This memo \#42 does not include Appendices describing program listings.

DOCUMENT D81-15
SURFACE MEASUREMENT
OF
12 METER DIAMETER REFLECTOR PANELS

Prepared For

National Radio Astronomy Observatory
Green Bank, West Virginia 24944

ESSCO No. E-5817

ELECTRONIC SPACE SYSTEMS CORPORATION
Old Powder Mill Road
Concord, MA 01742
Tel: 617-369-7200 Telex: 92-3480

Taco

INITIAL RELEASE

Prepared by: Pthehal / Bremen Date: $5 / 13 / 81$ Approved by: $f \varepsilon$ Rhode Date: $5 / 13 / 81$

TABLE OF CONTENTS
Page No.
1.0 INTRODUCTION AND SUMMARY 1
2.0 COORDINATE SYSTEMS 1
3.0 COORDINATE TRANSFORMATION 1
4.0 PANEL MEASUREMENT 6
APPENDIX A - Data Acquisition System Programs 20
APPENDIX B - Data Reduction Programs 25
APPENDIX C - Program for Computing Aggregate RMS 31 for Complete Panel Set.
FIGURES
Figure 1 Reflector Coordinate System 2
Figure 2 Coordinate System for CMM 3
Figure 3 Panel Coordinate System 4
Figure 4 Transformation of Coordinates 5
Figure 5 Tooling and Target Hole Designations 8
Figure 6 Target Holes Mold Coordinates - Inner Panel 11
Figure 7. Target Holes Mold Coordinates - Outer Panel 12
Figure 8 Check-Off Table for Measuring Grid, Panel A (Inner) 14
Figure 9 Check-Off Table for Measuring Grid, Panel B (Outer) 15
TABLES
Table 1 Coordinate Transformation Parameters 7
Table 2 Target and Tooling Hole Locations 9
Table 3 DAS Programs - 12-Meter Reflector Panels 10
Table 4 Data Reduction Programs 16
EXHIBIT I - Final Acceptance Record 19

1.0
 INTRODUCTION AND SUMMARY

This report describes the surface accuracy measurements on 72 panels designed for the 12 -meter diameter reflector to be installed at the Kitt Peak Radio Astronomy Observatory.

The measurements were made on a large Coordinate Measuring Machine (CMM) with digital readouts connected to an automatic Data Acquisition System (DAS).

A description of the coordinate systems is presented in Section 2.0 and the details of the associated coordinate transformations are given in Section 3.0.

Section 4.0 presents the details of the panel measurement procedure including the measurement grids used and the computer programs for the DAS and data reductions.

The formulas used to combine the individual panel data into an aggregate rms for the set are also presented along with the computer program which was used to make this final computation. (See Appendix E).

2.0 COORDINATE SYSTEMS

Two basic coordinate systems are used in the evaluation of the panel surface accuray. The primary coordinate system is that of the reflector as shown in Figure 1. The secondary coordinate system (Fig. 2) is associated with the Coordinate Measuring Machine (CMM). This is the coordinate system in which surface of the panels and molds are mapped. The origin of the CMM coordinate system can be translated along, transverse or normal to the CMM bed with simple offsets which are built into the readout system.

A reflector panel is shown oriented on the CMM bed in Figure 3. The panel is symmetrical about the X axis. In the next section, the coordinate transformations are derived.

3.0 COORDINATE TRANSFORMATION

The object of the transformation of coordinate system is to obtain the vertical or Z_{2}^{1} coordinates for the panels in terms of the $X_{2}^{1}, Y_{2}^{\prime}$ coordinates of the CMM.

Referring to Figure 4, the transformation can be written as:

$$
\begin{align*}
& X=x_{2} \cos \theta-Z_{2} \sin \theta+x_{0} \\
& Z=x_{2} \sin \theta+Z_{2} \cos \theta+Z_{0} \tag{1}
\end{align*}
$$

Now the equation of the parabolic surface is:

$$
\begin{equation*}
X^{2}+Y^{2}=4 F Z \tag{2}
\end{equation*}
$$

where F is the focal length of the parabola.

REFLECTOR COORDINATE SYSTEM FIGURE I

COORDINATE SYSTEM FOR GM

$$
\text { FIgure } 2
$$

END FACING WINDOW

PANEL COORDINATE SYSTEM

FIGURE 3.

TRANSFORMATION OF COORDINATES

FIGURE 4

Essco

Substituting equation (1) into equation (2), there is obtained:

$$
\begin{equation*}
\left(X_{2} \cos \theta-Z_{2} \sin \theta+X_{0}\right)^{2}+Y_{2}{ }^{2}=4 F\left(X_{2} \sin \theta+Z_{2} \cos \theta+Z_{0}\right) \tag{3}
\end{equation*}
$$

Expanding and combining equation (3), there is obtained:

$$
\begin{equation*}
A Z_{2}{ }^{2}+B Z_{2}+C=\theta \tag{4}
\end{equation*}
$$

where

$$
\begin{align*}
& A=\operatorname{Sin}^{2} \theta \\
& B=-2 X_{2} \cos \theta \operatorname{Sin} \theta-2 X_{0} \sin \theta-4 F \cos \theta \tag{5}\\
& C=X_{2}{ }^{2} \operatorname{Cos}^{2} \theta+X_{0}{ }^{2}+2 X_{2} X_{0} \operatorname{Cos} \theta+Y_{2}{ }^{2}-4 F X_{2} \operatorname{Sin} \theta-4 F Z_{0}
\end{align*}
$$

and

$$
\begin{equation*}
Z_{2}=\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 A} \tag{6}
\end{equation*}
$$

Thus, with equations (5) and (6), Z_{2} may be obtained in terms of X_{2}, Y_{2} the CMM coordinates. Table 1 provides the specific values of X_{0}, Z_{0} and θ for each of the two panel types of the 12 -meter reflector.

In terms of the coordinate Z_{2}, the panel coordinate, Z_{2}^{\prime}, can be written as:

$$
Z_{2}^{\prime}=K_{2}-Z_{2}
$$

where K_{2} is an arbitrary constant. This constant has been chosen so that all Z_{2}^{\prime} values are positive. The values of K_{2} for each of the two panel types are given in Table 1.

Figure 5 presents the target and tooling hole designations for each of the two panels. Table 2 presents the nominal target and hole locations in both the CMM and reflector coordinate systems. Table 3 presents supplementary locations used for adjusting the panel to its correct position in the CMM coordinate system.

4.0
 PANEL MEASUREMENT

The overall dimensions of the two panels are shown in Figures 6 and 7. Included on these figures are the location of the coordinate axes.

A Data Acquisition System (DAS) Operating Tape has been prepared for panel measurement. A description of the panel measurement programs is given in Table 3, and program listings are included in Appendix A.

The two programs used for panel measurement are identical except for certain data peculiar to the individual panels.

$F=200$ inches

TOOLING AND TARGET HOLE DESIGNATIONS

Figure 5

TABLE 2
TARGET AND TOOLING HOLE LOCATION
(Nominal)

	Target No.	X_{2}	Y_{2}	Z_{2}	R	Z
	1 2 3 4	$\begin{array}{r} 135.081 \\ 88.972 \\ 47.022 \\ 6.058 \end{array}$	$\begin{aligned} & \pm 1.375 \\ & \pm 7.432 \\ & \pm 12.814 \\ & \pm 17.960 \end{aligned}$	6.793 2.224 2.576 6.793	$\begin{array}{r} 24.272 \\ 70.632 \\ 111.860 \\ 151.280 \end{array}$	$\begin{array}{r} 0.736 \\ 6.236 \\ 15.641 \\ 28.607 \end{array}$
	5 6 7	$\begin{array}{r} 132.451 \\ 79.395 \\ 58.625 \end{array}$	$\begin{aligned} & \pm 8.326 \\ & \pm 11.505 \\ & \pm 12.578 \end{aligned}$	$\begin{aligned} & 8.019 \\ & 4.758 \\ & 7.337 \end{aligned}$	$\begin{gathered} 154.781 \\ 203.382 \\ 219.787 \end{gathered}$	$\begin{aligned} & 29.946 \\ & 51.705 \\ & 60.383 \end{aligned}$

	Tooling Hole	X_{2}	Y_{2}	Z_{2}	R	Z
$$	A BL BO BR	$\begin{array}{r} 130.803 \\ 5.746 \\ 10.802 \\ 5.746 \end{array}$	$\begin{array}{r} 0 \\ -9.868 \\ 0 \\ 9.868 \end{array}$	$\begin{aligned} & 6.136 \\ & 6.571 \\ & 5.758 \\ & 6.571 \end{aligned}$	$\begin{array}{r} 28.552 \\ 150.885 \\ 145.801 \\ 150.885 \end{array}$	$\begin{array}{r} 1.019 \\ 28.458 \\ 26.572 \\ 28.458 \end{array}$
	C	$\begin{gathered} 130.008 \\ 43.521 \end{gathered}$	0 0	$\begin{aligned} & 7.663 \\ & 6.760 \end{aligned}$	$\begin{array}{r} 156.885 \\ 234.600 \end{array}$	$\begin{aligned} & 30.766 \\ & 68.796 \end{aligned}$

TABLE 3

DAS PROGRAMS

12- M REFLECTOR PANELS

Program	Description
45APDAS	This program is used to determine the deviation of the inner panel from the theoretical surface. The CMM probe is positioned sequentially over the points to be measured and the keys "M" and "RETURN" are pressed. Each measurement is displayed on CRT. When all of the points have been measured, the keys "C" and "RETURN" are pressed. The data is then stored on the data tape and the RMS, Average De- viation and Number of Data Points are recorded on the CRT.
12BPDAS	Same as 45APDAS except for vutcr panel.

INNER (A) PANEL CNIA CODRDINATES

FIGUEE 6

FIGURE 7
$5 / 11 / 81$
$4+1$:

The measurement grids for the panels are shown in Figures 8 and 9. The average area per measurement represented by the inner panel grid is 21 square inches, and that of the outer panel grid is 42 square inches.

The RMS and Average Deviation for the panels are based on the following formulas:

$$
\begin{aligned}
R M S & =\sqrt{\frac{\sum\left(D i-\bar{D}^{\prime}\right)^{2} \operatorname{Cos} \theta}{N-1}}=\sqrt{\frac{N D^{\prime} \operatorname{Dos}^{2} \theta-\frac{(\Sigma D i)^{2} \operatorname{Cos}^{2} \theta}{N}}{N-1}} \\
\bar{D}^{\prime} & =\frac{N D}{N}
\end{aligned}
$$

where $\quad \bar{D}^{\dot{\prime}}=$ Average deviation $D_{i}^{\prime}=$ Deviation of measured from theoretical Z_{2}^{\prime} for $i^{\text {th }}$ point.
$\theta=$ Transformation angle given in Table 1.
The N-1 is used to account for the degree of freedom used in subtracting the average, \bar{D}^{\prime} from the individual measurements. The angle θ accounts for the fact that the path length change is twice the axial component of the deviation measured perpendicular to the surface.

In addition to the DAS programs, Data Reduction programs have been prepared to list the data for each panel. Table 4 lists the programs with a brief description of each program. Listings of the programs are given in Appendix B. These programs are used to present the data recorded on the data tapes.

The data recorded on the DAS are reduced by means of the programs 45APPLAT and 12BPPLAT. As described above, these programs produce an output in the form of an $X-Y$ grid to allow an easier assimilation of the data. It is to be noted that the deviations are given in milli inches (mils).

It is necessary now to combine these data to obtain an overall aggregate RMS for all of the panels. The development of the formulas to do this follows:

For any individual panel, for say the inner complement (24 total):

$$
\Sigma D_{i}^{2}=\left[\left(N_{A}-1\right)(R M S)^{2}+N_{A} \bar{D}^{2}\right]
$$

Thus, for all 24 panels:

$$
\sum_{J=1}^{24}\left(\Sigma D_{i}^{2}\right)_{J}=\sum_{J=1}^{24}\left[\left(N_{A}-1\right)\left(R M S_{J}\right)^{2}+N_{A} \bar{D}_{J}^{2}\right]
$$

Tessco


```
CHECK-OFF TABLE FOR MEASURING GRID
    PANEL A (INNER)
```

Figure 8

Esso

Figure 9

TABLE 4

DATA REDUCTION PROCiRAMS

Program	Description
45APPLT	This program is used to present the deviations of the panel in the form of an X-Y grid to allow an easier assimilation of the data. In addition to printing out the grid, the program also prints out the RMS and average deviation of the panel.
12BPPLT	Same as 45APPLT except for outcr pancl.

Essco

Furthermore, the average deviation for the aggregate, $\overline{\bar{D}}_{A}$, will be:

$$
\overline{\bar{D}}_{A}=\frac{N_{A} \sum_{J=1}^{24} \bar{D}_{J}}{24 N_{A}}
$$

Thus, the aggregate RMS for the inner panels can be expressed as:

$$
\overline{\mathrm{RMS}}_{A}=\sqrt{\sum_{J=1}^{24}\left[\left(N_{A}-1\right)\left(\text { RMS }_{J}\right)^{2}+N_{A}{\overline{D_{J}}}_{J}^{2}\right]-24 N_{A} \overline{\bar{D}}_{A}^{2}}{23 N_{A}}^{2}
$$

Using the weighting factors S_{A} and S_{B} for the two panel types, the average deviation and RMS for the aggregate are given as:

$$
\begin{aligned}
& \bar{D}_{A_{B}}=\frac{S_{A} N_{A}^{24} \Sigma \bar{D}_{A_{J}}+S_{B} N_{B} \Sigma \bar{D}_{B}}{24 S_{A} N_{A}+48\left(S_{B} N_{B}\right)}
\end{aligned}
$$

where

$$
\begin{aligned}
& \Sigma_{A}=S_{A} \Sigma\left[\left(N_{A}-1\right)\left(R M S_{A_{J}}\right)^{2}+N_{A} \bar{D}_{A_{J}}^{2}\right] \\
& \Sigma_{B}=S_{B} \sum\left[\left(N_{B}-1\right)\left(R M S_{B_{J}}\right)^{2}+N_{B} \bar{D}_{B_{J}}{ }^{2}\right] \\
& C=24 S_{A} N_{A}+48\left(S_{B} N_{B}\right)
\end{aligned}
$$

The constants for the panels are:

$$
\begin{array}{ll}
N_{A}=72 & S_{A}=21 \\
N_{B}=51 & S_{B}=42
\end{array}
$$

Esso

Note that in all these formulas $D=D^{\prime} \operatorname{Cos} \theta$.
The program which accomplished the calculations outlined in the above formulas is presented for reference in Appendix C.

In cases where surface illumination taper is significant, this factor can be included in the weighting of each data point, where the weighting factor is a function of the radius of the data point in the reflector aperture.

FINAL ACCEPTANCE RECORD

Customer National Radio Astronomy Observatory Contract No.
Codel: 12-Meter Diameter Reflector Assembly Location

Specification Requirements	Ref. Para.	Discrepancy				No Discrepancy or Discrepancy Cleared	
		No.	Inspe Initi	ctors ials	Date	Inspectors Initials	Date
Reflector Surface Accuracy Measure-	1.0						
ments.							

CONDITIONAL ACCEPTANCE

Reflector panels are accepted with the discrepancies noted.

NAL ACCEPTANCE
Reflector panels are accepted in conformance with contractual requirement.

