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Charlottesville, VA 22901

Dear John:

I am enclosing a new paper by Mehdi Zarghamee of Simpson, Gumpertz and 
Heger which, I am sure, will be of great interest to you. It provides 
some fresh insight into the age-old problem of determining the motions 
of the secondary that are required to maximize peak gain for a Cassegrain 
antenna as a function of elevation angle. It also covers determination 
of the beam deviation that results when gain is maximized through proper 
secondary movement. The antenna that is the subject of the paper is an 
ESSCO 45-foot radio telescope that was modestly modified by us to serve 
as the principal component of the ALCOR Millimeter Wavelength Augumenta- 
tion Radar Project of M.I.T. Lincoln Laboratory. This program is nearing 
completion with installation scheduled to begin in January, 1982.

The reflector is an improved version of our standard 13.7 meter box beam 
design that functions well at the required high angular rates and thus 
would serve as an excellent radio telescope. We did a thorough job of 
analyzing the structure on the computer using a finite-element approach 
and the results of our analysis were used by Mehdi as the structural 
(deflection) inputs for his subreflector motion postprocessor.

Close examination of the paper, especially Figure 3, shows the impor­
tance of secondary alignment on gain. In this case, reference alignment 
is assumed at an elevation angle of 30°. If no further active adjust­
ments are made with changing elevation angle, the impact on gain can be 
significant as illustrated by the graph. For example, a gain loss of
1 dB or more will accompany an incremental elevation travel of 10° for 
elevation angles above 55°. Also for small elevation excursions of 10°- 
15° on either side of the reference position, losses of 0.2-0.4 dB will 
occur.

If active secondary adjustments are made, the peak gain may be dramati­
cally improved. Figure 3 indicates that lateral adjustment is more 
sensitive than axial (focusing) adjustment, but the two applied simul­
taneously are most effective, lowering the gain loss to a maximum of only 
about 0.2 dB over the entire travel range of 90° in elevation. Figure 5 
shows the beam deviation resulting from primary gravity deformations and

(cont'd on page 2)
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secondary alignment which must be utilized as a correction term in the 
computer pointing program. Figure 4 shows the magnitude of lateral and 
axial adjustment required which amounts to less than 0.5 inches laterally 
and 0.2 inches axially for this 45-foot dish.

As Mehdi points out in his paper, minimizing the loss of peak gain via 
active subreflector alignment can be accomplished only when the struc­
tural deformations are repeatable. The millimeter wave radar antenna is 
enclosed in a radome which is equipped with an internal environmental con­
trol system. Thus, the structural gravity behavior is well understood and 
repeatable as opposed to an exposed antenna. Every antenna will exhibit 
different gravity deflection characteristics, but as long as those deflec­
tions are repeatable, the performance should not suffer as a result of 
improper secondary alignment for a reflector that deforms in an axially 
symmetric way. Thus it behooves the user to take advantage of these 
factors so that ultimate antenna performance depends only upon the primary 
surface deformations and pointing accuracy.

I trust that this information will be helpful to you and we would be 
pleased to discuss this subject further if you have any comments or 
questions.

Best Regards,

L. E. Rhoades 
Engineering Manager
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PEAK GAIN OF A CASSEGRAIN ANTENNA 
WITH SECONDARY POSITION ADJUSTMENT

by Mehdi S. Zarghamee*

Abstract

For an enclosed Cassegrain antenna, the loss of peak gain and beam deviation due to\
structural deformations of the primary reflector and rigid body displacements of the 
secondary reflector and of the feed are computed from the combined changes in the RF- 
path length. As the antenna moves in elevation, the position of the secondary reflector may 
be adjusted mechanically to minimize the loss of peak gain; a general method for the 
computation of the magnitude of such adjustments and of their effects on the gain and 
pointing of the system is presented.

Numerical results are obtained for a particular case of a 45-foot diameter antenna designed 
for operation at 95.5 GHz RF frequency for which the computed peak gain of the antenna 
varies significantly with the elevation angle. The results indicate that the loss of peak gain 
as the antenna moves in elevation can be substantially reduced by mechanical adjustment of 
the position of the secondary reflector.

* Staff Consultant, Simpson Gumpertz & Heger Inc., Cambridge, Massachusetts 02138
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I. INTRODUCTION

The structural deformations of a Cassegrain antenna result in surface distortions of the
primary reflector and misalignments between the primary and secondary reflector and the
feed. The surface distortions of the secondary are usually ignored as they are an order of
magnitude smaller than those of the primary reflector. For enclosed antennas, the change
in gravity deformations as it moves in elevation is the main source of gain degradation.
Both surface distortions of the primary reflector and misalignments between the antenna
components result in gain degradation and beam deviation. The gain degradation due to the
gravity deformations of the primary reflector may be predicted by the tolerance theory of
Ruze^ from the rms of the surface deviations, usually computed with respect to a
paraboloidal surface that best fits the deformed geometry of the reflector. The best-fitting
is achieved by simultaneously translating and rotating the reflector and changing the focal 

(2)distance . In many cases, the position of the best-fit paraboloid cannot be determined 
with accuracy due to ill-conditioning of the equations. The ill-conditioning is inherent in the 
best-fitting process because rigid-body lateral displacements and rotations of the primary 
reflector result in similar distributions of the change in the RF-path length over the 
aperture.

The misalignment in the relative position of the best-fit paraboloid and the displaced 
positions of the secondary and feed results in beam deviation and loss of peak gain. It is 
possible to break up the misalignment into components of rigid-body displacements of the 
primary, secondary and feed, and to compute separately the beam deviation and loss of peak 
gain due to each component of misalignment^”̂ .  The total beam deviation may be 
computed by the superposition of the effects of the components of misalignment; however, 
to compute the loss of peak gain, the total misalignment must be considered at one time 
because, in general, superposition of the effects of components taken one at a time does not 
hold. Antennas for which the loss of peak gain due to misalignment is significant may 
demonstrate an acute degradation of peak gain near the limits of their travels in elevation. 
To minimize the loss of peak gain due to misalignment, the position of the secondary 
reflector may be adjusted by mechanical means. The magnitude of the adjustment depends 
on the elevation angle of the antenna. Gain degradation may also occur due to astigmatism 
resulting from gravity deformations of the primary reflector as described by 
von Hoerner ^  which he suggests correcting by mechanically deforming a flexible 
subreflector. This paper presents a method for the computation of the adjustment of the 
position of the secondary reflector that minimizes loss of peak gain.



3

In this paper, the beam deviation and the loss of peak gain are calculated directly from the 
changes in the RF-path length resulting from the structural deformation of the primary 
reflector and the rigid body displacements and rotations of the secondary reflector and of 
the feed. The method avoids the best-fitting of the primary and the resulting ill- 
conditioning inherent in such calculations. The position of the secondary reflector is then 
adjusted to minimize the loss of peak gain. The results, obtained for a particular 45-foot 
antenna, indicate that the loss of peak gain due to deformations caused by gravity can be 
substantially reduced by adjustment of the position of the secondary.

II. GAIN LOSS AND BEAM DEVIATION

Let us consider an antenna with an axisymmetric illumination function f(r) where r is the 
aperture position vector defined in polar coordinates by (r, see Fig. I. The direction of 
observation expressed by the angles 4> and 0 (see Fig. I) may also be expressed by a unit 
vector fi where:

p = (sin 8 cos 4>, sin 0 sin 4>, cos 0) ( I)

(Bars indicate a vector quantity and ,,/v" indicates a unit vector.)

The gain in the direction of observation p of a distorted antenna with a change in RF-path 
length of 6 at point r on the aperture is expressed by:

2

G( 4>, 0) =
l r  ^  ^ 4  ( i

j ,  1 A  e

2 /  . f2(r) d S

dS
(2)

Let Gq be the no error peak gain, obtained from (2) by setting 6 = p . r = 0, then

G
XTo

f - p -  r)
J ^ f(r)e  d S

f A f(r) d S
(3)



If the variation of 6 — r over the aperature is small as compared to the wavelength A, 
we may approximate Eq. (3) by expansion as follows:

2 / A f(F) (6 - (5 - 7)2 d S

SA f(F)dS

/* fff)({ r)dS
,2

W

In the direction of peak gain fc, 8 (G/G0)/3 e = 0 and 9 (G/G0)/3 4> = 0. Therefore, if we 
note that

then

and

P. r = r sin 0 cos (<|> - 4>*) — r 0 cos (<J> - <(>*) 

/ A f (r) (6 -  )S0 . r) r cos Gj>o - <)>') d S = 0 

/ *  f (r) (6 - 6 . r) r sin (<t> -  *') d S = 0M O O

(S)

(6. 1)

(6.2)

From Eqs. (6.1) and (6.2)» the direction of peak gain may be expressed by

I ^  f (r) 6 r cos (<j>Q - 4>*) d S

and
°  / A f G) r2 cos2 (<J>o - $') d S

S A f (r) 6 r sin <j>'d S
tan <J) = — —--------------------------

°  f  a  f (r) 6 r cos <J>'d S

(7)

(8)

III. CHANGES IN RF-PATH LENGTH

The total change in the RF-path length 6 is the sum of the changes in the RF-path length 
due to the deformation of the primary reflector 6p, the rigid-body translations and rotations 
of the secondary reflector 6&9 and the displacements of the feed that is



5

Let a point on the surface of the primary reflector undergo a displacement u = (u . v , w ).
r r r r

The resulting change in the RF-path length is twice the axial component of the displacement
(8)normal to the paraboloid ; that is, 6 = - 2 n (u • n) where n = (n , n , n ) is a unit vectorp z p X  y £

normal to the surface of the primary reflector. In order words

6 = c . u (10) P P P
_ 2

where the components of the coefficient vector c for a paraboloid of the form z = r /4f
may be expressed by

c . = c cos (11*1) pi po T

cp2 = cpo s'n 0 1 ,2)

8 f 2  (11.3)c
where

cpo ■ ^ 4  (12)

The effect of the displacements of the feed can be examined by using the equivalent prime- 
focus paraboloid concept. In this concept we use the fact that the energy converging on the 
feed appears to come from an equivalent prime-focus paraboloid (see Fig. 2). Thus the 
effects of the displacement of the feed in a Cassegrain antenna is equivalent to the 
displacement of the feed in a prime-focus antenna of focal length Mf. Therefore, if the 
feed is assumed to undergo a displacement û  = (u ,̂ f ,̂ w )̂, we can express the 
corresponding change in the RF-path length 6^ as follows:

with
6^ = c  ̂ • Uj. (13) 

Cfl = cfo cos 

Cf2 = c^o sin^' (14.2)

c = - W f) 2_+r2_  (|4 J)

f3 4(Mf) + r
. _ 4 r (Mf) M .
fn  “  9 9fo 4  (Mf)2 + r2



6

The rigid-body displacements of the secondary reflector, translations û  = (u$, vs, ws) and 
the rotations ^  and about axes parallel to the x and y axes passing through the vertex 
of the secondary, may be expressed in terms of equivalent rigid body translations and 
rotations of the primary reflector and of the feed. The resulting expression for the change 
in the RF-path length due to displacements of the secondary reflector may be written as 

follows:

where
6s = cs • °s + cs4 *  cs5 ty: (16)

cs = -  (Cp + cf) (17.1)

c ^  = -  Cp2  (k - z) - c ^ h - r O  + cpg) sin $ (17.2)

cs5 = °pl -  z) +c f| h + r(l + cp3  ̂cos (17.3)

For the known deformat iQns of “a Cassegrain antenna, the changes in the RF-path length are 
initially computed from Eqs. (9) -  (17). The values of 6 are then used to compute the 
direction of peak gain dQ and ^  from Eqs. (7) and (8) and the corresponding loss of peak 
gain from Eq. (4).

IV. ADJUSTMENT OF SECONDARY REFLECTOR POSITION

When the structural deformations are repeatable, the secondary position may be adjusted to 
minimize the loss of peak gain. Let be the total change in the RF-path length due to the 
structural deformations of the primary reflector and the rigid-body displacements of the 
secondary and of the feed, and let <J>Q and Qq denote the corresponding direction of peak gain. 
If as the secondary is adjusted it undergoes additional translations and rotations denoted by 
u, and \J<x and \| ,̂ the resulting change in the RF-path length after adjustments is

5a = 6o + «, * 5 + * s4 Ik + cs5 \  (l8)

Without loss of generality, we may assume that <J>o = tt/ 2 and u = ijy = 0. For most enclosed 
antennas which have a vertical plane of symmetry and are subjected to a linear combination 
of face-up and face-side gravity loadings, these assumptions are valid.
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(If <|>o £ 7T /2, we may rotate the coordinate axes so that in the rotated coordinates <j>0 = n/2.) 
Under these assumptions, Eq. (18) reduces to

where
6Q = 6 Q + (kj sin <j>') v + l<2 w + (k  ̂ sin 4>') \px (19)

k l = -  (cpo + cfo) (2 a l)

k2 = cs3 (20.2)

k3 = -  cpo (k - z) - cf0 h - r (I + cp3) (20.3)

The additional displacement of the secondary reflector changes the direction of peak gain. 
Let us denote the direction of peak gain after secondary adjustment by p>Q and the 
corresponding angles by <j>q and 0 . Since <j>Q = tt/2 and the adjustments do not change 

=4>o. If we substitute Eq. (19) into Eq. (7), we obtain an expression for the modified 
direction of peak gain as follows:

where
0a = 6o + 6v v + %  *x (21)

So  f (r) k . r ^ d r
ev = - 7 ----------- 4 --------  (2 2 .D

and Jr f ( r )  r d r

/  p f (r) k  ̂ r2 dr
6, = -B-----------3 --------  (22#2)
+ / R f (r) r d r

in which R refers to the interval of radial integration.

Let us define 6 1 and 6 * as follows: o a

6^ = - r 0o cos (jt/2 -<[>') (23)

6^ = 6 q -  r 0a cos (tt/2 — 4>*) (24)

Substitution of Eqs. (19), (21), and (23) into Eq. (24) results in the following:

6^ = + k|* sin * v + k2w + kg sin <j>' i|i (25)
where
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k,' = k. - r 0

k3 = k3 ~ r %

(26.1)

(26.2)

To select the values of v, w, and j|j which will maximize gain, we substitute Eq. (25) into Eq. 
(4) and set the partial derivatives of G/GQ with respect to v, w, and ipx equal to zero. We 
obtain

where

/ A f(r) k.1 sin 6 ' d S = 0 i = I and 3A i T a

JA f(r) k2' 6a’ d S = 0 
/ p  f (r) k , r d r

k ' -  k _ Jli______ £____
/ R f ( r ) r d r

(27.1)

(27.2)

(28)

Eqs. (27) are three equations in three unknowns and may be written in the form of £  x = b 
where

c.. = tr JR f(r) k.' k.' rdr ij K i j

ci2 = c2j = 0

c22 = 2 * ^  k 2 rclr
b. = -  S A f(r) k.' sin <j>* 6 Vd S

b2 = - / A f(F)k2 { o'dS

i, j  = I and 3

i = I and 3

(29.1)

(29.2)

(29.3)

(30.1)

(30.2)

Solution of this system yields

v =

w =

b l c33~b3°3l 
c ll °33 " CI3 C3I

22

= -*>1 c l 3 * b3 c ll 
x c 11 c33 ~ G13 c31

(31.1)

(31.2)

(31.3)
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Eqs. (31) express the adjustment of the secondary reflector needed to maximize gain.

V. COMPUTED RESULTS

The theoretical development presented above has been coded in a computer program to be 
used as a postprocessor with a structural analysis package. The program computes initially 
the beam -deviation and loss of peak gain of an enclosed Cassegrain antenna due to gravity 
deformations of the primary reflector and rigid-body displacements of the secondary and of 
the feed without adjustments of the position of the secondary reflector. The computed 
values of 6Q and 6o* are used to evaluate the surface integrals that define b., i = 1,2, and 3, 
Eqs. (30). The entries of the coefficient matrix (T, Eqs. (29), which are functions of the 
geometry of the antenna and of the illumination pattern and are independent of the 
structural deformations, are computed by evaluating a series of line integrals. The 
computed values for the adjustment of the position of the secondary reflector to maximize 
gain are used to modify the changes in the RF-path length and compute the corresponding 
loss of peak gain after adjustment of the secondary reflector.

The computation has been performed for the gravity deformations of a 45-foot diameter
Cassegrain antenna enclosed in a radome. The structural deformations were computed by a
finite-element idealization of the structure. It is assumed that the surface panels, the
secondary reflector, and the feed are aligned in such a way that when the antenna is at
elevation angle a , the residual deviations from the ideal antenna configuration are random
in nature. (Note that we are ignoring the bias alignment errors.) Then, if 6U and 6s are theo o
changes in the RF-path length due to structural deformation resulting from gravity loads in 
the face-up and face-side positions, we have

6q = 6̂  (sin a-sin cj.) + 6̂  (cos a-cos cj.) (32)

where a is the elevation angle of the antenna.

The values of 6q as expressed by Eq. (32) for various elevation angles a have been used in 
the calculation of the loss of peak gain and beam deviation without or with secondary 
reflector position adjustment. It was assumed that cj. = 30°, f/D  = 0.37, and the
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magnification factor M = 11. It was further assumed that the illumination function is of the 
form f(r) = I -0.75 (2r/D)^ and that the RF frequency is 95.5 GHz.

In the numerical computations performed, we considered the adjustment of the position of 
the secondary reflector in the lateral and axial directions only. The adjustment for the tilt 
of the secondary reflector was considered to be counterproductive because the loss of gain 
corresponding to the nonrepeatable errors in the angular positioning mechanism are 
expected to be larger than the improvements in gain resulting from the added degree of 
freedom in the adjustment.

Figure 3 shows the loss of peak gain of the 45-foot diameter antenna considered herein prior 
to the adjustment of the position of the secondary and after independent adjustments in the 
lateral and axial directions as well as after a combined axial and lateral adjustment. The 
results indicate that in a Cassegrain antenna for which the deformations of the primary 
reflector structure are almost homologous (i.e. the primary reflector deforms into an almost 
parabolic shape), a significant loss of peak gain may occur as a result of secondary position 
misalignment. Furthermore, the loss of peak gain of a Cassegrain antenna may be 
substantially reduced by suitable adjustments of the position of the secondary reflector in 
the lateral and axial directions. The magnitude of the lateral adjustment v and of the axial 
adjustment w for various elevation angles are shown in Figure 4.

As we adjust the position of the secondary reflector, the loss of peak gain is reduced and the 
beam deviation, i.e. the value of 0q corresponding to the peak axial gain, increases 
significantly (see Fig. 5). Note that if the error in the position of the secondary were 
primarily due to subreflector droop, an adjustment of the secondary position would have 
reduced the gain loss and the beam deviation simultaneously; whereas, if the error were for 
example primarily due to a rotation of the secondary reflector, an adjustment of the 
secondary position in the lateral direction made to maximize gain is expected to increase 
beam deviation. Note that the the beam deviation due to gravity deformations is repeatable 
and can be calibrated out.
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NOTATIONS

A = Domain of aperture

c = Coefficient vector, see Eqs. ( I I ,  I A, 17)

C = Coefficient matrix, see Eqs. (29)

f = Focal length of primary reflector

f(r) = Aperture illumination function

G = Antenna gain

Gq = No error peak gain

h = Distance between feed and the vertex of secondary, see Fig. 2

k = Distance between the vertex of primary and the vertex of secondary,
see Fig. 2

k | , \<2, kg = Coefficients, see Eqs. (20)

k |', k2', kg* = Coefficients, see Eqs. (26) and (28)

p = Unit vector in the direction of observation

(5̂  = Unit vector in the direction of peak gain

= Aperture position vector = (r, $*) in polar coordinates, see Fig. I
o

Up = displacement vector of a point on the primary reflector = (u ,̂ v^, w^)

u = Rigid body translation of secondary reflector $
Uj = Rigid body translation of feed

u, v, w, , ip = Magnitude of adjustment of the position of the secondary reflector x y
x, y, z = Coordinates of points on the primary reflector

a = Elevation angle of antenna

a. = Elevation angle at which the deviations from the ideal antenna
configuration are assumed to be random

6 = change in the RF-path length, a function of aperture position

4>, 0 = Angles defining the direction of observation of the deformed Casse­
grain system with respect to the undeformed system



Direction of observation corresponding to the peak gain ( 0Q is also 
referred to as beam deviation)

Ov, tty = Beam deviation due to a unit lateral displacement and a unit rotation
of the secondary.

^xs* ŷs = Components of rotation of secondary about axes parallel to x and y
y axes through the vertex of the secondary

A = Wavelength

Subscripts

p = primary reflector

s = secondary reflector

f = feed

a = pertaining to adjusted position of secondary reflector
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