National Radio Astronomy Observatory

Green Bank. West Virginia
December 2, 1981

To:
12-M File

12 METER. MILLIMETER WAVE TELESCOPE MEMO No.
 \qquad

From:
R. Fisher and J. Payne

Subject: Tolerances for subreflector positioning on the $12-\mathrm{m}$ telescope

The conversion from lateral subreflector displacement, ΔX, to angular displacement of the beam on the sky, $\Delta \theta$ is given by

$$
\Delta \theta(\operatorname{arcsec})=2.05 \times 10^{5} \Delta \times\left(\frac{\mathrm{BDf}}{\mathrm{f}}-\frac{\mathrm{BDF}}{\mathrm{~F}}\right)
$$

where f and F are the focal length of the main reflector and the effective focal length of the cassegrain system, in the same units as ΔX. The corsesponging beam deviation factors are $B D f$ and $B D F$.

The conversion from angular tilt of the subreflector, $\Delta \beta$, to angular beam displacement is given by

$$
\Delta \theta=-\frac{\Delta \beta \ell}{f} \quad(B D f+B D F)
$$

where $\Delta \beta$ and $\Delta \theta$ are in the same units, and ℓ is the distance from the vertex of the subreflector to the focal point of the main reflector.

The parameters for the $12-\mathrm{m}$ are

$$
\begin{array}{lll}
\mathbf{f}=5.08 \mathrm{~m} & \mathrm{BDf} \simeq 0.85 \\
\mathrm{~F}=151.0 \mathrm{~m} & \mathrm{BDF} \simeq 1.0 \\
\ell=0.364 \mathrm{~m} &
\end{array}
$$

so

$$
\Delta \theta(")=32.99 \Delta x(m m)
$$

and

$$
\Delta \theta\left({ }^{\prime \prime}\right)=-0.133 \Delta \beta\left({ }^{\prime \prime}\right)
$$

The beamwidth of the $12-\mathrm{m}$ at $\lambda 1 \mathrm{~mm}$ will be about $20^{\prime \prime}$ so the peak error on the beam shift due to subreflector movement should definitely be smaller than $\pm 1!0$. Translated into subreflector motion this would be

$$
\begin{aligned}
& \Delta X= \pm 0.030 \mathrm{~mm}(0.0012 \mathrm{in}) \\
& \Delta \beta= \pm 7!5
\end{aligned}
$$

assuming that one or the other motion contains all of the error. If the error were distributed equally and quadratically between the two

$$
\begin{aligned}
\Delta \mathrm{X} & = \pm 0.021 \mathrm{~mm}(0.0008) \\
\Delta \beta & = \pm 5!3
\end{aligned}
$$

