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Dear John:

I am enclosing a new paper by Mehdi Zarghamee of Simpson, Gumpertz and
Heger which, I am sure, will be of great interest to you. It provides
some fresh insight into the age-old problem of determining the motions

of the secondary that are required to maximize peak gain for a Cassegrain
antenna as a function of elevation angle. It also covers determination
of the beam deviation that results when gain is maximized through proper
secondary movement. The antenna that is the subject of the paper is an
ESSCO 45-foot radio telescope that was modestly modified by us to serve
as the principal component of the ALCOR Millimeter Wavelength Augumenta-
tion Radar Project of M.I.T. Lincoln Laboratory. This program is nearing
completion with installation scheduled to begin in January, 1982.

The reflector is an improved version of our standard 13.7 meter box beam
design that functions well at the required high angular rates and thus
would serve as an excellent radio telescope. We did a thorough job of
analyzing the structure on the computer using a finite-element approach
and the results of our analysis were used by Mehdi as the structural
(deflection) inputs for his subreflector motion postprocessor.

Close examination of the paper, especially Figure 3, shows the impor-
tance of secondary alignment on gain. In this case, reference alignment
is assumed at an elevation angle of 30°. If no further active adjust-
ments are made with changing elevation angle, the impact on gain can be
significant as illustrated by the graph. . For example, a gain loss of

1 dB or more will accompany an incremental elevation travel of 10° for
elevation angles above 55°. Also for small elevation excursions of 10°-
15° on either side of the reference position, losses of 0.2-0.4 dB will
occur.

If active secondary adjustments are made, the peak gain may be dramati-
cally improved. Figure 3 indicates that lateral adjustment is more
sensitive than axial (focusing) adjustment, but the two applied simul-
taneously are most effective, lowering the gain Toss to a maximum of only
about 0.2 dB over the entire travel range of 90° in elevation. Figure 5
shows the beam deviation resulting from primary gravity deformations and

(cont'd on page 2)
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secondary alignment which must be utilized as a correction term in the
computer pointing program. Figure 4 shows the magnitude of lateral and
axial adjustment required which amounts to less than 0.5 inches laterally
and 0.2 inches axially for this 45-foot dish.

As Mehdi points out in his paper, minimizing the loss of peak gain via
active subreflector alignment can be accomplished only when the struc-
tural deformations are repeatable. The millimeter wave radar antenna is
enclosed in a radome which is equipped with an internal environmental con-
trol system. Thus, the structural gravity behavior is well understood and
repeatable as opposed to an exposed antenna. Every antenna will exhibit
different gravity deflection characteristics, but as long as those deflec-
tions are repeatable, the performance should not suffer as a result of
improper secondary alignment for a reflector that deforms in an axially
symmetric way. Thus it behooves the user to take advantage of these
factors so that ultimate antenna performance depends only upon the primary
surface deformations and pointing accuracy.

I trust that this information will be helpful to you and we would be
pleased to discuss this subject further if you have any comments or
questions.

Best Regards,

L. E. Rhoades
Engineering Manager
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PEAK GAIN OF A CASSEGRAIN ANTENNA
WITH SECONDARY POSITION ADJUSTMENT

by Mehdi S. Zarghamee *

Abstract

For an enclosed ‘Cassegrain antenna, the loss of peak gain and beam deviation due to
structural deformations of the ;>rimary reflector and rigid body displacements of the
secondary reflector and of the feed are computed from the combined changes in the RF-
path length. As the antenna moves in elevation, the position of the secondary reflector may
be adjusted mechanically to minimize the loss of peak gain; a general method for the
computation of the magnitude of such adjustments and of their effects on the gain and

pointing of the system is presented.

Numerical results are obtained for a particular case of a 45-foot diameter antenna designed
for operation at 95.5 GHz RF frequency for which the computed peak gain of the antenna
varies significantly with the elevation angle. The results indicate that the loss of peak gain
as the antenna moves in elevation can be substantially reduced by mechanical adjustment of

the position of the secondary reflector.

* Staff Consultant, Simpson Gumpertz & Heger Inc., Cambridge, Massachusetts 02138



l. INTRODUCTION

The structural deformations of a Cassegrain antenna result in surface distortions of the
primary reflector and misaligninents between the primary and secondary reflector and the
feed. The surface distortions of the secondary are usually ignored as they are an order of
magnitude smaller than those of the primary reflector. For enclosed antennas, the change
in gravity deformations as it moves in elevation is the main source of gain degradation.
Both surface distortions of the primary reflector and misalignments between the antenna
components result in gain degradation and beam deviation. The gain degradation due to the
gravity deformations of the primary reflector may be predicted by the tolerance theory of
Ruze(l) from the rms of the surface deviations, usually computed with respect to a
paraboloidal surface that best fits the deformed geometry of the reflector. The best-fitting
is achieved by simultaneously translating and rotating the reflector and changing the focal
distance(?') . In many cases, the position of the best-fit paraboloid cannot be determined
with accuracy due to ill-conditioning of the equations. The ill-conditioning is inherent in the
best-fitting process because rigid-body lateral displacements and rotations of the primary
reflector result in similar distributions of the change in the RF-path length over the

aperture.

The misalignment in the relative position of the best-fit paraboloid and the displaced
positions of the secondary and feed results in beam deviation and loss of peak gain. It is
possible to break up the misalignment into components of rigid-body displacements of the
primary, secondary and feed, and to compute separately the beam deviation and loss of peak
gain due to each component of misalignment(3)'(5). The total beam deviation may be
computed by the superposition of the effects of the components of misalignment; however,
to compute the loss of peak gain, the total misalignment must be considered at one time
because, in general, superposition of the effects of components taken one at a time does not
hold. Antennas for which the loss of peak gain due to misalignment is significant may
demonstrate an acute degradation of peak gain near the limits of their travels in elevation.
To minimize the loss of peak gain due to misalignment, the position of the secondary
reflector may be adjusted by mechanical means. The magnitode of the adjustment depends
on the elevation angle of the antenna. Gain degradation may also occur due to astigmatism
resulting from gravity deformations of the primary reflector as described by
von Hoerner (6), (7) which he suggests correcting by mechanically deforming a flexible
subreflector. This paper presents a method for the computation of the adjustment of the

position of the secondary reflector that minimizes loss of peak gain.



In this paper, the beam deviation and the loss of peak gain are calculated directly from the
changes in the RF-path length resulting from the structural deformation of the primary
reflector and the rigid body displacements and rotations of the secondary reflector and of
the feed. The method avoids the best-fitting of the primary and the resulting ill-
conditioning inherent in such calculations. The position of the secondary reflector is then
adjusted to minimize the loss of peak gain. The results, obtained for a particular 45-foot
antenna, indicate that the loss of peak gain due to deformations caused by gravity can be

substantially reduced by adjustment of the position of the secondary.
i. GAIN LOSS AND BEAM DEVIATION

Let us consider an antenna with an axisymmetric illumination function f(r) where T is the
aperture position vector defined in polar coordinates by (r, ¢'), see Fig. I. The direction of
observation expressed by the angles ¢ and 6 (see Fig. |) may also be expressed by a unit

vector ff where:

~

p = (sin 6 cos ¢, sin 0 sin ¢, cos 6) (1)
(Bars indicate a vector quantity and """ indicates a unit vector.)

The gain in the direction of observation p of a distorted antenna with a change in RF-path

length of & at point T on the aperture is expressed by:
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If the variation of § — f+r over the aperature is small as compared to the wavelength ),

we may approximate Eq. (3) by expansion as follows:
2
¢ ., Jpf@® (5 -p.7ds
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2
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Jp i@ ds J

In the direction of pedk gain f,, 3 (G/Go)/ 90=0and 3 (G/Go)/ 9 ¢ = 0. Therefore, if we
note that

(4)

p.T =rsin6cos($p-¢"= rocos(p-o¢") (5)
then

Jot® (6-8,.D r cosp_-4)dS=0 (6.1)
and

IAf(r)(c‘-ﬁo.‘)rsin(¢°-¢')d5=o (6.2)

From Egs. (6.1) and (6.2), the direction of peak gain may be expressed by

IA f@) 6 r cos (¢, -¢)dS
° IA f (r) r2cosz(¢o-¢')d5

0)

and
fA f(r) § r sing'dS

IA f() §r cos¢'dS

(8

tan 4)0 =

.  CHANGES IN RF-PATH LENGTH

The total change in the RF-path length & is the sum of the changes in the RF-path length
due to the deformation of the primary reflector § p’ the rigid-body translations and rotations
of the secondary reflector § § and the displacements of the feed 8¢ that is

6=6p+68+6f (9)



Let a point on the surface of the primary reflector undergo a displacement Up = (up, Vs wp).
The resulting change in the RF-path length is twice the axial component of the displacement

normal to the poroboloid(s); that is, 6p =-2 n, (—p * A) where i = (nx’ ny’ nz) is a unit vector
normal to the surface of the primary reflector. In order words

6 = C . v lo

p= S Y% (10)

where the components of the coefficient vector Ep for a paraboloid of the form z = r2/l&f

may be expressed by

Co1 = cpocos¢' (.
€p2 = Cpo SiN ¢’ (11.2)
2
8f
cp3 = - ——2——-2- (“-3)
where bt +r
_ 4o f
Cpo ) 4¢ +r2 (12)

The effect of the displacements of the feed can be examined by using the equivalent prime-
focus paraboloid concept. In this concept we use the fact that the energy converging on the
feed appears to come from an equivalent prime-focus paraboloid (see Fig. 2). Thus the
effects of the displacement of the feed in a Cassegrain antenna is equivalent to the
displacement of the feed in a prime-focus antenna of focal length Mf. Therefore, if the
feed is assumed to undergo a displacement Uf = (uf, fe wf), we can express the
corresponding change in the RF-path length 6 § s follows:

8¢ = ¢ ° Ug (13)
with
6 = o cos ¢' (14.1)
Cr = Cgo sin ¢' (14.2)
2 2?2
“4ME)T + 1
C = (”‘.3)
37 4mn? + rl
4 r (Mf) (15)

c, = -
fo 4 (MF)2 + r2



The rigid-body displacements of the secondary reflector, translations Us = (us, Ver ws) and
the rotations 'pxs and ‘k's about axes parallel to the x and y axes passing through the vertex
of the secondary, may be expressed in terms of equivalent rigid body translations and
rotations of the primary reflector and of the feed. The resulting expression for the change

in the RF-path length due to displacements of the secondary reflector may be written as

follows:
& = €5 U, + Cy Yo + Cog Y (16)
where
Es = - (Ep + 'Ef) (17.1)
Coy = - cp2 k-2z) - cfzh-r(l +cp3) sin ¢ (17.2)
Cs5 = Spy (k-2) +ceph+r(l +cp3)cos ¢ (17.3)

For the known deformations of ‘a Cassegrain antenna, the changes in the RF—path length are
initially computed from Egs. (9) - (17). The values of § are then used to compute the
direction of peak gain d , and g from Egs. (7) and (8) and the corresponding loss of peak
gain from Eq. (4).

IV.  ADJUSTMENT OF SECONDARY REFLECTOR POSITION

When the structural deformations are repeatable, the secondary position may be adjusted. to
minimize the loss of peak gain. Let 60 be the total change in the RF-path length due to the
structural deformations of the primary reflector and the rigid-body displacements of the
secondary and of the feed, and let ¢o and § denote the corresponding direction of peak gain.
If as the secondary is adjusted it undergoes additional translations and rotations denoted by
v, and \px and qs,, the resulting change in the RF-path length after adjustments 6q is

60= 60+cs.u+csll‘k<+c55‘l$' (i8)
Without loss of generality, we may assume that ¢, = /2 and U = ‘ky = 0. For most enclosed
antennas which have a vertical plane of symmetry and are subjected to a linear combination

of face-up and face-side gravity loadings, these assumptions are valid.



(If ¢, # 1/2, we may rotate the coordinate axes so that in the rotated coordinates ¢ , =m/2.)

Under these assumptions, Eq. (18) reduces to

§g = 6, + (k sin ¢) v + ky w + (kg sin ¢) ¢ (19)
where

k) = - (cpO + co) (20.1)

k3 = - Cpo k-2z) - cfoh-r(l +cp3) (20.3)

The additional displacement of the secondary reflector changes the direction of peak gain.
Let us denote the direction of peak gain after secondary adjustment by P, and the
corresponding angles b?' $q and 0, Since ¢ = 7 /2 and the adjustments do not change
Psdy =0, If we substitute Eq. (19) into Eq. (7), we obtain an expression for the modified

direction of peak gain as follows:

ea=a°+evv+e¢ ¥y (21)
where
IRfOOk,rzdr
and R f(r) r’dr

fo £() ky r2dr
o = B 3 (22.2)

LA [ Y0 Sdr

in which R refers to the interval of radial integration.

Let us define § :)and s ;as follows:

6;= 8§, -reo, cos /2-¢" (23)
6g = §, - r6, cos w/2-¢" (24)

Substitution of Egs. (19), (21), and (23) into Eq. (24) results in the following:

8= 5:)4- k|' sin ¢' v + kow + kg sin ¢' Yy (25)

where
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"

k| -r 6, (26.1)

x
H

k,3 -r 9‘p (26.2)

To select the values of v, w, and \px which will maximize gain, we substitute Eq. (25) into Eq.
(4) and set the partial derivatives of G/G o With respect to v, w, and y§, equal to zero. We

obtain

S (N k'sin¢' 61dS = 0 i=land3 (27.1)
J, Nk, 8!ds =0 (27.2)
where
, f R f(r) kz rdr
k2 = k2 - (28)
f R f(r) rdr
Egs. (27) are three equations in three unknowns and may be written in the form of Cx = b
where
cij -af R £(r) ki kj rdr (29.1)
°i2 = czj =0 iyj=land 3 (29.2)
cpp=2nfy £k rdr (29.3)
[ I ] ] .
biz.-fA f(r_)ki sin ¢ 6°.dS i=land3 (30.1)
- 1ot
by =~ [ , () ky 8.'dS (30.2)

Solution of this system yields

v - by c33-b3c3
|1 €33~ €3 C3 GL.n
b
w = El (31.2)
22
-b,c,,+b,cC
1 €13+ b3y G13)

X ~ €| €33-¢3C3



Egs. (31) express the adjustment of the secondary reflector needed to maximize gain.

V. COMPUTED RESULTS

The theoretical development presented above has been coded in a computer program to be
used as a postprocessor with a structural analysis package. The program computes initially
the beam deviation and loss of peak gain of an enclosed Cossegra.in antenna due to gravity
deformations of the primary reflector and rigid-body displacements of the secondary and of
the feed without adjustments of the position of the secondary reflector. The computed
values of 60 and 50' are used to evaluate the surface integrals that define bi’ i=1,2,and 3,
Egs. (30). The entries of the coefficient matrix C, Eqs. (29), which are functions of the
geometry of the antenna and of the illumination pattern and are independent of the
structural deformations, are computed by evaluating a series of line integrals. The
computed values for the adjustment of the position of the secondary reflector to maximize
gain are used to modify the changes in the RF—pdth length and compute the corresponding
loss of peak gain after adjustment of the secondary reflector.

The computation has been performed for the gravity deformations of a 45-foot diameter
Cassegrain antenna enclosed in a radome. The structural deformbﬁons were computed by a
finite-element idealization of the structure. It is assumed that the surface panels, the
secondary reflector, and the feed are aligned in such a way that when the antenna is at
elevation angle a, the residual deviations from the ideal antenna configuration are random
in nature. (Note that we are ignoring the bias alignment errors.) Then, if 6: and 6: are the
changes in the RF—path length due to structural deformation resulting from gravity loads in

the face-up and face-side positions, we have

8 = 6:,‘; (sin a-sin CP) + 6;’ (cos a- cos °i') (32)

where qis the elevation angle of the antenna.

The values of 60 as expressed by Eq. (32) for various elevation angles ahave been used in
the calculation of the loss of peak gain and beam deviation without or with secondary

reflector position adjustment. It was assumed that q = 30°% f/D = 0.37, and the
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magnification factor M = ||. It was further assumed that the illumination function is of the

form f(r) = | ~0.75 (2r/D)? and that the RF frequency is 95.5 GHz.

In the numerical computations performed, we considered the adjustment of the position of
the secondary reflector in the lateral and axial directions only. The adjustment for the tilt
of the secondary reflector was considered to be counterproductive because the loss of gain
corresponding to the nonrepeatable errors in the angular positioning mechanism are
expected to be larger than the improvements in gain resulting from the added degree of

freedom in the adjustment.

Figure.3 shows the loss of peak gain of the 45-foot diameter antenna considered herein prior
to the adjustment of the position of the secondary and after independent adjustments in the
lateral and axial directions as well as after a combined axial and lateral adjustment. The
results indicate that in a Cassegrain antenna for which the deformations of the-primary
reflector structure are almost homologous (i.e. the primary reflector deforms into an almost
parabolic shape), a significant loss of peak gain may occur as a result of secondary position
misalignment.  Furthermore, the loss of peak gain of a Cassegrain antenna may be
substantially reduced by suitable adjustments of the position of the secondary reflector in
the lateral and axial directions. The magnitude of the lateral odjustmenf v and of the axial

adjustment w for various elevation angles are shown in Figure 4.

As we adjust the position of the secondary reflector, the loss of peak gain is reduced and the
beam deviation, i.e. the value of 90 corresponding to the peak axial gain, increases
significantly (see Fig. 5). Note that if the error in the position of the secondary were
primarily due to subreflector ‘droop, an adjustment of the secondary position would have
reduced the gain loss and the beam deviation simultaneously; whereas, if the error were for
example primarily due to a rotation of the secondary reflector, an adjustment of the
secondary position in the lateral direction made to maximize gain is expected to increase
beam deviation. Note that the the beam deviation due to gravity deformations is repeatable

and can be calibrated out.
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NOTATIONS

Domain of aperture

Coefficient vector, see Egs. (I 1, 14, 17)

Coefficient matrix, see Egs. (29)

Focal length of primary reflector

Aperture illumination function

Antenna gain

No error peak gain

Distance between feed and the vertex of secondary, see Fig. 2

Distance between the vertex of primary and the vertex of secondary,
see Fig. 2

Coefficients, see Egs. (20)

Coefficients, see Egs. (26) and (28)

Unit vector in the direction of observation

Unit vector in the direction of peak gain

Aperture position vector = (r, ¢) in polar coordinates, see Fig. |
displacement vector of a point on the primary reflector = (up, vp, wp)
Rigid body translation of secondary reflector

Rigid body translation of feed

Magnitude of adjustment of the position of the secondary reflector
Coordinates of points on the primary reflector

Elevation angle of antenna

Elevation angle at which the deviations from the ideal antenna
configuration are assumed to be random

change in the RF-path length, a function of aperture position

Angles defining the direction of observation of the deformed Casse-
grain system with respect to the undeformed system



by, 6y

Vst g
A
Subscripts

p

S

n

Direction of observation corresponding to the peak gain (6 is also
referred to as beam deviation)

Beam deviation due to a unit lateral displacement and a unit rotation
of the secondary.

Components of rotation of secondary about axes parallel to x and y
axes through the vertex of the secondary

Wavelength

primary reflector
secondary reflector

feed

pertaining to adjusted position of secondary reflector
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