National Radio Astronomy Observatory

Very Large Array
May 18, 1981

12 METER MILLIMETER WAVE TELESCOPE MEMO No.

Subject: Support Bolts for ESSCO Panels

In our meeting of May 12 I was asked to calculate the length of bolt and diameter of bolt required to support the ESSCO panel we presently have during thermal tests of Green Bank. I have done so (rather simplistically) based on a support as shown on E-Systems Dwg.96E20011 (sketch attached) and a 3/8 inch diag. bolt with a minimum length of 6 inches will keep the RMS due to restraint of the back-up structure to somewhat less than 6 microns for a temperature change of $30^{\circ} \mathrm{F}$. I am attaching a copy of my calculations; since I don't have a drawing of ESSCO's panel I have assumed a cross-section as shown on the sketch. You will note that I have assumed that the RMS is $1 / 3$ the maximum deflection which is not quite correct for this curve but note that also I haven't taken into consideration that the panel is continuous over the middle support which will reduce the maximum deflection.
May 19, 1981
Note that decrease in length from 6" to 4" will increase max. deflection some 3.4 times; a decrease in length from $6^{\prime \prime}$ to $5^{\prime \prime}$ will increase the maximum deflectimon 1.7 times.
After discussion during the meeting of May 19, I have dug out the attached sketches Figure 1 and Figure 2 which were prepared for the 65 meter panel supports. A support similar to Figure 2 could be used for the ESSCO panels. Figure 1 would create a higher moment due to thermal expansion in the panel due to the longer lever arm as shown by the following sketches:
$\rightarrow 1 \leqslant A l$

Figure 1

Figure 2

In both cases the bending moment in the panel causing the distortion is equal to the expansion force F (which is constant) times its lever arm "e" but by locating the pin connection (ball joint, spherical washer, etc.) at the bottom of the panel the moment is reduced. Note that for the 65 M panel and Figure 2 the eccentricity is essentially zero.
\therefore Analysis of Support bolt~Essco Ponels (TLst)
Bolt din $23 / 8$ inch Ares $=0.11045$ in $^{2} \quad I=101553$ in 4
length of panel: $3 \mathrm{Mm}=5.84252^{\circ}=118.1102$ inches
since pancl has 3 supports ossume sympefricol and thayt expansion takus place in both directions from center bolt

$A l=\frac{188.1102}{2} \times 30^{\circ} \times \frac{6.5}{10^{6}}=0,011516$ inches

$$
\begin{aligned}
& .011516=\frac{P l^{3}}{3(30) / 0^{6}(1)} \\
& \begin{array}{l}
\text { nocessury deflection (4. } \\
\text { in } 100 \text {) }
\end{array} \\
& 10.2 \\
& =11,516(3) 30(1,553) 10 \\
& P l^{3}=1609526
\end{aligned}
$$

100

assume panel instaflept of $60^{\circ} \mathrm{F}$ and temperuture chingis of 3000 currsyith slael, bath-up struch.

$$
\begin{aligned}
\epsilon_{t} & =E_{t}(\Delta 1)-\epsilon_{t}(H t) \\
& \left.=6,5 \times 10^{-6} \mathrm{in} / \mathrm{in}\right)_{F}
\end{aligned}
$$

it loolt is 6 inchesolong

$$
P=\frac{16045,56}{6^{3}}=74,5165
$$

chack bolt 4 inchus lonis

$$
p=\frac{16055.56}{4^{3}}=251 \mathrm{lbs}
$$

Bolt 7 inches long

$$
\begin{gathered}
P=\frac{16055.56}{7^{3}}=46.51 \mathrm{lbs} \\
\text { Lssebolt 6"lony }
\end{gathered}
$$

Analysis of Syarfort Bolt $\&$ Essco Pancis

$$
\text { 1000 eccentricids }=2 j
$$

$$
M=2 \times 75=150 \text { inos }
$$

$$
\begin{aligned}
\Delta & =\frac{M}{E I} \times \frac{l}{2} \times \frac{l}{4}=\frac{150(30)(30)}{10\left(10^{\circ}\right)\{13083(8)}=\frac{150(90)}{2.3083(8) 10^{\circ}}=.000731 \text { inctos } \\
& =.0 .185 \mathrm{~mm}=18,2 \mathrm{mi} \text { cisons }
\end{aligned}
$$

Estimate RMS of $\frac{16.5}{3}=6$ mirmes worse, ackually nt will
 pan(a) whareas, it is continyulls mover the midultes reoluce the moximum oeflection

