goals of the GBT require observations spanning the entire frequency range accessible 
through the atmosphere at Green Bank (Fig. 2). At low frequencies, radio frequency interference (RFI) 
degrades many astronomical observations. Green Bank is located in the National Radio Quiet Zone and 
is naturally shielded from ground-based RFI by the surrounding mountains. Finally, the exceptionally 
clean GBT beam helps to suppress interference from all unwanted directions. Atmospheric absorption 
and the associated thermal emission naturally limit astronomical observations at the highest frequencies. 
Oxygen absorption blocks the frequency ranges 52 < u (GHz) < 68 and i/ > 117 GHz. Tropospheric 
water vapor can affect observations at all frequencies f > 15 GHz to varying degrees. Although the 
elevation of Green Bank is only 800 m, the sky is cold enough in late autumn and winter that the col¬ 
umn density of precipitable water vapor is low. The 86 GHz zenith opacity measured with a tipping 
radiometer located near the Jansky lab is rz < 0.1 for significant periods (Fig. 3). Since the subreflector, 
feeds, and receivers do not block the beam, the GBT receiver cabin can be large enough to hold all of 
the millimeter-wavelength receivers ready for use in changing weather conditions. Thus the GBT is 
potentially the world's largest and most sensitive millimeter-wave telescope. The purpose of the High 
Frequency Observing System (HFOS) (Prestage 2003) and its principal component, the Precision Tele¬ 
scope Control System (see http : //www. gb.nrao . edu/ptcs/index, shtml), is to realize this 
potential. 

Receivers covering most frequencies below 52 GHz already exist. The main gap is the 26-40 GHz band, 
which is a good band for observing continuum sources and hence characterizing the GBT performance. 
A continuum receiver covering the 1 cm band is under construction: see 
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http://www.gb.nrao.edu/electronics/projects/lcmRx/ 

No 3 mm receiver exists yet, but a pseudocorrelation receiver suitable for observations of continuum 
sources is under construction. The first "module" will cover 68-95 GHz and be ready by the end of 
2004. The second module will cover 90-116 GHz. See 

http://www.gb.nrao.edu/electronics/projects/3mmRx/ 

for details on this receiver. 

2.    The GBT structure 

The GBT is an azimuth-elevation telescope with a traditional wheel and track design. In azimuth, 16 
wheels ride on a 64 m diameter rail and allow tracking over ±270° from due South at a maximum rate 
of 40° per minute. The tipping structure turns about a 46 m axle driven by a bull gear of radius 30 m. 
The telescope beam can move at rates up to 20° per minute between elevations -I-50 and +95°. These 
slew rates were chosen to match those of other large telescopes (e.g., the VLA and the Bonn 100 m) 
for efficient very long baseline interferometry (VLBI). The lower elevation limit is well matched to 
the local horizon and allows the longest possible (n,ii)-plane tracks when the GBT is used for VLBI. 
However, the GBT alidade structure must be unusually tall (and massive) to reach such low elevations. 
The moving structure, weighing approximately 7700 metric tons, is believed to be the largest on land. 
The azimuth track has been damaged by this weight, and options for replacing or modifying the wear 
strip are currently being explored and tested. Changes in gravitational loading with elevation cause 
small deformations of the reflector backup structure and the feed support arm. The primary mirror 
panel heights can be adjusted to compensate for deformations in the backup structure. The Gregorian 
subreflector can be translated, tilted, and rotated about its axis to maintain accurate focus tracking. 

The primary reflector is an asymmetrical offset 100 m x 110 m section cut from a symmetric parent 
paraboloid whose diameter is 208 m and whose focal length is 60 m. The unblocked GBT aperture has 
no scattering sidelobes, sees very little ground radiation, and has few locations for standing waves to 
develop. A single, cantilevered feed arm is attached behind the main reflector. It extends about 90m from 
below the the surface to its termination almost 10m above the primary focal point. Since the feed arm, 
subreflector, and receiver cabin are all outside the main beam, they can be unusually large and robust. 
The receiver cabin is big enough to hold 10 receivers simultaneously, ready for dynamic scheduling to 
exploit the best weather conditions for high-frequency observations. The feed arm has a large cross 
section for stiffness, in contrast to the slender feed-support legs found on conventional telescopes. Even 
so, jerks applied by wind or by the telescope drive system can excite high-Q oscillations with frequencies 
v « 1 Hz (Balser 2000). 

Unlike most millimeter-wave telescopes, the GBT is not protected by a radome. All of the major struc¬ 
tural members are made of steel and have a thermal expansion coefficient a « 1.2 x 10-5 K-1. Tem¬ 
perature differences across the GBT might be as high as AT « 5 K on a sunny day and as low as 
AT w 1 K at night. The resulting thermal distortions are large enough to cause unacceptable pointing 
errors at A = 3 mm and so must be corrected. High winds will also degrade performance at short wave¬ 
lengths. We expect that the GBT will be usable at 3 mm only under benign environmental conditions. 
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3.   Telescope Optics 

The GBT has both a prime focus and a Gregorian secondary focus. For prime focus operation, a re¬ 
tractable boom holding a receiver is placed in front of the Gregorian subreflector. The prime focus is 
used only for the low frequency bands between 300 and 1200 MHz and is therefore not a concern for the 
PTCS. The Gregorian subreflector is an 8 m ellipsoidal mirror positioned by a Stewart platform having 
6 degrees of freedom (three translations, two tilts, and rotation about the mirror axis). The Gregorian 
focal ratio is f/D = 1.9 referred to the D = 100 m effective aperture, so the field-of-view in the focal 
plane is wide enough to permit imaging with many simultaneous beams at short wavelengths (Norrod 
& Srikanth 1999a, 1999b). The Gregorian receivers are mounted on a rotating turret enclosed in a large 
receiver room. The secondary focus lies 11 m below the primary focus at an angle of 5.6 deg with 
respect to the vertex line. This geometry, which includes a predetermined tilt of the subreflector, can¬ 
cels the beam squint between the two circular polarizations otherwise produced by an offset paraboloid. 
All receivers operating at the Gregorian focus should thus have excellent polarization properties. See 
Norrod & Srikanth (1996) for a more detailed summary of the GBT optics. 

The offset clear aperture and huge size of the GBT have several consequences for the PTCS: 

(1) The focal axis is tilted about 37° from the axis of the parent paraboloid (Srikanth 1990b). Here, the 
focal axis is defined as the direction of subreflector motion that causes no change in pointing. Motions 
of the subreflector perpendicular to the axis of the parent paraboloid, caused by gravitational bending of 
the feed arm with elevation for example, will axially defocus the telescope as well as produce pointing 
shifts (Srikanth 1990a). This interaction complicates the problem of collimating and pointing the GBT. 

(2) The beamwidth of the 100 m GBT is only 

/        9       \      /GHz\ 
™ H         ' 0) \ 740 arcsec /       \   v   J 

where 9 is the full width between half-power points and v is the observing frequency. The beamwidth 
can be as small as 9 w 1". Since the two-dimensional tracking error must not exceed 02 ~ 0.29 for 
usable astronomical observations (Condon 2003a), the GBT pointing requirements are exceptionally 
severe: 02 « I'!3 at v = 115 GHz. The GBT must be collimated and pointed with a precision nor¬ 
mally associated with optical, infrared, and submm telescopes, and we anticipate adopting techniques 
developed for adjusting such telescopes. 

For example, the angular pointing error caused by differential thermal expansion is nearly independent 
of telescope size, so the error in beamwidths is proportional to the telescope diameter in wavelengths. 
Among several "natural limits" to telescope pointing accuracy, the thermal limit usually dominates 
gravity and wind for large telescopes (D > 45 m) constructed of steel (von Hoerner 1967). The shortest 
usable wavelength for a 100 m steel telescope exposed to a 1 C temperature differential is At ~ 5 mm 
(von Hoerner 1987). In sunshine, temperature differentials as large as 5 C can be expected, resulting in 
At ~ 25 mm. Consequently, the GBT tracking accuracy at A = 3 mm is a major concern for the PTCS 
project. There are several ways we might avoid the natural thermal limit of the GBT: 

(1) Accept large absolute pointing errors and correct the pointing frequently by using nearby 
pointing calibration sources to estimate the current azimuth and elevation offsets. This is 
the usual method for pointing optical telescopes but is often not needed for radio telescopes. 
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(2) Measure temperatures at critical locations on the structure with errors < (3 mm/5 mm) x 
1 C = 0.6 C and use a thermal model of the GBT to correct the absolute pointing. 

(3) Measure accurate distances between critical members of the GBT using the laser range 
finding (LRF) system and use a geometrical model of the GBT to correct the absolute 
pointing. 

Wind also affects GBT pointing, although wind is usually not the most important natural limit for large 
telescopes (von Hoerner 1967). Gawronski & Parvin (1995) applied a quadratic wind model (that is, the 
wind pressure and the resulting strains are proportional to the square of the wind speed) to the GBT FEM 
and concluded that a 7 m s-1 « 16 mph wind would cause absolute pointing errors up to 13", primarily 
in the cross-elevation direction. Quadratic scaling yields a maximum wind speed of 2.2 m s_1 = 5 mph 
for l'!3 absolute pointing errors. Wind speeds near the GBT have been monitored at heights of 90 feet. 
and 158 feet, and the mean wind speed during the night is just under 5 mph even at 158 feet (McKinnon 
1995). Furthermore, gusts normally contribute only 20% of the wind force (Gawronski & Parvin 1995), 
so the pointing errors might be reduced with the aid of wind velocity data and observations of offset 
pointing calibrators. Given the benign prevailing conditions, particularly on cold nights, wind should 
not preclude observations at A = 3 mm with the GBT. 

Even if the GBT structure is positioned exactly, tropospheric turbulence (Olmi 2001) can shift the ap¬ 
parent position of an astronomical source by several arcsec on time scales of seconds. Treating this 
"anomalous refraction" is not part of the core PTCS but remains a concern for the HFOS. 

(3) The GBT is exceptionally sensitive: 1 Jy w 2 K at low frequencies and « 1 K at the highest usable 
frequencies. Switching between two highly overlapping beams of 100 m diameter separated by several 
beamwidths (separations less than 1 m at the tropospheric altitude of about 2 km for mm-wavelength 
observations with the GBT) should be extremely effective at canceling noise caused by tropospheric 
water-vapor fluctuations. Thus the GBT will be a very fast continuum telescope at short wavelengths, 
and even relatively faint sources (5 < 0.1 Jy) can be used as offset pointing calibrators. The sky 
is covered with astronomical sources that can be observed with high signal-to-noise ratios (SNR = 
103 to 104) in seconds, so we can use astronomical calibrators to measure and correct many telescope 
errors. Furthermore, such observations can be made at relatively low frequencies (e.g., 5 GHz) where 
the atmosphere is transparent throughout the year. For example, noise contributes only 

CTl" JTsm. (2) 

to the rms uncertainty in the coordinate measured by fitting a Gaussian (Condon 1997) to a calibrator 
scan. There are literally thousands of sources that the GBT can use to measure sub-arcsec pointing 
offsets quickly (Condon & Yin 2001). 

There are even a number of unresolved sources strong enough (S > 10 Jy) to dominate the receiver 
noise at centimeter wavelengths. Out-of-focus beam maps of strong point sources can be used to map 
the distribution of phase errors across the aperture (Nikolic et al. 2002) over a wide range of elevations. 
The low natural sidelobe level of the clear GBT aperture should allow large beam maps and hence 
high spatial resolution in the aperture plane. Traditional holography using coherent transmissions from 
geostationary satellites also benefits from high sensitivity, but it can only characterize the telescope at a 
single elevation. 
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4.   The Active Surface 

The GBT primary reflector is composed of 2004 panels, each with a solid aluminum surface. The panels 
are arranged in rings concentric with the vertex of the 208 m parent parabola. The panels are mounted 
at their comers on 2209 motor-driven actuators which can be positioned in increments of 25 /urn over 
a total travel range of 5 cm. The actuators are intended to minimize the deviations from the best-fit 
paraboloid at each elevation, not maintain a rigid surface shape. Consequently, the lateral position of 
the prime focus and the primary focal length both vary with elevation. The Stewart platform of the 
Gregorian subreflector must be adjusted continuously to track the prime focus and relay it to the phase 
center of the feed in use. 

The rms surface accuracy of a single panel is about 70 fim. The overall surface error of the primary is its 
deviation from the "best fit" paraboloid at each telescope elevation. The construction contract specified 
an overall surface surface error e < 1.2 mm rms at the rigging angle. The current actuator zero-points 
were determined via photogrammetry of the surface at the rigging angle and the actuators were set 
under NRAO supervision. Aperture efficiency measurements made at 20 and 43 GHz suggest that an rss 
(root sum square) error including the subreflector surface and collimation errors e « 0.47 mm has been 
achieved. At elevations other than the rigging angle, gravitational bending distorts the surface. These 
deviations are currently compensated for in an open-loop fashion using the predictions of the telescope 
FEM. At least up to 20 GHz, these are sufficient to maintain the telescope gain and low near-in sidelobe 
level over a wide elevation range. 

5.    GBT Metrology Systems 

The GBT Metrology Systems were described in detail by Hall et al. (1998). The obectives of the 
metrology system include: 

(1) check critical alignments 

(2) check and refine the FEM 

(3) identify structural anomalies and fault conditions 

(4) provide useful data for optimization of servo algorithms 

(5) allow independent measurements of acceptence criteria 

(6) aid in expediting outfitting and commissioning operations 

(7) improve surface setting accuracy, servo performance and pointing accuracy 

(8) provide a basis for ongoing trend analysis and 

(9) be of service in development of a GBT maintenance program. 

The core of the measurement program is the laser range-finder (LRF) system. Twelve ground-based 
rangefinders mounted on monuments surrounding the telescope will be used to perform non-invasive 
measurements of alignment errors, thermal deformations, and gravitationally induced bending of the 
structure, ultimately at the « 100 ^m accuracy level.  A number of additional rangefinders will be 
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installed on the telescope tipping structure to measure the surface panel setting and alignment of the 
telescope optical elements. 

Closure tests indicate that distances measured between the stationary ground LRF stations are at least 
self-consistent at the 100/^m level. However, the LRF has not yet been used to measure or correct 
dimensions on the GBT itself, we do not know how often the LRF will be unusable for making real¬ 
time corrections during astronomical observations at 3 mm (owing to frost on the retroreflectors, for 
example). Thus the ultimate utility of the LRF system is quite uncertain. Ideally, the LRF would 
operate during most 3 mm observations and allow us to correct pointing and reflector surface errors in 
real time. 

Additional metrology systems are available or planned. These include the "quadrant detector" for mea¬ 
suring the position of the tip of the feed arm with respect to the elevation axle, accelerometers, strain 
guages, theodelites, inclinometers, etc. An array of temperature sensors for the feed arm, backup struc¬ 
ture, and alidade is being designed. First we plan to use these engineering instruments to understand 
the GBT structure. For example, thermal maps of the GBT made during observations of astronomical 
calibrators can be combined with predictions of the FEM to show how various temperature gradients 
affect pointing. Once the correlations between engineering data and astronomical performance are 
understood, we hope to use real-time measurements from these metrology systems to improve GBT 
performance during astronomical observations. 

Completing these metrology systems, using them as engineering tools, and finally integrating them into 
the GBT control system during astronomical observing are clearly important parts of the PTCS. 

Not all metrology systems needed for high-frequency observing measure the GBT directly. There is an 
86 GHz tipping radiometer to measure atmospheric emission and opacity. It will be used for dynamic 
scheduling of high-frequency observations. The is also a 12 GHz interferometer with a 100 m baseline 
to measure tropospheric phase fluctuations in case anomalous refraction is a problem in Green Bank. 
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Fig. 3.— The cumulative distribution of 86 GHz zenith opacities measured throughout the year 2000 
shows that A = 3 mm observations are possible (rz < 0.1) for significant periods, primarily in cold 
weather. Abscissa: Zenith optical depth rz. Ordinate: Fraction of time with opacity < rz. 


