12 METER MILLINEIER WAVE TELESCOPE MEMO No. \qquad

Correcting Template Sensor Readings Using
Measurements of the Reference Jig
by John W. Findlay and Lee King

August 27, 1982

1. Introduction

Memo \#187 described our present "best" set of measurements of the positions of the dowels in the R / J. We now turn to the task of transforming these measurements into zero-point corrections to be applied to the T/P sensor readings.

In Figure 1 let $\left(X_{c p}, Y_{c p}\right)$ be the measured coordinates of a dowel center in the reflector axis system (DAS). In Memo \#187 X_{cp} and Y_{cp} are found from Equation (1), but with YY chosen to be the measured value, rather than the nominal value.

Figure 1
A Dowel in the Reflector Axis System

Let P be a point on the true reflector surface, with coordinates $\left(X_{p}, Y_{p}\right)$.

Then :

$$
\begin{equation*}
X_{P}^{2}=4 F Y_{p} \tag{1}
\end{equation*}
$$

and

$$
\left.\begin{array}{l}
X_{p}=X_{c p}-(d+r) \sin \phi \tag{2}\\
Y_{p}=Y_{c p}+(d+r) \cos \phi
\end{array}\right\}
$$

We require d, which follows from (1) and (2):

$$
\begin{equation*}
d=\frac{-B-\sqrt{B^{2}-4 A C}}{2 A}-r \tag{3}
\end{equation*}
$$

where

$$
\left.\begin{array}{l}
A=\sin ^{2} \phi \tag{4}\\
B=-2 X_{C p} \sin \phi-4 F \cos \phi \\
C=X_{C p}^{2}-4 F Y_{c p}
\end{array}\right\}
$$

with F equal to the reflector focal length ($F=5080 \mathrm{~mm}$ nominally) and r equal to the dowel radius (9.525 mm).

2. Computation

Table 1 gives the computed values of d and shows the values adopted from Table 5 of Memo No. 187 for ΔX and ΔY. (Note that Table 5 used nominal values of $\Delta X=\Delta Y=0$ at dowel No. 1 , while here we have set $\Delta X=\Delta Y=0$ at the origin.) We have checked Table 1 in two ways. First, if we set $\Delta X=$ $\Delta Y=0$ for all dowels we do, as we should, find $d=0$ for all dowels. Second, we have used double precision (quite large numbers are differenced in (3)) and confirmed our results.

3. Application

We note that:

- A positive d means the sensor is extended beyond the true surface to reach the dowel.
- A longer d implies a lower voltage output from the sensor.
- Thus, if a given sensor reads V volts on a dowel with a positive d, it would read ($V+d / c$) volts on the true surface. c is my sensor calibration constant which says that a sensor voltage change of dV volts corresponds to a movement of $c x d V m i c r o n s$.

Dowel No.	$\begin{gathered} \phi \\ \text { degrees } \end{gathered}$	$\mathrm{x}_{\mathrm{c}} \stackrel{\text { Nominal }}{\mathrm{mm}}$	$\begin{aligned} & \text { erence Jig } \\ & \mathrm{Y}_{\mathrm{c}}-647.7 \mathrm{~mm} \\ & \hline \end{aligned}$	$\underset{\text { microns }}{\Delta \mathrm{x}}$		$\underset{\text { microns }}{\mathrm{d}}$
1	3.472	592.970	-171.694	-77	97	-74
2	6.572	1135.760	-295.615	-163	23	5
3	9.616	1684.445	- -390.248	-176	27	-2
4	12.579	2237.303	-455.988	-204	125	-105
5	15.444	2792.773	-493.522	-224	198	-188
6	18.194	3349.396	-503.794	-220	245	-245
7	20.820	3905.867	-487.939	-215	241	-252
8	21.163	3980. 326	-483.896	-170	287	-297
9	23.652	4537.792	-439.710	-196	85	-104
10	26.007	5092.870	-372.603	-175	75	-100
11	28.228	5644.780	-282.194	-182	52	-85
12	30.319	6192.901	-171.694	-179	97	-133

Table 1. The " d " values from the R / J measurements.

These rules then tell us to adjust the sensor zero point reading in volts (V(I) in my programs) so that

$$
\begin{equation*}
V(I)+V(I)+d / c \tag{5}
\end{equation*}
$$

4. Two Notes
(a) The RMS of the R/J profile.

Having measured the R / J and transferred the contact points on the dowels into telescope coordinates (DAS), it is interesting to put a best-fitted parabola through the measured points. We did this, adjusting only the focal length, and found:

$$
\begin{aligned}
& \text { Best fit focal length }=5079.3 \pm 0.1 \mathrm{~mm} \\
& \text { RMS difference from best fit }=115 \text { microns }
\end{aligned}
$$

(b) The edge-ball in telescope coordinates

We now repeat the calculation of paragraph 3(c) of Memo No. 187, using our "best" value for the coordinates of the center of the edge-ball dowel (No. 13) in the R / J axis system No. 2.

$$
X=6289.215 \mathrm{~mm} \quad X=-296.809 \mathrm{~mm}
$$

and get

$$
\begin{equation*}
X_{p e}=6076.413 \mathrm{~mm} \quad Y_{p e}=1639.575 \mathrm{~mm} \tag{6}
\end{equation*}
$$

The Y coordinate is the height at which all edge balls should be set above the top of the dish center ball.

